memory-failure.c 48.9 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * Copyright (C) 2008, 2009 Intel Corporation
 * Authors: Andi Kleen, Fengguang Wu
 *
 * This software may be redistributed and/or modified under the terms of
 * the GNU General Public License ("GPL") version 2 only as published by the
 * Free Software Foundation.
 *
 * High level machine check handler. Handles pages reported by the
10
 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11
 * failure.
12 13 14
 * 
 * In addition there is a "soft offline" entry point that allows stop using
 * not-yet-corrupted-by-suspicious pages without killing anything.
15 16
 *
 * Handles page cache pages in various states.	The tricky part
17 18 19 20 21 22
 * here is that we can access any page asynchronously in respect to 
 * other VM users, because memory failures could happen anytime and 
 * anywhere. This could violate some of their assumptions. This is why 
 * this code has to be extremely careful. Generally it tries to use 
 * normal locking rules, as in get the standard locks, even if that means 
 * the error handling takes potentially a long time.
23 24 25 26 27 28 29 30
 *
 * It can be very tempting to add handling for obscure cases here.
 * In general any code for handling new cases should only be added iff:
 * - You know how to test it.
 * - You have a test that can be added to mce-test
 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
 * - The case actually shows up as a frequent (top 10) page state in
 *   tools/vm/page-types when running a real workload.
31 32 33 34 35 36 37
 * 
 * There are several operations here with exponential complexity because
 * of unsuitable VM data structures. For example the operation to map back 
 * from RMAP chains to processes has to walk the complete process list and 
 * has non linear complexity with the number. But since memory corruptions
 * are rare we hope to get away with this. This avoids impacting the core 
 * VM.
38 39 40 41
 */
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/page-flags.h>
W
Wu Fengguang 已提交
42
#include <linux/kernel-page-flags.h>
43
#include <linux/sched.h>
H
Hugh Dickins 已提交
44
#include <linux/ksm.h>
45
#include <linux/rmap.h>
46
#include <linux/export.h>
47 48 49
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/backing-dev.h>
50 51 52
#include <linux/migrate.h>
#include <linux/page-isolation.h>
#include <linux/suspend.h>
53
#include <linux/slab.h>
54
#include <linux/swapops.h>
55
#include <linux/hugetlb.h>
56
#include <linux/memory_hotplug.h>
57
#include <linux/mm_inline.h>
58
#include <linux/kfifo.h>
59
#include "internal.h"
60
#include "ras/ras_event.h"
61 62 63 64 65

int sysctl_memory_failure_early_kill __read_mostly = 0;

int sysctl_memory_failure_recovery __read_mostly = 1;

66
atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
67

68 69
#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)

70
u32 hwpoison_filter_enable = 0;
W
Wu Fengguang 已提交
71 72
u32 hwpoison_filter_dev_major = ~0U;
u32 hwpoison_filter_dev_minor = ~0U;
W
Wu Fengguang 已提交
73 74
u64 hwpoison_filter_flags_mask;
u64 hwpoison_filter_flags_value;
75
EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
W
Wu Fengguang 已提交
76 77
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
W
Wu Fengguang 已提交
78 79
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
W
Wu Fengguang 已提交
80 81 82 83 84 85 86 87 88 89 90

static int hwpoison_filter_dev(struct page *p)
{
	struct address_space *mapping;
	dev_t dev;

	if (hwpoison_filter_dev_major == ~0U &&
	    hwpoison_filter_dev_minor == ~0U)
		return 0;

	/*
91
	 * page_mapping() does not accept slab pages.
W
Wu Fengguang 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
	 */
	if (PageSlab(p))
		return -EINVAL;

	mapping = page_mapping(p);
	if (mapping == NULL || mapping->host == NULL)
		return -EINVAL;

	dev = mapping->host->i_sb->s_dev;
	if (hwpoison_filter_dev_major != ~0U &&
	    hwpoison_filter_dev_major != MAJOR(dev))
		return -EINVAL;
	if (hwpoison_filter_dev_minor != ~0U &&
	    hwpoison_filter_dev_minor != MINOR(dev))
		return -EINVAL;

	return 0;
}

W
Wu Fengguang 已提交
111 112 113 114 115 116 117 118 119 120 121 122
static int hwpoison_filter_flags(struct page *p)
{
	if (!hwpoison_filter_flags_mask)
		return 0;

	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
				    hwpoison_filter_flags_value)
		return 0;
	else
		return -EINVAL;
}

