memory-failure.c 49.1 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * Copyright (C) 2008, 2009 Intel Corporation
 * Authors: Andi Kleen, Fengguang Wu
 *
 * This software may be redistributed and/or modified under the terms of
 * the GNU General Public License ("GPL") version 2 only as published by the
 * Free Software Foundation.
 *
 * High level machine check handler. Handles pages reported by the
10
 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11
 * failure.
12 13 14
 * 
 * In addition there is a "soft offline" entry point that allows stop using
 * not-yet-corrupted-by-suspicious pages without killing anything.
15 16
 *
 * Handles page cache pages in various states.	The tricky part
17 18 19 20 21 22
 * here is that we can access any page asynchronously in respect to 
 * other VM users, because memory failures could happen anytime and 
 * anywhere. This could violate some of their assumptions. This is why 
 * this code has to be extremely careful. Generally it tries to use 
 * normal locking rules, as in get the standard locks, even if that means 
 * the error handling takes potentially a long time.
23 24 25 26 27 28 29 30
 *
 * It can be very tempting to add handling for obscure cases here.
 * In general any code for handling new cases should only be added iff:
 * - You know how to test it.
 * - You have a test that can be added to mce-test
 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
 * - The case actually shows up as a frequent (top 10) page state in
 *   tools/vm/page-types when running a real workload.
31 32 33 34 35 36 37
 * 
 * There are several operations here with exponential complexity because
 * of unsuitable VM data structures. For example the operation to map back 
 * from RMAP chains to processes has to walk the complete process list and 
 * has non linear complexity with the number. But since memory corruptions
 * are rare we hope to get away with this. This avoids impacting the core 
 * VM.
38 39 40 41
 */
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/page-flags.h>
W
Wu Fengguang 已提交
42
#include <linux/kernel-page-flags.h>
43
#include <linux/sched/signal.h>
44
#include <linux/sched/task.h>
H
Hugh Dickins 已提交
45
#include <linux/ksm.h>
46
#include <linux/rmap.h>
47
#include <linux/export.h>
48 49 50
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/backing-dev.h>
51 52 53
#include <linux/migrate.h>
#include <linux/page-isolation.h>
#include <linux/suspend.h>
54
#include <linux/slab.h>
55
#include <linux/swapops.h>
56
#include <linux/hugetlb.h>
57
#include <linux/memory_hotplug.h>
58
#include <linux/mm_inline.h>
59
#include <linux/kfifo.h>
60
#include <linux/ratelimit.h>
61
#include "internal.h"
62
#include "ras/ras_event.h"
63 64 65 66 67

int sysctl_memory_failure_early_kill __read_mostly = 0;

int sysctl_memory_failure_recovery __read_mostly = 1;

68
atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
69

70 71
#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)

72
u32 hwpoison_filter_enable = 0;
W
Wu Fengguang 已提交
73 74
u32 hwpoison_filter_dev_major = ~0U;
u32 hwpoison_filter_dev_minor = ~0U;
W
Wu Fengguang 已提交
75 76
u64 hwpoison_filter_flags_mask;
u64 hwpoison_filter_flags_value;
77
EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
W
Wu Fengguang 已提交
78 79
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
W
Wu Fengguang 已提交
80 81
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
W
Wu Fengguang 已提交
82 83 84 85 86 87 88 89 90 91 92

static int hwpoison_filter_dev(struct page *p)
{
	struct address_space *mapping;
	dev_t dev;

	if (hwpoison_filter_dev_major == ~0U &&
	    hwpoison_filter_dev_minor == ~0U)
		return 0;

	/*
93
	 * page_mapping() does not accept slab pages.
W
Wu Fengguang 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
	 */
	if (PageSlab(p))
		return -EINVAL;

	mapping = page_mapping(p);
	if (mapping == NULL || mapping->host == NULL)
		return -EINVAL;

	dev = mapping->host->i_sb->s_dev;
	if (hwpoison_filter_dev_major != ~0U &&
	    hwpoison_filter_dev_major != MAJOR(dev))
		return -EINVAL;
	if (hwpoison_filter_dev_minor != ~0U &&
	    hwpoison_filter_dev_minor != MINOR(dev))
		return -EINVAL;

	return 0;
}

W
Wu Fengguang 已提交
113 114 115 116 117 118 119 120 121 122 123 124
static int hwpoison_filter_flags(struct page *p)
{
	if (!hwpoison_filter_flags_mask)
		return 0;

	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
				    hwpoison_filter_flags_value)
		return 0;
	else
		return -EINVAL;
}

A
Andi Kleen 已提交
125 126 127 128 129 130 131 132 133 134
/*
 * This allows stress tests to limit test scope to a collection of tasks
 * by putting them under some memcg. This prevents killing unrelated/important
 * processes such as /sbin/init. Note that the target task may share clean
 * pages with init (eg. libc text), which is harmless. If the target task
 * share _dirty_ pages with another task B, the test scheme must make sure B
 * is also included in the memcg. At last, due to race conditions this filter
 * can only guarantee that the page either belongs to the memcg tasks, or is
 * a freed page.
 */
135
#ifdef CONFIG_MEMCG
A
Andi Kleen 已提交
136 137 138 139 140 141 142
u64 hwpoison_filter_memcg;
EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
static int hwpoison_filter_task(struct page *p)
{
	if (!hwpoison_filter_memcg)
		return 0;

143
	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
A
Andi Kleen 已提交
144 145 146 147 148 149 150 151
		return -EINVAL;

	return 0;
}
#else
static int hwpoison_filter_task(struct page *p) { return 0; }
#endif

W
Wu Fengguang 已提交
152 153
int hwpoison_filter(struct page *p)
{
154 155 156
	if (!hwpoison_filter_enable)
		return 0;

W
Wu Fengguang 已提交
157 158 159
	if (hwpoison_filter_dev(p))
		return -EINVAL;

W
Wu Fengguang 已提交
160 161 162
	if (hwpoison_filter_flags(p))
		return -EINVAL;

A
Andi Kleen 已提交
163 164 165
	if (hwpoison_filter_task(p))
		return -EINVAL;

W
Wu Fengguang 已提交
166 167
	return 0;
}
168 169 170 171 172 173 174
#else
int hwpoison_filter(struct page *p)
{
	return 0;
}
#endif

W
Wu Fengguang 已提交
175 176
EXPORT_SYMBOL_GPL(hwpoison_filter);

177
/*
178 179 180
 * Send all the processes who have the page mapped a signal.
 * ``action optional'' if they are not immediately affected by the error
 * ``action required'' if error happened in current execution context
181
 */
182 183
static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
			unsigned long pfn, struct page *page, int flags)
184 185 186 187
{
	struct siginfo si;
	int ret;

188 189
	pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
		pfn, t->comm, t->pid);
190 191 192 193 194 195
	si.si_signo = SIGBUS;
	si.si_errno = 0;
	si.si_addr = (void *)addr;
#ifdef __ARCH_SI_TRAPNO
	si.si_trapno = trapno;
#endif
196
	si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
197

198
	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
199
		si.si_code = BUS_MCEERR_AR;
200
		ret = force_sig_info(SIGBUS, &si, current);
201 202 203 204 205 206 207 208 209 210
	} else {
		/*
		 * Don't use force here, it's convenient if the signal
		 * can be temporarily blocked.
		 * This could cause a loop when the user sets SIGBUS
		 * to SIG_IGN, but hopefully no one will do that?
		 */
		si.si_code = BUS_MCEERR_AO;
		ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
	}
211
	if (ret < 0)
212
		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
213
			t->comm, t->pid, ret);
214 215 216
	return ret;
}

217 218 219 220
/*
 * When a unknown page type is encountered drain as many buffers as possible
 * in the hope to turn the page into a LRU or free page, which we can handle.
 */
221
void shake_page(struct page *p, int access)
222 223 224 225 226
{
	if (!PageSlab(p)) {
		lru_add_drain_all();
		if (PageLRU(p))
			return;
227
		drain_all_pages(page_zone(p));
228 229 230
		if (PageLRU(p) || is_free_buddy_page(p))
			return;
	}
231

232
	/*
233 234
	 * Only call shrink_node_slabs here (which would also shrink
	 * other caches) if access is not potentially fatal.
235
	 */
236 237
	if (access)
		drop_slab_node(page_to_nid(p));
238 239 240
}
EXPORT_SYMBOL_GPL(shake_page);

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
/*
 * Kill all processes that have a poisoned page mapped and then isolate
 * the page.
 *
 * General strategy:
 * Find all processes having the page mapped and kill them.
 * But we keep a page reference around so that the page is not
 * actually freed yet.
 * Then stash the page away
 *
 * There's no convenient way to get back to mapped processes
 * from the VMAs. So do a brute-force search over all
 * running processes.
 *
 * Remember that machine checks are not common (or rather
 * if they are common you have other problems), so this shouldn't
 * be a performance issue.
 *
 * Also there are some races possible while we get from the
 * error detection to actually handle it.
 */

struct to_kill {
	struct list_head nd;
	struct task_struct *tsk;
	unsigned long addr;
267
	char addr_valid;
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
};

/*
 * Failure handling: if we can't find or can't kill a process there's
 * not much we can do.	We just print a message and ignore otherwise.
 */

/*
 * Schedule a process for later kill.
 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 * TBD would GFP_NOIO be enough?
 */
static void add_to_kill(struct task_struct *tsk, struct page *p,
		       struct vm_area_struct *vma,
		       struct list_head *to_kill,
		       struct to_kill **tkc)
{
	struct to_kill *tk;

	if (*tkc) {
		tk = *tkc;
		*tkc = NULL;
	} else {
		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
		if (!tk) {
293
			pr_err("Memory failure: Out of memory while machine check handling\n");
294 295 296 297 298 299 300 301 302 303 304 305 306
			return;
		}
	}
	tk->addr = page_address_in_vma(p, vma);
	tk->addr_valid = 1;

	/*
	 * In theory we don't have to kill when the page was
	 * munmaped. But it could be also a mremap. Since that's
	 * likely very rare kill anyways just out of paranoia, but use
	 * a SIGKILL because the error is not contained anymore.
	 */
	if (tk->addr == -EFAULT) {
307
		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
			page_to_pfn(p), tsk->comm);
		tk->addr_valid = 0;
	}
	get_task_struct(tsk);
	tk->tsk = tsk;
	list_add_tail(&tk->nd, to_kill);
}

/*
 * Kill the processes that have been collected earlier.
 *
 * Only do anything when DOIT is set, otherwise just free the list
 * (this is used for clean pages which do not need killing)
 * Also when FAIL is set do a force kill because something went
 * wrong earlier.
 */
324
static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
M
Minchan Kim 已提交
325
			  bool fail, struct page *page, unsigned long pfn,
326
			  int flags)
327 328 329 330
{
	struct to_kill *tk, *next;

	list_for_each_entry_safe (tk, next, to_kill, nd) {
331
		if (forcekill) {
332
			/*
333
			 * In case something went wrong with munmapping
334 335 336 337
			 * make sure the process doesn't catch the
			 * signal and then access the memory. Just kill it.
			 */
			if (fail || tk->addr_valid == 0) {
338
				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
339
				       pfn, tk->tsk->comm, tk->tsk->pid);
340 341 342 343 344 345 346 347 348
				force_sig(SIGKILL, tk->tsk);
			}

			/*
			 * In theory the process could have mapped
			 * something else on the address in-between. We could
			 * check for that, but we need to tell the
			 * process anyways.
			 */
349 350
			else if (kill_proc(tk->tsk, tk->addr, trapno,
					      pfn, page, flags) < 0)
351
				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
352
				       pfn, tk->tsk->comm, tk->tsk->pid);
353 354 355 356 357 358
		}
		put_task_struct(tk->tsk);
		kfree(tk);
	}
}

359 360 361 362 363 364 365 366 367
/*
 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 * on behalf of the thread group. Return task_struct of the (first found)
 * dedicated thread if found, and return NULL otherwise.
 *
 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
 * have to call rcu_read_lock/unlock() in this function.
 */
static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
368
{
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
	struct task_struct *t;

	for_each_thread(tsk, t)
		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
			return t;
	return NULL;
}

/*
 * Determine whether a given process is "early kill" process which expects
 * to be signaled when some page under the process is hwpoisoned.
 * Return task_struct of the dedicated thread (main thread unless explicitly
 * specified) if the process is "early kill," and otherwise returns NULL.
 */
static struct task_struct *task_early_kill(struct task_struct *tsk,
					   int force_early)
{
	struct task_struct *t;
387
	if (!tsk->mm)
388
		return NULL;
389
	if (force_early)
390 391 392 393 394 395 396
		return tsk;
	t = find_early_kill_thread(tsk);
	if (t)
		return t;
	if (sysctl_memory_failure_early_kill)
		return tsk;
	return NULL;
397 398 399 400 401 402
}

/*
 * Collect processes when the error hit an anonymous page.
 */
static void collect_procs_anon(struct page *page, struct list_head *to_kill,
403
			      struct to_kill **tkc, int force_early)
404 405 406 407
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct anon_vma *av;
408
	pgoff_t pgoff;
409

410
	av = page_lock_anon_vma_read(page);
411
	if (av == NULL)	/* Not actually mapped anymore */
412 413
		return;

414
	pgoff = page_to_pgoff(page);
415
	read_lock(&tasklist_lock);
416
	for_each_process (tsk) {
417
		struct anon_vma_chain *vmac;
418
		struct task_struct *t = task_early_kill(tsk, force_early);
419

420
		if (!t)
421
			continue;
422 423
		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
					       pgoff, pgoff) {
424
			vma = vmac->vma;
425 426
			if (!page_mapped_in_vma(page, vma))
				continue;
427 428
			if (vma->vm_mm == t->mm)
				add_to_kill(t, page, vma, to_kill, tkc);
429 430 431
		}
	}
	read_unlock(&tasklist_lock);
432
	page_unlock_anon_vma_read(av);
433 434 435 436 437 438
}

/*
 * Collect processes when the error hit a file mapped page.
 */
static void collect_procs_file(struct page *page, struct list_head *to_kill,
439
			      struct to_kill **tkc, int force_early)
440 441 442 443 444
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct address_space *mapping = page->mapping;