A
Andi Kleen 已提交
123 124 125 126 127 128 129 130 131 132
/*
 * This allows stress tests to limit test scope to a collection of tasks
 * by putting them under some memcg. This prevents killing unrelated/important
 * processes such as /sbin/init. Note that the target task may share clean
 * pages with init (eg. libc text), which is harmless. If the target task
 * share _dirty_ pages with another task B, the test scheme must make sure B
 * is also included in the memcg. At last, due to race conditions this filter
 * can only guarantee that the page either belongs to the memcg tasks, or is
 * a freed page.
 */
133
#ifdef CONFIG_MEMCG
A
Andi Kleen 已提交
134 135 136 137 138 139 140
u64 hwpoison_filter_memcg;
EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
static int hwpoison_filter_task(struct page *p)
{
	if (!hwpoison_filter_memcg)
		return 0;

141
	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
A
Andi Kleen 已提交
142 143 144 145 146 147 148 149
		return -EINVAL;

	return 0;
}
#else
static int hwpoison_filter_task(struct page *p) { return 0; }
#endif

W
Wu Fengguang 已提交
150 151
int hwpoison_filter(struct page *p)
{
152 153 154
	if (!hwpoison_filter_enable)
		return 0;

W
Wu Fengguang 已提交
155 156 157
	if (hwpoison_filter_dev(p))
		return -EINVAL;

W
Wu Fengguang 已提交
158 159 160
	if (hwpoison_filter_flags(p))
		return -EINVAL;

A
Andi Kleen 已提交
161 162 163
	if (hwpoison_filter_task(p))
		return -EINVAL;

W
Wu Fengguang 已提交
164 165
	return 0;
}
166 167 168 169 170 171 172
#else
int hwpoison_filter(struct page *p)
{
	return 0;
}
#endif

W
Wu Fengguang 已提交
173 174
EXPORT_SYMBOL_GPL(hwpoison_filter);

175
/*
176 177 178
 * Send all the processes who have the page mapped a signal.
 * ``action optional'' if they are not immediately affected by the error
 * ``action required'' if error happened in current execution context
179
 */
180 181
static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
			unsigned long pfn, struct page *page, int flags)
182 183 184 185 186
{
	struct siginfo si;
	int ret;

	printk(KERN_ERR
187
		"MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
188 189 190 191 192 193 194
		pfn, t->comm, t->pid);
	si.si_signo = SIGBUS;
	si.si_errno = 0;
	si.si_addr = (void *)addr;
#ifdef __ARCH_SI_TRAPNO
	si.si_trapno = trapno;
#endif
195
	si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
196

197
	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
198
		si.si_code = BUS_MCEERR_AR;
199
		ret = force_sig_info(SIGBUS, &si, current);
200 201 202 203 204 205 206 207 208 209
	} else {
		/*
		 * Don't use force here, it's convenient if the signal
		 * can be temporarily blocked.
		 * This could cause a loop when the user sets SIGBUS
		 * to SIG_IGN, but hopefully no one will do that?
		 */
		si.si_code = BUS_MCEERR_AO;
		ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
	}
210 211 212 213 214 215
	if (ret < 0)
		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
		       t->comm, t->pid, ret);
	return ret;
}

216 217 218 219
/*
 * When a unknown page type is encountered drain as many buffers as possible
 * in the hope to turn the page into a LRU or free page, which we can handle.
 */
220
void shake_page(struct page *p, int access)
221 222 223 224 225
{
	if (!PageSlab(p)) {
		lru_add_drain_all();
		if (PageLRU(p))
			return;
226
		drain_all_pages(page_zone(p));
227 228 229
		if (PageLRU(p) || is_free_buddy_page(p))
			return;
	}
230

231
	/*
232 233
	 * Only call shrink_node_slabs here (which would also shrink
	 * other caches) if access is not potentially fatal.
234
	 */
235 236
	if (access)
		drop_slab_node(page_to_nid(p));
237 238 239
}
EXPORT_SYMBOL_GPL(shake_page);

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
/*
 * Kill all processes that have a poisoned page mapped and then isolate
 * the page.
 *
 * General strategy:
 * Find all processes having the page mapped and kill them.
 * But we keep a page reference around so that the page is not
 * actually freed yet.
 * Then stash the page away
 *
 * There's no convenient way to get back to mapped processes
 * from the VMAs. So do a brute-force search over all
 * running processes.
 *
 * Remember that machine checks are not common (or rather
 * if they are common you have other problems), so this shouldn't
 * be a performance issue.
 *
 * Also there are some races possible while we get from the
 * error detection to actually handle it.
 */

struct to_kill {
	struct list_head nd;
	struct task_struct *tsk;
	unsigned long addr;
266
	char addr_valid;
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
};

/*
 * Failure handling: if we can't find or can't kill a process there's
 * not much we can do.	We just print a message and ignore otherwise.
 */

/*
 * Schedule a process for later kill.
 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 * TBD would GFP_NOIO be enough?
 */
static void add_to_kill(struct task_struct *tsk, struct page *p,
		       struct vm_area_struct *vma,
		       struct list_head *to_kill,
		       struct to_kill **tkc)
{
	struct to_kill *tk;

	if (*tkc) {
		tk = *tkc;
		*tkc = NULL;
	} else {
		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
		if (!tk) {
			printk(KERN_ERR
		"MCE: Out of memory while machine check handling\n");
			return;
		}
	}
	tk->addr = page_address_in_vma(p, vma);
	tk->addr_valid = 1;

	/*
	 * In theory we don't have to kill when the page was
	 * munmaped. But it could be also a mremap. Since that's
	 * likely very rare kill anyways just out of paranoia, but use
	 * a SIGKILL because the error is not contained anymore.
	 */
	if (tk->addr == -EFAULT) {
307
		pr_info("MCE: Unable to find user space address %lx in %s\n",
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
			page_to_pfn(p), tsk->comm);
		tk->addr_valid = 0;
	}
	get_task_struct(tsk);
	tk->tsk = tsk;
	list_add_tail(&tk->nd, to_kill);
}

/*
 * Kill the processes that have been collected earlier.
 *
 * Only do anything when DOIT is set, otherwise just free the list
 * (this is used for clean pages which do not need killing)
 * Also when FAIL is set do a force kill because something went
 * wrong earlier.
 */
324
static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
325 326
			  int fail, struct page *page, unsigned long pfn,
			  int flags)
327 328 329 330
{
	struct to_kill *tk, *next;

	list_for_each_entry_safe (tk, next, to_kill, nd) {
331
		if (forcekill) {
332
			/*
333
			 * In case something went wrong with munmapping
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
			 * make sure the process doesn't catch the
			 * signal and then access the memory. Just kill it.
			 */
			if (fail || tk->addr_valid == 0) {
				printk(KERN_ERR
		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
					pfn, tk->tsk->comm, tk->tsk->pid);
				force_sig(SIGKILL, tk->tsk);
			}

			/*
			 * In theory the process could have mapped
			 * something else on the address in-between. We could
			 * check for that, but we need to tell the
			 * process anyways.
			 */
350 351
			else if (kill_proc(tk->tsk, tk->addr, trapno,
					      pfn, page, flags) < 0)
352 353 354 355 356 357 358 359 360
				printk(KERN_ERR
		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
					pfn, tk->tsk->comm, tk->tsk->pid);
		}
		put_task_struct(tk->tsk);
		kfree(tk);
	}
}

361 362 363 364 365 366 367 368 369
/*
 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 * on behalf of the thread group. Return task_struct of the (first found)
 * dedicated thread if found, and return NULL otherwise.
 *
 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
 * have to call rcu_read_lock/unlock() in this function.
 */
static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
370
{
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
	struct task_struct *t;

	for_each_thread(tsk, t)
		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
			return t;
	return NULL;
}

/*
 * Determine whether a given process is "early kill" process which expects
 * to be signaled when some page under the process is hwpoisoned.
 * Return task_struct of the dedicated thread (main thread unless explicitly
 * specified) if the process is "early kill," and otherwise returns NULL.
 */
static struct task_struct *task_early_kill(struct task_struct *tsk,
					   int force_early)
{
	struct task_struct *t;
389
	if (!tsk->mm)
390
		return NULL;
391
	if (force_early)
392 393 394 395 396 397 398
		return tsk;
	t = find_early_kill_thread(tsk);
	if (t)
		return t;
	if (sysctl_memory_failure_early_kill)
		return tsk;
	return NULL;
399 400 401 402 403 404
}

/*
 * Collect processes when the error hit an anonymous page.
 */
static void collect_procs_anon(struct page *page, struct list_head *to_kill,
405
			      struct to_kill **tkc, int force_early)
406 407 408 409
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct anon_vma *av;
410
	pgoff_t pgoff;
411

412
	av = page_lock_anon_vma_read(page);
413
	if (av == NULL)	/* Not actually mapped anymore */
414 415
		return;

416
	pgoff = page_to_pgoff(page);
417
	read_lock(&tasklist_lock);
418
	for_each_process (tsk) {
419
		struct anon_vma_chain *vmac;
420
		struct task_struct *t = task_early_kill(tsk, force_early);
421