445
	i_mmap_lock_read(mapping);
446
	read_lock(&tasklist_lock);
447
	for_each_process(tsk) {
448
		pgoff_t pgoff = page_to_pgoff(page);
449
		struct task_struct *t = task_early_kill(tsk, force_early);
450

451
		if (!t)
452
			continue;
453
		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
454 455 456 457 458 459 460 461
				      pgoff) {
			/*
			 * Send early kill signal to tasks where a vma covers
			 * the page but the corrupted page is not necessarily
			 * mapped it in its pte.
			 * Assume applications who requested early kill want
			 * to be informed of all such data corruptions.
			 */
462 463
			if (vma->vm_mm == t->mm)
				add_to_kill(t, page, vma, to_kill, tkc);
464 465 466
		}
	}
	read_unlock(&tasklist_lock);
467
	i_mmap_unlock_read(mapping);
468 469 470 471 472 473 474 475
}

/*
 * Collect the processes who have the corrupted page mapped to kill.
 * This is done in two steps for locking reasons.
 * First preallocate one tokill structure outside the spin locks,
 * so that we can kill at least one process reasonably reliable.
 */
476 477
static void collect_procs(struct page *page, struct list_head *tokill,
				int force_early)
478 479 480 481 482 483 484 485 486 487
{
	struct to_kill *tk;

	if (!page->mapping)
		return;

	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
	if (!tk)
		return;
	if (PageAnon(page))
488
		collect_procs_anon(page, tokill, &tk, force_early);
489
	else
490
		collect_procs_file(page, tokill, &tk, force_early);
491 492 493 494
	kfree(tk);
}

static const char *action_name[] = {
495 496 497 498
	[MF_IGNORED] = "Ignored",
	[MF_FAILED] = "Failed",
	[MF_DELAYED] = "Delayed",
	[MF_RECOVERED] = "Recovered",
499 500 501
};

static const char * const action_page_types[] = {
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
	[MF_MSG_KERNEL]			= "reserved kernel page",
	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
	[MF_MSG_SLAB]			= "kernel slab page",
	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
	[MF_MSG_HUGE]			= "huge page",
	[MF_MSG_FREE_HUGE]		= "free huge page",
	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
	[MF_MSG_BUDDY]			= "free buddy page",
	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
	[MF_MSG_UNKNOWN]		= "unknown page",
522 523
};

524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
/*
 * XXX: It is possible that a page is isolated from LRU cache,
 * and then kept in swap cache or failed to remove from page cache.
 * The page count will stop it from being freed by unpoison.
 * Stress tests should be aware of this memory leak problem.
 */
static int delete_from_lru_cache(struct page *p)
{
	if (!isolate_lru_page(p)) {
		/*
		 * Clear sensible page flags, so that the buddy system won't
		 * complain when the page is unpoison-and-freed.
		 */
		ClearPageActive(p);
		ClearPageUnevictable(p);
		/*
		 * drop the page count elevated by isolate_lru_page()
		 */
542
		put_page(p);
543 544 545 546 547
		return 0;
	}
	return -EIO;
}

548 549 550 551 552 553 554
/*
 * Error hit kernel page.
 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 * could be more sophisticated.
 */
static int me_kernel(struct page *p, unsigned long pfn)
{
555
	return MF_IGNORED;
556 557 558 559 560 561 562
}

/*
 * Page in unknown state. Do nothing.
 */
static int me_unknown(struct page *p, unsigned long pfn)
{
563
	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
564
	return MF_FAILED;
565 566 567 568 569 570 571 572
}

/*
 * Clean (or cleaned) page cache page.
 */
static int me_pagecache_clean(struct page *p, unsigned long pfn)
{
	int err;
573
	int ret = MF_FAILED;
574 575
	struct address_space *mapping;

576 577
	delete_from_lru_cache(p);

578 579 580 581 582
	/*
	 * For anonymous pages we're done the only reference left
	 * should be the one m_f() holds.
	 */
	if (PageAnon(p))
583
		return MF_RECOVERED;
584 585 586 587 588 589 590 591 592 593 594 595 596

	/*
	 * Now truncate the page in the page cache. This is really
	 * more like a "temporary hole punch"
	 * Don't do this for block devices when someone else
	 * has a reference, because it could be file system metadata
	 * and that's not safe to truncate.
	 */
	mapping = page_mapping(p);
	if (!mapping) {
		/*
		 * Page has been teared down in the meanwhile
		 */
597
		return MF_FAILED;
598 599 600 601 602 603 604 605 606 607
	}

	/*
	 * Truncation is a bit tricky. Enable it per file system for now.
	 *
	 * Open: to take i_mutex or not for this? Right now we don't.
	 */
	if (mapping->a_ops->error_remove_page) {
		err = mapping->a_ops->error_remove_page(mapping, p);
		if (err != 0) {
608
			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
609
				pfn, err);
610 611
		} else if (page_has_private(p) &&
				!try_to_release_page(p, GFP_NOIO)) {
612 613
			pr_info("Memory failure: %#lx: failed to release buffers\n",
				pfn);
614
		} else {
615
			ret = MF_RECOVERED;
616 617 618 619 620 621 622
		}
	} else {
		/*
		 * If the file system doesn't support it just invalidate
		 * This fails on dirty or anything with private pages
		 */
		if (invalidate_inode_page(p))
623
			ret = MF_RECOVERED;
624
		else
625 626
			pr_info("Memory failure: %#lx: Failed to invalidate\n",
				pfn);
627 628 629 630 631
	}
	return ret;
}

/*
632
 * Dirty pagecache page
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
 * Issues: when the error hit a hole page the error is not properly
 * propagated.
 */
static int me_pagecache_dirty(struct page *p, unsigned long pfn)
{
	struct address_space *mapping = page_mapping(p);

	SetPageError(p);
	/* TBD: print more information about the file. */
	if (mapping) {
		/*
		 * IO error will be reported by write(), fsync(), etc.
		 * who check the mapping.
		 * This way the application knows that something went
		 * wrong with its dirty file data.
		 *
		 * There's one open issue:
		 *
		 * The EIO will be only reported on the next IO
		 * operation and then cleared through the IO map.
		 * Normally Linux has two mechanisms to pass IO error
		 * first through the AS_EIO flag in the address space
		 * and then through the PageError flag in the page.
		 * Since we drop pages on memory failure handling the
		 * only mechanism open to use is through AS_AIO.
		 *
		 * This has the disadvantage that it gets cleared on
		 * the first operation that returns an error, while
		 * the PageError bit is more sticky and only cleared
		 * when the page is reread or dropped.  If an
		 * application assumes it will always get error on
		 * fsync, but does other operations on the fd before
L
Lucas De Marchi 已提交
665
		 * and the page is dropped between then the error
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
		 * will not be properly reported.
		 *
		 * This can already happen even without hwpoisoned
		 * pages: first on metadata IO errors (which only
		 * report through AS_EIO) or when the page is dropped
		 * at the wrong time.
		 *
		 * So right now we assume that the application DTRT on
		 * the first EIO, but we're not worse than other parts
		 * of the kernel.
		 */
		mapping_set_error(mapping, EIO);
	}

	return me_pagecache_clean(p, pfn);
}

/*
 * Clean and dirty swap cache.
 *
 * Dirty swap cache page is tricky to handle. The page could live both in page
 * cache and swap cache(ie. page is freshly swapped in). So it could be
 * referenced concurrently by 2 types of PTEs:
 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 * and then
 *      - clear dirty bit to prevent IO
 *      - remove from LRU
 *      - but keep in the swap cache, so that when we return to it on
 *        a later page fault, we know the application is accessing
 *        corrupted data and shall be killed (we installed simple
 *        interception code in do_swap_page to catch it).
 *
 * Clean swap cache pages can be directly isolated. A later page fault will
 * bring in the known good data from disk.
 */
static int me_swapcache_dirty(struct page *p, unsigned long pfn)
{
	ClearPageDirty(p);
	/* Trigger EIO in shmem: */
	ClearPageUptodate(p);