422
		if (!t)
423
			continue;
424 425
		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
					       pgoff, pgoff) {
426
			vma = vmac->vma;
427 428
			if (!page_mapped_in_vma(page, vma))
				continue;
429 430
			if (vma->vm_mm == t->mm)
				add_to_kill(t, page, vma, to_kill, tkc);
431 432 433
		}
	}
	read_unlock(&tasklist_lock);
434
	page_unlock_anon_vma_read(av);
435 436 437 438 439 440
}

/*
 * Collect processes when the error hit a file mapped page.
 */
static void collect_procs_file(struct page *page, struct list_head *to_kill,
441
			      struct to_kill **tkc, int force_early)
442 443 444 445 446
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct address_space *mapping = page->mapping;

447
	i_mmap_lock_read(mapping);
448
	read_lock(&tasklist_lock);
449
	for_each_process(tsk) {
450
		pgoff_t pgoff = page_to_pgoff(page);
451
		struct task_struct *t = task_early_kill(tsk, force_early);
452

453
		if (!t)
454
			continue;
455
		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
456 457 458 459 460 461 462 463
				      pgoff) {
			/*
			 * Send early kill signal to tasks where a vma covers
			 * the page but the corrupted page is not necessarily
			 * mapped it in its pte.
			 * Assume applications who requested early kill want
			 * to be informed of all such data corruptions.
			 */
464 465
			if (vma->vm_mm == t->mm)
				add_to_kill(t, page, vma, to_kill, tkc);
466 467 468
		}
	}
	read_unlock(&tasklist_lock);
469
	i_mmap_unlock_read(mapping);
470 471 472 473 474 475 476 477
}

/*
 * Collect the processes who have the corrupted page mapped to kill.
 * This is done in two steps for locking reasons.
 * First preallocate one tokill structure outside the spin locks,
 * so that we can kill at least one process reasonably reliable.
 */
478 479
static void collect_procs(struct page *page, struct list_head *tokill,
				int force_early)
480 481 482 483 484 485 486 487 488 489
{
	struct to_kill *tk;

	if (!page->mapping)
		return;

	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
	if (!tk)
		return;
	if (PageAnon(page))
490
		collect_procs_anon(page, tokill, &tk, force_early);
491
	else
492
		collect_procs_file(page, tokill, &tk, force_early);
493 494 495 496
	kfree(tk);
}

static const char *action_name[] = {
497 498 499 500
	[MF_IGNORED] = "Ignored",
	[MF_FAILED] = "Failed",
	[MF_DELAYED] = "Delayed",
	[MF_RECOVERED] = "Recovered",
501 502 503
};

static const char * const action_page_types[] = {
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
	[MF_MSG_KERNEL]			= "reserved kernel page",
	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
	[MF_MSG_SLAB]			= "kernel slab page",
	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
	[MF_MSG_HUGE]			= "huge page",
	[MF_MSG_FREE_HUGE]		= "free huge page",
	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
	[MF_MSG_BUDDY]			= "free buddy page",
	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
	[MF_MSG_UNKNOWN]		= "unknown page",
524 525
};

526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
/*
 * XXX: It is possible that a page is isolated from LRU cache,
 * and then kept in swap cache or failed to remove from page cache.
 * The page count will stop it from being freed by unpoison.
 * Stress tests should be aware of this memory leak problem.
 */
static int delete_from_lru_cache(struct page *p)
{
	if (!isolate_lru_page(p)) {
		/*
		 * Clear sensible page flags, so that the buddy system won't
		 * complain when the page is unpoison-and-freed.
		 */
		ClearPageActive(p);
		ClearPageUnevictable(p);
		/*
		 * drop the page count elevated by isolate_lru_page()
		 */
		page_cache_release(p);
		return 0;
	}
	return -EIO;
}

550 551 552 553 554 555 556
/*
 * Error hit kernel page.
 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 * could be more sophisticated.
 */
static int me_kernel(struct page *p, unsigned long pfn)
{
557
	return MF_IGNORED;
558 559 560 561 562 563 564 565
}

/*
 * Page in unknown state. Do nothing.
 */
static int me_unknown(struct page *p, unsigned long pfn)
{
	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
566
	return MF_FAILED;
567 568 569 570 571 572 573 574
}

/*
 * Clean (or cleaned) page cache page.
 */
static int me_pagecache_clean(struct page *p, unsigned long pfn)
{
	int err;
575
	int ret = MF_FAILED;
576 577
	struct address_space *mapping;

578 579
	delete_from_lru_cache(p);

580 581 582 583 584
	/*
	 * For anonymous pages we're done the only reference left
	 * should be the one m_f() holds.
	 */
	if (PageAnon(p))
585
		return MF_RECOVERED;
586 587 588 589 590 591 592 593 594 595 596 597 598

	/*
	 * Now truncate the page in the page cache. This is really
	 * more like a "temporary hole punch"
	 * Don't do this for block devices when someone else
	 * has a reference, because it could be file system metadata
	 * and that's not safe to truncate.
	 */
	mapping = page_mapping(p);
	if (!mapping) {
		/*
		 * Page has been teared down in the meanwhile
		 */
599
		return MF_FAILED;
600 601 602 603 604 605 606 607 608 609 610 611 612 613
	}

	/*
	 * Truncation is a bit tricky. Enable it per file system for now.
	 *
	 * Open: to take i_mutex or not for this? Right now we don't.
	 */
	if (mapping->a_ops->error_remove_page) {
		err = mapping->a_ops->error_remove_page(mapping, p);
		if (err != 0) {
			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
					pfn, err);
		} else if (page_has_private(p) &&
				!try_to_release_page(p, GFP_NOIO)) {
614
			pr_info("MCE %#lx: failed to release buffers\n", pfn);
615
		} else {
616
			ret = MF_RECOVERED;
617 618 619 620 621 622 623
		}
	} else {
		/*
		 * If the file system doesn't support it just invalidate
		 * This fails on dirty or anything with private pages
		 */
		if (invalidate_inode_page(p))
624
			ret = MF_RECOVERED;
625 626 627 628 629 630 631 632
		else
			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
				pfn);
	}
	return ret;
}

/*
633
 * Dirty pagecache page
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
 * Issues: when the error hit a hole page the error is not properly
 * propagated.
 */
static int me_pagecache_dirty(struct page *p, unsigned long pfn)
{
	struct address_space *mapping = page_mapping(p);

	SetPageError(p);
	/* TBD: print more information about the file. */
	if (mapping) {
		/*
		 * IO error will be reported by write(), fsync(), etc.
		 * who check the mapping.
		 * This way the application knows that something went
		 * wrong with its dirty file data.
		 *
		 * There's one open issue:
		 *
		 * The EIO will be only reported on the next IO
		 * operation and then cleared through the IO map.
		 * Normally Linux has two mechanisms to pass IO error
		 * first through the AS_EIO flag in the address space
		 * and then through the PageError flag in the page.
		 * Since we drop pages on memory failure handling the
		 * only mechanism open to use is through AS_AIO.
		 *
		 * This has the disadvantage that it gets cleared on
		 * the first operation that returns an error, while
		 * the PageError bit is more sticky and only cleared
		 * when the page is reread or dropped.  If an
		 * application assumes it will always get error on
		 * fsync, but does other operations on the fd before
L
Lucas De Marchi 已提交
666
		 * and the page is dropped between then the error
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
		 * will not be properly reported.
		 *
		 * This can already happen even without hwpoisoned
		 * pages: first on metadata IO errors (which only
		 * report through AS_EIO) or when the page is dropped
		 * at the wrong time.
		 *
		 * So right now we assume that the application DTRT on
		 * the first EIO, but we're not worse than other parts
		 * of the kernel.
		 */
		mapping_set_error(mapping, EIO);
	}

	return me_pagecache_clean(p, pfn);
}

/*
 * Clean and dirty swap cache.
 *
 * Dirty swap cache page is tricky to handle. The page could live both in page
 * cache and swap cache(ie. page is freshly swapped in). So it could be
 * referenced concurrently by 2 types of PTEs:
 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 * and then
 *      - clear dirty bit to prevent IO
 *      - remove from LRU
 *      - but keep in the swap cache, so that when we return to it on
 *        a later page fault, we know the application is accessing
 *        corrupted data and shall be killed (we installed simple
 *        interception code in do_swap_page to catch it).
 *
 * Clean swap cache pages can be directly isolated. A later page fault will
 * bring in the known good data from disk.
 */
static int me_swapcache_dirty(struct page *p, unsigned long pfn)
{
	ClearPageDirty(p);
	/* Trigger EIO in shmem: */
	ClearPageUptodate(p);

709
	if (!delete_from_lru_cache(p))
710
		return MF_DELAYED;
711
	else
712
		return MF_FAILED;
713 714 715 716 717
}

static int me_swapcache_clean(struct page *p, unsigned long pfn)
{
	delete_from_swap_cache(p);
718

719
	if (!delete_from_lru_cache(p))
720
		return MF_RECOVERED;
721
	else
722
		return MF_FAILED;
723 724 725 726 727
}