708
	if (!delete_from_lru_cache(p))
709
		return MF_DELAYED;
710
	else
711
		return MF_FAILED;
712 713 714 715 716
}

static int me_swapcache_clean(struct page *p, unsigned long pfn)
{
	delete_from_swap_cache(p);
717

718
	if (!delete_from_lru_cache(p))
719
		return MF_RECOVERED;
720
	else
721
		return MF_FAILED;
722 723 724 725 726
}

/*
 * Huge pages. Needs work.
 * Issues:
727 728
 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 *   To narrow down kill region to one page, we need to break up pmd.
729 730 731
 */
static int me_huge_page(struct page *p, unsigned long pfn)
{
732
	int res = 0;
733
	struct page *hpage = compound_head(p);
734 735 736 737

	if (!PageHuge(hpage))
		return MF_DELAYED;

738 739 740 741 742 743 744 745 746
	/*
	 * We can safely recover from error on free or reserved (i.e.
	 * not in-use) hugepage by dequeuing it from freelist.
	 * To check whether a hugepage is in-use or not, we can't use
	 * page->lru because it can be used in other hugepage operations,
	 * such as __unmap_hugepage_range() and gather_surplus_pages().
	 * So instead we use page_mapping() and PageAnon().
	 */
	if (!(page_mapping(hpage) || PageAnon(hpage))) {
747 748
		res = dequeue_hwpoisoned_huge_page(hpage);
		if (!res)
749
			return MF_RECOVERED;
750
	}
751
	return MF_DELAYED;
752 753 754 755 756 757 758 759 760
}

/*
 * Various page states we can handle.
 *
 * A page state is defined by its current page->flags bits.
 * The table matches them in order and calls the right handler.
 *
 * This is quite tricky because we can access page at any time
L
Lucas De Marchi 已提交
761
 * in its live cycle, so all accesses have to be extremely careful.
762 763 764 765 766 767
 *
 * This is not complete. More states could be added.
 * For any missing state don't attempt recovery.
 */

#define dirty		(1UL << PG_dirty)
768
#define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
769 770 771 772 773 774 775 776 777 778 779
#define unevict		(1UL << PG_unevictable)
#define mlock		(1UL << PG_mlocked)
#define writeback	(1UL << PG_writeback)
#define lru		(1UL << PG_lru)
#define head		(1UL << PG_head)
#define slab		(1UL << PG_slab)
#define reserved	(1UL << PG_reserved)

static struct page_state {
	unsigned long mask;
	unsigned long res;
780
	enum mf_action_page_type type;
781 782
	int (*action)(struct page *p, unsigned long pfn);
} error_states[] = {
783
	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
784 785 786 787
	/*
	 * free pages are specially detected outside this table:
	 * PG_buddy pages only make a small fraction of all free pages.
	 */
788 789 790 791 792 793

	/*
	 * Could in theory check if slab page is free or if we can drop
	 * currently unused objects without touching them. But just
	 * treat it as standard kernel for now.
	 */
794
	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
795

796
	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
797

798 799
	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
800

801 802
	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
803

804 805
	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
806

807 808
	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
809 810 811 812

	/*
	 * Catchall entry: must be at end.
	 */
813
	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
814 815
};

816 817 818 819 820 821 822 823 824 825
#undef dirty
#undef sc
#undef unevict
#undef mlock
#undef writeback
#undef lru
#undef head
#undef slab
#undef reserved

826 827 828 829
/*
 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
 */
830 831
static void action_result(unsigned long pfn, enum mf_action_page_type type,
			  enum mf_result result)
832
{
833 834
	trace_memory_failure_event(pfn, type, result);

835
	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
836
		pfn, action_page_types[type], action_name[result]);
837 838 839
}

static int page_action(struct page_state *ps, struct page *p,
840
			unsigned long pfn)
841 842
{
	int result;
843
	int count;
844 845

	result = ps->action(p, pfn);
846

847
	count = page_count(p) - 1;
848
	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
849 850
		count--;
	if (count != 0) {
851
		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
852
		       pfn, action_page_types[ps->type], count);
853
		result = MF_FAILED;
854
	}
855
	action_result(pfn, ps->type, result);
856 857 858 859 860 861

	/* Could do more checks here if page looks ok */
	/*
	 * Could adjust zone counters here to correct for the missing page.
	 */

862
	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
863 864
}

865 866 867 868 869 870 871 872 873 874 875
/**
 * get_hwpoison_page() - Get refcount for memory error handling:
 * @page:	raw error page (hit by memory error)
 *
 * Return: return 0 if failed to grab the refcount, otherwise true (some
 * non-zero value.)
 */
int get_hwpoison_page(struct page *page)
{
	struct page *head = compound_head(page);

876
	if (!PageHuge(head) && PageTransHuge(head)) {
877 878 879 880 881 882 883
		/*
		 * Non anonymous thp exists only in allocation/free time. We
		 * can't handle such a case correctly, so let's give it up.
		 * This should be better than triggering BUG_ON when kernel
		 * tries to touch the "partially handled" page.
		 */
		if (!PageAnon(head)) {
884
			pr_err("Memory failure: %#lx: non anonymous thp\n",
885 886 887
				page_to_pfn(page));
			return 0;
		}
888 889
	}

890 891 892 893
	if (get_page_unless_zero(head)) {
		if (head == compound_head(page))
			return 1;

894 895
		pr_info("Memory failure: %#lx cannot catch tail\n",
			page_to_pfn(page));
896 897 898 899
		put_page(head);
	}

	return 0;
900 901 902
}
EXPORT_SYMBOL_GPL(get_hwpoison_page);

903 904 905 906
/*
 * Do all that is necessary to remove user space mappings. Unmap
 * the pages and send SIGBUS to the processes if the data was dirty.
 */
M
Minchan Kim 已提交
907
static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
908
				  int trapno, int flags, struct page **hpagep)
909
{
S
Shaohua Li 已提交
910
	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
911 912
	struct address_space *mapping;
	LIST_HEAD(tokill);
M
Minchan Kim 已提交
913
	bool unmap_success;
914
	int kill = 1, forcekill;
915
	struct page *hpage = *hpagep;
916