/*
 * Huge pages. Needs work.
 * Issues:
728 729
 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 *   To narrow down kill region to one page, we need to break up pmd.
730 731 732
 */
static int me_huge_page(struct page *p, unsigned long pfn)
{
733
	int res = 0;
734
	struct page *hpage = compound_head(p);
735 736 737 738

	if (!PageHuge(hpage))
		return MF_DELAYED;

739 740 741 742 743 744 745 746 747 748 749
	/*
	 * We can safely recover from error on free or reserved (i.e.
	 * not in-use) hugepage by dequeuing it from freelist.
	 * To check whether a hugepage is in-use or not, we can't use
	 * page->lru because it can be used in other hugepage operations,
	 * such as __unmap_hugepage_range() and gather_surplus_pages().
	 * So instead we use page_mapping() and PageAnon().
	 * We assume that this function is called with page lock held,
	 * so there is no race between isolation and mapping/unmapping.
	 */
	if (!(page_mapping(hpage) || PageAnon(hpage))) {
750 751
		res = dequeue_hwpoisoned_huge_page(hpage);
		if (!res)
752
			return MF_RECOVERED;
753
	}
754
	return MF_DELAYED;
755 756 757 758 759 760 761 762 763
}

/*
 * Various page states we can handle.
 *
 * A page state is defined by its current page->flags bits.
 * The table matches them in order and calls the right handler.
 *
 * This is quite tricky because we can access page at any time
L
Lucas De Marchi 已提交
764
 * in its live cycle, so all accesses have to be extremely careful.
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
 *
 * This is not complete. More states could be added.
 * For any missing state don't attempt recovery.
 */

#define dirty		(1UL << PG_dirty)
#define sc		(1UL << PG_swapcache)
#define unevict		(1UL << PG_unevictable)
#define mlock		(1UL << PG_mlocked)
#define writeback	(1UL << PG_writeback)
#define lru		(1UL << PG_lru)
#define swapbacked	(1UL << PG_swapbacked)
#define head		(1UL << PG_head)
#define tail		(1UL << PG_tail)
#define compound	(1UL << PG_compound)
#define slab		(1UL << PG_slab)
#define reserved	(1UL << PG_reserved)

static struct page_state {
	unsigned long mask;
	unsigned long res;
786
	enum mf_action_page_type type;
787 788
	int (*action)(struct page *p, unsigned long pfn);
} error_states[] = {
789
	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
790 791 792 793
	/*
	 * free pages are specially detected outside this table:
	 * PG_buddy pages only make a small fraction of all free pages.
	 */
794 795 796 797 798 799

	/*
	 * Could in theory check if slab page is free or if we can drop
	 * currently unused objects without touching them. But just
	 * treat it as standard kernel for now.
	 */
800
	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
801 802

#ifdef CONFIG_PAGEFLAGS_EXTENDED
803 804
	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
	{ tail,		tail,		MF_MSG_HUGE,		me_huge_page },
805
#else
806
	{ compound,	compound,	MF_MSG_HUGE,		me_huge_page },
807 808
#endif

809 810
	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
811

812 813
	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
814

815 816
	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
817

818 819
	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
820 821 822 823

	/*
	 * Catchall entry: must be at end.
	 */
824
	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
825 826
};

827 828 829 830 831 832 833 834 835 836 837 838 839
#undef dirty
#undef sc
#undef unevict
#undef mlock
#undef writeback
#undef lru
#undef swapbacked
#undef head
#undef tail
#undef compound
#undef slab
#undef reserved

840 841 842 843
/*
 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
 */
844 845
static void action_result(unsigned long pfn, enum mf_action_page_type type,
			  enum mf_result result)
846
{
847 848
	trace_memory_failure_event(pfn, type, result);

849 850
	pr_err("MCE %#lx: recovery action for %s: %s\n",
		pfn, action_page_types[type], action_name[result]);
851 852 853
}

static int page_action(struct page_state *ps, struct page *p,
854
			unsigned long pfn)
855 856
{
	int result;
857
	int count;
858 859

	result = ps->action(p, pfn);
860

861
	count = page_count(p) - 1;
862
	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
863 864
		count--;
	if (count != 0) {
865
		printk(KERN_ERR
866 867
		       "MCE %#lx: %s still referenced by %d users\n",
		       pfn, action_page_types[ps->type], count);
868
		result = MF_FAILED;
869
	}
870
	action_result(pfn, ps->type, result);
871 872 873 874 875 876