917 918 919 920 921
	/*
	 * Here we are interested only in user-mapped pages, so skip any
	 * other types of pages.
	 */
	if (PageReserved(p) || PageSlab(p))
M
Minchan Kim 已提交
922
		return true;
923
	if (!(PageLRU(hpage) || PageHuge(p)))
M
Minchan Kim 已提交
924
		return true;
925 926 927 928 929

	/*
	 * This check implies we don't kill processes if their pages
	 * are in the swap cache early. Those are always late kills.
	 */
930
	if (!page_mapped(hpage))
M
Minchan Kim 已提交
931
		return true;
W
Wu Fengguang 已提交
932

933
	if (PageKsm(p)) {
934
		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
M
Minchan Kim 已提交
935
		return false;
936
	}
937 938

	if (PageSwapCache(p)) {
939 940
		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
			pfn);
941 942 943 944 945 946
		ttu |= TTU_IGNORE_HWPOISON;
	}

	/*
	 * Propagate the dirty bit from PTEs to struct page first, because we
	 * need this to decide if we should kill or just drop the page.
947 948
	 * XXX: the dirty test could be racy: set_page_dirty() may not always
	 * be called inside page lock (it's recommended but not enforced).
949
	 */
950
	mapping = page_mapping(hpage);
951
	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
952 953 954
	    mapping_cap_writeback_dirty(mapping)) {
		if (page_mkclean(hpage)) {
			SetPageDirty(hpage);
955 956 957
		} else {
			kill = 0;
			ttu |= TTU_IGNORE_HWPOISON;
958
			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
959 960 961 962 963 964 965 966 967 968 969 970 971
				pfn);
		}
	}

	/*
	 * First collect all the processes that have the page
	 * mapped in dirty form.  This has to be done before try_to_unmap,
	 * because ttu takes the rmap data structures down.
	 *
	 * Error handling: We ignore errors here because
	 * there's nothing that can be done.
	 */
	if (kill)
972
		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
973

M
Minchan Kim 已提交
974 975
	unmap_success = try_to_unmap(hpage, ttu);
	if (!unmap_success)
976
		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
977
		       pfn, page_mapcount(hpage));
978

979 980 981 982
	/*
	 * Now that the dirty bit has been propagated to the
	 * struct page and all unmaps done we can decide if
	 * killing is needed or not.  Only kill when the page
983 984
	 * was dirty or the process is not restartable,
	 * otherwise the tokill list is merely
985 986 987 988
	 * freed.  When there was a problem unmapping earlier
	 * use a more force-full uncatchable kill to prevent
	 * any accesses to the poisoned memory.
	 */
989
	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
M
Minchan Kim 已提交
990
	kill_procs(&tokill, forcekill, trapno, !unmap_success, p, pfn, flags);
W
Wu Fengguang 已提交
991

M
Minchan Kim 已提交
992
	return unmap_success;
993 994
}

995 996 997
static void set_page_hwpoison_huge_page(struct page *hpage)
{
	int i;
998
	int nr_pages = 1 << compound_order(hpage);
999 1000 1001 1002 1003 1004 1005
	for (i = 0; i < nr_pages; i++)
		SetPageHWPoison(hpage + i);
}

static void clear_page_hwpoison_huge_page(struct page *hpage)
{
	int i;
1006
	int nr_pages = 1 << compound_order(hpage);
1007 1008 1009 1010
	for (i = 0; i < nr_pages; i++)
		ClearPageHWPoison(hpage + i);
}

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
/**
 * memory_failure - Handle memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @trapno: Trap number reported in the signal to user space.
 * @flags: fine tune action taken
 *
 * This function is called by the low level machine check code
 * of an architecture when it detects hardware memory corruption
 * of a page. It tries its best to recover, which includes
 * dropping pages, killing processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Must run in process context (e.g. a work queue) with interrupts
 * enabled and no spinlocks hold.
 */
int memory_failure(unsigned long pfn, int trapno, int flags)
1030 1031 1032
{
	struct page_state *ps;
	struct page *p;
1033
	struct page *hpage;
1034
	struct page *orig_head;
1035
	int res;
1036
	unsigned int nr_pages;
1037
	unsigned long page_flags;
1038 1039 1040 1041 1042

	if (!sysctl_memory_failure_recovery)
		panic("Memory failure from trap %d on page %lx", trapno, pfn);

	if (!pfn_valid(pfn)) {
1043 1044
		pr_err("Memory failure: %#lx: memory outside kernel control\n",
			pfn);
1045
		return -ENXIO;
1046 1047 1048
	}

	p = pfn_to_page(pfn);
1049
	orig_head = hpage = compound_head(p);
1050
	if (TestSetPageHWPoison(p)) {
1051 1052
		pr_err("Memory failure: %#lx: already hardware poisoned\n",
			pfn);
1053 1054 1055
		return 0;
	}

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
	/*
	 * Currently errors on hugetlbfs pages are measured in hugepage units,
	 * so nr_pages should be 1 << compound_order.  OTOH when errors are on
	 * transparent hugepages, they are supposed to be split and error
	 * measurement is done in normal page units.  So nr_pages should be one
	 * in this case.
	 */
	if (PageHuge(p))
		nr_pages = 1 << compound_order(hpage);
	else /* normal page or thp */
		nr_pages = 1;
1067
	num_poisoned_pages_add(nr_pages);
1068 1069 1070 1071 1072

	/*
	 * We need/can do nothing about count=0 pages.
	 * 1) it's a free page, and therefore in safe hand:
	 *    prep_new_page() will be the gate keeper.
1073 1074 1075 1076
	 * 2) it's a free hugepage, which is also safe:
	 *    an affected hugepage will be dequeued from hugepage freelist,
	 *    so there's no concern about reusing it ever after.
	 * 3) it's part of a non-compound high order page.
1077 1078 1079 1080 1081 1082
	 *    Implies some kernel user: cannot stop them from
	 *    R/W the page; let's pray that the page has been
	 *    used and will be freed some time later.
	 * In fact it's dangerous to directly bump up page count from 0,
	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
	 */
1083
	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1084
		if (is_free_buddy_page(p)) {
1085
			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1086
			return 0;
1087 1088
		} else if (PageHuge(hpage)) {
			/*
1089
			 * Check "filter hit" and "race with other subpage."
1090
			 */
J
Jens Axboe 已提交
1091
			lock_page(hpage);
1092 1093 1094
			if (PageHWPoison(hpage)) {
				if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
				    || (p != hpage && TestSetPageHWPoison(hpage))) {
1095
					num_poisoned_pages_sub(nr_pages);
1096 1097 1098
					unlock_page(hpage);
					return 0;
				}
1099 1100 1101
			}
			set_page_hwpoison_huge_page(hpage);
			res = dequeue_hwpoisoned_huge_page(hpage);
1102 1103
			action_result(pfn, MF_MSG_FREE_HUGE,
				      res ? MF_IGNORED : MF_DELAYED);
1104 1105
			unlock_page(hpage);
			return res;
1106
		} else {
1107
			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1108 1109
			return -EBUSY;
		}
1110 1111
	}

1112
	if (!PageHuge(p) && PageTransHuge(hpage)) {
1113 1114 1115 1116
		lock_page(p);
		if (!PageAnon(p) || unlikely(split_huge_page(p))) {
			unlock_page(p);
			if (!PageAnon(p))
1117 1118
				pr_err("Memory failure: %#lx: non anonymous thp\n",
					pfn);
1119
			else
1120 1121
				pr_err("Memory failure: %#lx: thp split failed\n",
					pfn);
1122
			if (TestClearPageHWPoison(p))
1123
				num_poisoned_pages_sub(nr_pages);
1124
			put_hwpoison_page(p);
1125 1126
			return -EBUSY;
		}
1127
		unlock_page(p);
1128 1129 1130 1131
		VM_BUG_ON_PAGE(!page_count(p), p);
		hpage = compound_head(p);
	}

1132 1133 1134
	/*
	 * We ignore non-LRU pages for good reasons.
	 * - PG_locked is only well defined for LRU pages and a few others
1135
	 * - to avoid races with __SetPageLocked()
1136 1137 1138 1139
	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
	 * The check (unnecessarily) ignores LRU pages being isolated and
	 * walked by the page reclaim code, however that's not a big loss.
	 */
1140
	if (!PageHuge(p)) {
1141 1142 1143
		if (!PageLRU(p))
			shake_page(p, 0);
		if (!PageLRU(p)) {
1144 1145 1146 1147
			/*
			 * shake_page could have turned it free.
			 */
			if (is_free_buddy_page(p)) {
1148
				if (flags & MF_COUNT_INCREASED)
1149
					action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1150
				else
1151 1152
					action_result(pfn, MF_MSG_BUDDY_2ND,
						      MF_DELAYED);
1153 1154
				return 0;
			}
1155
		}
1156 1157
	}

J
Jens Axboe 已提交
1158
	lock_page(hpage);
W
Wu Fengguang 已提交
1159

1160 1161 1162 1163
	/*
	 * The page could have changed compound pages during the locking.
	 * If this happens just bail out.
	 */
1164
	if (PageCompound(p) && compound_head(p) != orig_head) {
1165
		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1166 1167 1168 1169
		res = -EBUSY;
		goto out;
	}

1170 1171 1172 1173 1174 1175 1176 1177 1178
	/*
	 * We use page flags to determine what action should be taken, but
	 * the flags can be modified by the error containment action.  One
	 * example is an mlocked page, where PG_mlocked is cleared by
	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
	 * correctly, we save a copy of the page flags at this time.
	 */
	page_flags = p->flags;

W
Wu Fengguang 已提交
1179 1180 1181 1182
	/*
	 * unpoison always clear PG_hwpoison inside page lock
	 */
	if (!PageHWPoison(p)) {
1183
		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1184
		num_poisoned_pages_sub(nr_pages);
1185
		unlock_page(hpage);
1186
		put_hwpoison_page(hpage);
1187
		return 0;
W
Wu Fengguang 已提交
1188
	}
W
Wu Fengguang 已提交
1189 1190
	if (hwpoison_filter(p)) {
		if (TestClearPageHWPoison(p))
1191
			num_poisoned_pages_sub(nr_pages);
1192
		unlock_page(hpage);
1193
		put_hwpoison_page(hpage);
W
Wu Fengguang 已提交
1194 1195
		return 0;
	}
W
Wu Fengguang 已提交
1196

1197 1198 1199
	if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
		goto identify_page_state;

1200 1201 1202 1203
	/*
	 * For error on the tail page, we should set PG_hwpoison
	 * on the head page to show that the hugepage is hwpoisoned
	 */
1204
	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1205
		action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED);
1206
		unlock_page(hpage);
1207
		put_hwpoison_page(hpage);
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
		return 0;
	}
	/*
	 * Set PG_hwpoison on all pages in an error hugepage,
	 * because containment is done in hugepage unit for now.
	 * Since we have done TestSetPageHWPoison() for the head page with
	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
	 */
	if (PageHuge(p))
		set_page_hwpoison_huge_page(hpage);

1219 1220 1221 1222
	/*
	 * It's very difficult to mess with pages currently under IO
	 * and in many cases impossible, so we just avoid it here.
	 */
1223 1224 1225 1226
	wait_on_page_writeback(p);

	/*
	 * Now take care of user space mappings.
1227
	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1228 1229 1230
	 *
	 * When the raw error page is thp tail page, hpage points to the raw
	 * page after thp split.
1231
	 */
M
Minchan Kim 已提交
1232
	if (!hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)) {
1233
		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
W
Wu Fengguang 已提交
1234 1235 1236
		res = -EBUSY;
		goto out;
	}
1237 1238 1239 1240

	/*
	 * Torn down by someone else?
	 */
1241
	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1242
		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1243
		res = -EBUSY;
1244 1245 1246
		goto out;
	}

1247
identify_page_state:
1248
	res = -EBUSY;
1249 1250 1251 1252 1253 1254 1255
	/*
	 * The first check uses the current page flags which may not have any
	 * relevant information. The second check with the saved page flagss is
	 * carried out only if the first check can't determine the page status.
	 */
	for (ps = error_states;; ps++)
		if ((p->flags & ps->mask) == ps->res)
1256
			break;
1257 1258 1259

	page_flags |= (p->flags & (1UL << PG_dirty));

1260 1261 1262 1263 1264
	if (!ps->mask)
		for (ps = error_states;; ps++)
			if ((page_flags & ps->mask) == ps->res)
				break;
	res = page_action(ps, p, pfn);
1265
out:
1266
	unlock_page(hpage);
1267 1268
	return res;
}
1269
EXPORT_SYMBOL_GPL(memory_failure);
W
Wu Fengguang 已提交
1270

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
#define MEMORY_FAILURE_FIFO_ORDER	4
#define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)

struct memory_failure_entry {
	unsigned long pfn;
	int trapno;
	int flags;
};

struct memory_failure_cpu {
	DECLARE_KFIFO(fifo, struct memory_failure_entry,
		      MEMORY_FAILURE_FIFO_SIZE);
	spinlock_t lock;
	struct work_struct work;
};

static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);

/**
 * memory_failure_queue - Schedule handling memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @trapno: Trap number reported in the signal to user space.
 * @flags: Flags for memory failure handling
 *
 * This function is called by the low level hardware error handler
 * when it detects hardware memory corruption of a page. It schedules
 * the recovering of error page, including dropping pages, killing
 * processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Can run in IRQ context.
 */
void memory_failure_queue(unsigned long pfn, int trapno, int flags)
{
	struct memory_failure_cpu *mf_cpu;
	unsigned long proc_flags;
	struct memory_failure_entry entry = {
		.pfn =		pfn,
		.trapno =	trapno,
		.flags =	flags,
	};

	mf_cpu = &get_cpu_var(memory_failure_cpu);
	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
S
Stefani Seibold 已提交
1318
	if (kfifo_put(&mf_cpu->fifo, entry))
1319 1320
		schedule_work_on(smp_processor_id(), &mf_cpu->work);
	else
J
Joe Perches 已提交
1321
		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
		       pfn);
	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
	put_cpu_var(memory_failure_cpu);
}
EXPORT_SYMBOL_GPL(memory_failure_queue);

static void memory_failure_work_func(struct work_struct *work)
{
	struct memory_failure_cpu *mf_cpu;
	struct memory_failure_entry entry = { 0, };
	unsigned long proc_flags;
	int gotten;