	/* Could do more checks here if page looks ok */
	/*
	 * Could adjust zone counters here to correct for the missing page.
	 */

877
	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
878 879
}

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
/**
 * get_hwpoison_page() - Get refcount for memory error handling:
 * @page:	raw error page (hit by memory error)
 *
 * Return: return 0 if failed to grab the refcount, otherwise true (some
 * non-zero value.)
 */
int get_hwpoison_page(struct page *page)
{
	struct page *head = compound_head(page);

	if (PageHuge(head))
		return get_page_unless_zero(head);

	/*
	 * Thp tail page has special refcounting rule (refcount of tail pages
	 * is stored in ->_mapcount,) so we can't call get_page_unless_zero()
	 * directly for tail pages.
	 */
	if (PageTransHuge(head)) {
900 901 902 903 904 905 906 907 908 909 910 911
		/*
		 * Non anonymous thp exists only in allocation/free time. We
		 * can't handle such a case correctly, so let's give it up.
		 * This should be better than triggering BUG_ON when kernel
		 * tries to touch the "partially handled" page.
		 */
		if (!PageAnon(head)) {
			pr_err("MCE: %#lx: non anonymous thp\n",
				page_to_pfn(page));
			return 0;
		}

912 913 914 915 916 917 918 919 920 921 922 923 924
		if (get_page_unless_zero(head)) {
			if (PageTail(page))
				get_page(page);
			return 1;
		} else {
			return 0;
		}
	}

	return get_page_unless_zero(page);
}
EXPORT_SYMBOL_GPL(get_hwpoison_page);

925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
/**
 * put_hwpoison_page() - Put refcount for memory error handling:
 * @page:	raw error page (hit by memory error)
 */
void put_hwpoison_page(struct page *page)
{
	struct page *head = compound_head(page);

	if (PageHuge(head)) {
		put_page(head);
		return;
	}

	if (PageTransHuge(head))
		if (page != head)
			put_page(head);

	put_page(page);
}
EXPORT_SYMBOL_GPL(put_hwpoison_page);

946 947 948 949
/*
 * Do all that is necessary to remove user space mappings. Unmap
 * the pages and send SIGBUS to the processes if the data was dirty.
 */
W
Wu Fengguang 已提交
950
static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
951
				  int trapno, int flags, struct page **hpagep)
952 953 954 955 956
{
	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
	struct address_space *mapping;
	LIST_HEAD(tokill);
	int ret;
957
	int kill = 1, forcekill;
958
	struct page *hpage = *hpagep;
959

960 961 962 963 964 965 966
	/*
	 * Here we are interested only in user-mapped pages, so skip any
	 * other types of pages.
	 */
	if (PageReserved(p) || PageSlab(p))
		return SWAP_SUCCESS;
	if (!(PageLRU(hpage) || PageHuge(p)))
W
Wu Fengguang 已提交
967
		return SWAP_SUCCESS;
968 969 970 971 972

	/*
	 * This check implies we don't kill processes if their pages
	 * are in the swap cache early. Those are always late kills.
	 */
973
	if (!page_mapped(hpage))
W
Wu Fengguang 已提交
974 975
		return SWAP_SUCCESS;

976 977
	if (PageKsm(p)) {
		pr_err("MCE %#lx: can't handle KSM pages.\n", pfn);
W
Wu Fengguang 已提交
978
		return SWAP_FAIL;
979
	}
980 981 982 983 984 985 986 987 988 989

	if (PageSwapCache(p)) {
		printk(KERN_ERR
		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
		ttu |= TTU_IGNORE_HWPOISON;
	}

	/*
	 * Propagate the dirty bit from PTEs to struct page first, because we
	 * need this to decide if we should kill or just drop the page.
990 991
	 * XXX: the dirty test could be racy: set_page_dirty() may not always
	 * be called inside page lock (it's recommended but not enforced).
992
	 */
993
	mapping = page_mapping(hpage);
994
	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
995 996 997
	    mapping_cap_writeback_dirty(mapping)) {
		if (page_mkclean(hpage)) {
			SetPageDirty(hpage);
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
		} else {
			kill = 0;
			ttu |= TTU_IGNORE_HWPOISON;
			printk(KERN_INFO
	"MCE %#lx: corrupted page was clean: dropped without side effects\n",
				pfn);
		}
	}

	/*
	 * First collect all the processes that have the page
	 * mapped in dirty form.  This has to be done before try_to_unmap,
	 * because ttu takes the rmap data structures down.
	 *
	 * Error handling: We ignore errors here because
	 * there's nothing that can be done.
	 */
	if (kill)
1016
		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1017