1335
	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1336 1337 1338 1339 1340 1341
	for (;;) {
		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
		gotten = kfifo_get(&mf_cpu->fifo, &entry);
		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
		if (!gotten)
			break;
1342 1343 1344 1345
		if (entry.flags & MF_SOFT_OFFLINE)
			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
		else
			memory_failure(entry.pfn, entry.trapno, entry.flags);
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
	}
}

static int __init memory_failure_init(void)
{
	struct memory_failure_cpu *mf_cpu;
	int cpu;

	for_each_possible_cpu(cpu) {
		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
		spin_lock_init(&mf_cpu->lock);
		INIT_KFIFO(mf_cpu->fifo);
		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
	}

	return 0;
}
core_initcall(memory_failure_init);

1365 1366 1367 1368 1369 1370
#define unpoison_pr_info(fmt, pfn, rs)			\
({							\
	if (__ratelimit(rs))				\
		pr_info(fmt, pfn);			\
})

W
Wu Fengguang 已提交
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
/**
 * unpoison_memory - Unpoison a previously poisoned page
 * @pfn: Page number of the to be unpoisoned page
 *
 * Software-unpoison a page that has been poisoned by
 * memory_failure() earlier.
 *
 * This is only done on the software-level, so it only works
 * for linux injected failures, not real hardware failures
 *
 * Returns 0 for success, otherwise -errno.
 */
int unpoison_memory(unsigned long pfn)
{
	struct page *page;
	struct page *p;
	int freeit = 0;
1388
	unsigned int nr_pages;
1389 1390
	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
					DEFAULT_RATELIMIT_BURST);
W
Wu Fengguang 已提交
1391 1392 1393 1394 1395 1396 1397 1398

	if (!pfn_valid(pfn))
		return -ENXIO;

	p = pfn_to_page(pfn);
	page = compound_head(p);

	if (!PageHWPoison(p)) {
1399
		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1400
				 pfn, &unpoison_rs);
W
Wu Fengguang 已提交
1401 1402 1403
		return 0;
	}

1404
	if (page_count(page) > 1) {
1405
		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1406
				 pfn, &unpoison_rs);
1407 1408 1409 1410
		return 0;
	}

	if (page_mapped(page)) {
1411
		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1412
				 pfn, &unpoison_rs);
1413 1414 1415 1416
		return 0;
	}

	if (page_mapping(page)) {
1417
		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1418
				 pfn, &unpoison_rs);
1419 1420 1421
		return 0;
	}

1422 1423 1424 1425 1426
	/*
	 * unpoison_memory() can encounter thp only when the thp is being
	 * worked by memory_failure() and the page lock is not held yet.
	 * In such case, we yield to memory_failure() and make unpoison fail.
	 */
1427
	if (!PageHuge(page) && PageTransHuge(page)) {
1428
		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1429
				 pfn, &unpoison_rs);
1430
		return 0;
1431 1432
	}

1433
	nr_pages = 1 << compound_order(page);
1434

1435
	if (!get_hwpoison_page(p)) {
1436 1437 1438 1439 1440 1441 1442
		/*
		 * Since HWPoisoned hugepage should have non-zero refcount,
		 * race between memory failure and unpoison seems to happen.
		 * In such case unpoison fails and memory failure runs
		 * to the end.
		 */
		if (PageHuge(page)) {
1443
			unpoison_pr_info("Unpoison: Memory failure is now running on free hugepage %#lx\n",
1444
					 pfn, &unpoison_rs);
1445 1446
			return 0;
		}
W
Wu Fengguang 已提交
1447
		if (TestClearPageHWPoison(p))
1448
			num_poisoned_pages_dec();
1449
		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1450
				 pfn, &unpoison_rs);
W
Wu Fengguang 已提交
1451 1452 1453
		return 0;
	}

J
Jens Axboe 已提交
1454
	lock_page(page);
W
Wu Fengguang 已提交
1455 1456 1457 1458 1459 1460
	/*
	 * This test is racy because PG_hwpoison is set outside of page lock.
	 * That's acceptable because that won't trigger kernel panic. Instead,
	 * the PG_hwpoison page will be caught and isolated on the entrance to
	 * the free buddy page pool.
	 */
1461
	if (TestClearPageHWPoison(page)) {
1462
		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1463
				 pfn, &unpoison_rs);
1464
		num_poisoned_pages_sub(nr_pages);
W
Wu Fengguang 已提交
1465
		freeit = 1;
1466 1467
		if (PageHuge(page))
			clear_page_hwpoison_huge_page(page);
W
Wu Fengguang 已提交
1468 1469 1470
	}
	unlock_page(page);

1471
	put_hwpoison_page(page);
1472
	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1473
		put_hwpoison_page(page);
W
Wu Fengguang 已提交
1474 1475 1476 1477

	return 0;
}
EXPORT_SYMBOL(unpoison_memory);
1478 1479 1480

static struct page *new_page(struct page *p, unsigned long private, int **x)
{
1481
	int nid = page_to_nid(p);
1482 1483 1484 1485
	if (PageHuge(p))
		return alloc_huge_page_node(page_hstate(compound_head(p)),
						   nid);
	else
1486
		return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1487 1488 1489 1490 1491 1492 1493 1494
}

/*
 * Safely get reference count of an arbitrary page.
 * Returns 0 for a free page, -EIO for a zero refcount page
 * that is not free, and 1 for any other page type.
 * For 1 the page is returned with increased page count, otherwise not.
 */
1495
static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1496 1497 1498 1499 1500 1501
{
	int ret;

	if (flags & MF_COUNT_INCREASED)
		return 1;

1502 1503 1504 1505
	/*
	 * When the target page is a free hugepage, just remove it
	 * from free hugepage list.
	 */
1506
	if (!get_hwpoison_page(p)) {
1507
		if (PageHuge(p)) {
1508
			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1509
			ret = 0;
1510
		} else if (is_free_buddy_page(p)) {
1511
			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1512 1513
			ret = 0;
		} else {
1514 1515
			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
				__func__, pfn, p->flags);
1516 1517 1518 1519 1520 1521 1522 1523 1524
			ret = -EIO;
		}
	} else {
		/* Not a free page */
		ret = 1;
	}
	return ret;
}

1525 1526 1527 1528
static int get_any_page(struct page *page, unsigned long pfn, int flags)
{
	int ret = __get_any_page(page, pfn, flags);

1529 1530
	if (ret == 1 && !PageHuge(page) &&
	    !PageLRU(page) && !__PageMovable(page)) {
1531 1532 1533
		/*
		 * Try to free it.
		 */
1534
		put_hwpoison_page(page);
1535 1536 1537 1538 1539 1540
		shake_page(page, 1);

		/*
		 * Did it turn free?
		 */
		ret = __get_any_page(page, pfn, 0);
1541
		if (ret == 1 && !PageLRU(page)) {
1542
			/* Drop page reference which is from __get_any_page() */
1543
			put_hwpoison_page(page);
1544 1545 1546 1547 1548 1549 1550 1551
			pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
				pfn, page->flags);
			return -EIO;
		}
	}
	return ret;
}

1552 1553 1554 1555 1556
static int soft_offline_huge_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);
	struct page *hpage = compound_head(page);
1557
	LIST_HEAD(pagelist);
1558

1559 1560 1561 1562 1563
	/*
	 * This double-check of PageHWPoison is to avoid the race with
	 * memory_failure(). See also comment in __soft_offline_page().
	 */
	lock_page(hpage);
1564
	if (PageHWPoison(hpage)) {
1565
		unlock_page(hpage);
1566
		put_hwpoison_page(hpage);
1567
		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1568
		return -EBUSY;
1569
	}
1570
	unlock_page(hpage);
1571

1572
	ret = isolate_huge_page(hpage, &pagelist);
1573 1574 1575 1576
	/*
	 * get_any_page() and isolate_huge_page() takes a refcount each,
	 * so need to drop one here.
	 */
1577
	put_hwpoison_page(hpage);
1578
	if (!ret) {
1579 1580 1581 1582
		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
		return -EBUSY;
	}

1583
	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1584
				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1585
	if (ret) {
1586 1587
		pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
			pfn, ret, page->flags);
1588 1589 1590 1591 1592 1593 1594 1595
		/*
		 * We know that soft_offline_huge_page() tries to migrate
		 * only one hugepage pointed to by hpage, so we need not
		 * run through the pagelist here.
		 */
		putback_active_hugepage(hpage);
		if (ret > 0)
			ret = -EIO;
1596
	} else {
1597 1598 1599 1600
		/* overcommit hugetlb page will be freed to buddy */
		if (PageHuge(page)) {
			set_page_hwpoison_huge_page(hpage);
			dequeue_hwpoisoned_huge_page(hpage);
1601
			num_poisoned_pages_add(1 << compound_order(hpage));
1602 1603
		} else {
			SetPageHWPoison(page);
1604
			num_poisoned_pages_inc();
1605
		}
1606 1607 1608 1609
	}
	return ret;
}

1610 1611 1612 1613
static int __soft_offline_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);
1614 1615

	/*
1616 1617 1618 1619
	 * Check PageHWPoison again inside page lock because PageHWPoison
	 * is set by memory_failure() outside page lock. Note that
	 * memory_failure() also double-checks PageHWPoison inside page lock,
	 * so there's no race between soft_offline_page() and memory_failure().
1620
	 */
1621 1622
	lock_page(page);
	wait_on_page_writeback(page);
1623 1624
	if (PageHWPoison(page)) {
		unlock_page(page);
1625
		put_hwpoison_page(page);
1626 1627 1628
		pr_info("soft offline: %#lx page already poisoned\n", pfn);
		return -EBUSY;
	}
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
	/*
	 * Try to invalidate first. This should work for
	 * non dirty unmapped page cache pages.
	 */
	ret = invalidate_inode_page(page);
	unlock_page(page);
	/*
	 * RED-PEN would be better to keep it isolated here, but we
	 * would need to fix isolation locking first.
	 */
	if (ret == 1) {
1640
		put_hwpoison_page(page);
1641
		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1642
		SetPageHWPoison(page);
1643
		num_poisoned_pages_inc();
1644
		return 0;
1645 1646 1647 1648 1649 1650 1651
	}

	/*
	 * Simple invalidation didn't work.
	 * Try to migrate to a new page instead. migrate.c
	 * handles a large number of cases for us.
	 */
1652 1653 1654 1655
	if (PageLRU(page))
		ret = isolate_lru_page(page);
	else
		ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1656 1657 1658 1659
	/*
	 * Drop page reference which is came from get_any_page()
	 * successful isolate_lru_page() already took another one.
	 */
1660
	put_hwpoison_page(page);
1661 1662
	if (!ret) {
		LIST_HEAD(pagelist);
1663 1664 1665 1666 1667 1668 1669 1670
		/*
		 * After isolated lru page, the PageLRU will be cleared,
		 * so use !__PageMovable instead for LRU page's mapping
		 * cannot have PAGE_MAPPING_MOVABLE.
		 */
		if (!__PageMovable(page))
			inc_node_page_state(page, NR_ISOLATED_ANON +
						page_is_file_cache(page));
1671
		list_add(&page->lru, &pagelist);
1672
		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1673
					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1674
		if (ret) {
1675 1676
			if (!list_empty(&pagelist))
				putback_movable_pages(&pagelist);
1677

1678
			pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1679 1680 1681 1682 1683
				pfn, ret, page->flags);
			if (ret > 0)
				ret = -EIO;
		}
	} else {
1684
		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1685
			pfn, ret, page_count(page), page->flags);
1686 1687 1688
	}
	return ret;
}
1689

1690 1691 1692 1693 1694 1695 1696
static int soft_offline_in_use_page(struct page *page, int flags)
{
	int ret;
	struct page *hpage = compound_head(page);

	if (!PageHuge(page) && PageTransHuge(hpage)) {
		lock_page(hpage);
1697 1698 1699 1700 1701 1702 1703
		if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
			unlock_page(hpage);
			if (!PageAnon(hpage))
				pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
			else
				pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
			put_hwpoison_page(hpage);
1704 1705
			return -EBUSY;
		}
1706
		unlock_page(hpage);
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
		get_hwpoison_page(page);
		put_hwpoison_page(hpage);
	}

	if (PageHuge(page))
		ret = soft_offline_huge_page(page, flags);
	else
		ret = __soft_offline_page(page, flags);

	return ret;
}

static void soft_offline_free_page(struct page *page)
{
	if (PageHuge(page)) {
		struct page *hpage = compound_head(page);

		set_page_hwpoison_huge_page(hpage);
		if (!dequeue_hwpoisoned_huge_page(hpage))
			num_poisoned_pages_add(1 << compound_order(hpage));
	} else {
		if (!TestSetPageHWPoison(page))
			num_poisoned_pages_inc();
	}
}

1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
/**
 * soft_offline_page - Soft offline a page.
 * @page: page to offline
 * @flags: flags. Same as memory_failure().
 *
 * Returns 0 on success, otherwise negated errno.
 *
 * Soft offline a page, by migration or invalidation,
 * without killing anything. This is for the case when
 * a page is not corrupted yet (so it's still valid to access),
 * but has had a number of corrected errors and is better taken
 * out.
 *
 * The actual policy on when to do that is maintained by
 * user space.
 *
 * This should never impact any application or cause data loss,
 * however it might take some time.
 *
 * This is not a 100% solution for all memory, but tries to be
 * ``good enough'' for the majority of memory.
 */
int soft_offline_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);

	if (PageHWPoison(page)) {
		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1762
		if (flags & MF_COUNT_INCREASED)
1763
			put_hwpoison_page(page);
1764 1765 1766
		return -EBUSY;
	}

1767
	get_online_mems();
1768
	ret = get_any_page(page, pfn, flags);
1769
	put_online_mems();
1770

1771 1772 1773 1774
	if (ret > 0)
		ret = soft_offline_in_use_page(page, flags);
	else if (ret == 0)
		soft_offline_free_page(page);
1775

1776 1777
	return ret;
}