1018
	ret = try_to_unmap(hpage, ttu);
1019 1020
	if (ret != SWAP_SUCCESS)
		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
1021
				pfn, page_mapcount(hpage));
1022

1023 1024 1025 1026
	/*
	 * Now that the dirty bit has been propagated to the
	 * struct page and all unmaps done we can decide if
	 * killing is needed or not.  Only kill when the page
1027 1028
	 * was dirty or the process is not restartable,
	 * otherwise the tokill list is merely
1029 1030 1031 1032
	 * freed.  When there was a problem unmapping earlier
	 * use a more force-full uncatchable kill to prevent
	 * any accesses to the poisoned memory.
	 */
1033
	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1034
	kill_procs(&tokill, forcekill, trapno,
1035
		      ret != SWAP_SUCCESS, p, pfn, flags);
W
Wu Fengguang 已提交
1036 1037

	return ret;
1038 1039
}

1040 1041 1042
static void set_page_hwpoison_huge_page(struct page *hpage)
{
	int i;
1043
	int nr_pages = 1 << compound_order(hpage);
1044 1045 1046 1047 1048 1049 1050
	for (i = 0; i < nr_pages; i++)
		SetPageHWPoison(hpage + i);
}

static void clear_page_hwpoison_huge_page(struct page *hpage)
{
	int i;
1051
	int nr_pages = 1 << compound_order(hpage);
1052 1053 1054 1055
	for (i = 0; i < nr_pages; i++)
		ClearPageHWPoison(hpage + i);
}

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
/**
 * memory_failure - Handle memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @trapno: Trap number reported in the signal to user space.
 * @flags: fine tune action taken
 *
 * This function is called by the low level machine check code
 * of an architecture when it detects hardware memory corruption
 * of a page. It tries its best to recover, which includes
 * dropping pages, killing processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Must run in process context (e.g. a work queue) with interrupts
 * enabled and no spinlocks hold.
 */
int memory_failure(unsigned long pfn, int trapno, int flags)
1075 1076 1077
{
	struct page_state *ps;
	struct page *p;
1078
	struct page *hpage;
1079
	struct page *orig_head;
1080
	int res;
1081
	unsigned int nr_pages;
1082
	unsigned long page_flags;
1083 1084 1085 1086 1087

	if (!sysctl_memory_failure_recovery)
		panic("Memory failure from trap %d on page %lx", trapno, pfn);

	if (!pfn_valid(pfn)) {
1088 1089 1090 1091
		printk(KERN_ERR
		       "MCE %#lx: memory outside kernel control\n",
		       pfn);
		return -ENXIO;
1092 1093 1094
	}

	p = pfn_to_page(pfn);
1095
	orig_head = hpage = compound_head(p);
1096
	if (TestSetPageHWPoison(p)) {
1097
		printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1098 1099 1100
		return 0;
	}

1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
	/*
	 * Currently errors on hugetlbfs pages are measured in hugepage units,
	 * so nr_pages should be 1 << compound_order.  OTOH when errors are on
	 * transparent hugepages, they are supposed to be split and error
	 * measurement is done in normal page units.  So nr_pages should be one
	 * in this case.
	 */
	if (PageHuge(p))
		nr_pages = 1 << compound_order(hpage);
	else /* normal page or thp */
		nr_pages = 1;
1112
	num_poisoned_pages_add(nr_pages);
1113 1114 1115 1116 1117

	/*
	 * We need/can do nothing about count=0 pages.
	 * 1) it's a free page, and therefore in safe hand:
	 *    prep_new_page() will be the gate keeper.
1118 1119 1120 1121
	 * 2) it's a free hugepage, which is also safe:
	 *    an affected hugepage will be dequeued from hugepage freelist,
	 *    so there's no concern about reusing it ever after.
	 * 3) it's part of a non-compound high order page.
1122 1123 1124 1125 1126 1127
	 *    Implies some kernel user: cannot stop them from
	 *    R/W the page; let's pray that the page has been
	 *    used and will be freed some time later.
	 * In fact it's dangerous to directly bump up page count from 0,
	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
	 */
1128
	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1129
		if (is_free_buddy_page(p)) {
1130
			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1131
			return 0;
1132 1133
		} else if (PageHuge(hpage)) {
			/*
1134
			 * Check "filter hit" and "race with other subpage."
1135
			 */
J
Jens Axboe 已提交
1136
			lock_page(hpage);
1137 1138 1139
			if (PageHWPoison(hpage)) {
				if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
				    || (p != hpage && TestSetPageHWPoison(hpage))) {
1140
					num_poisoned_pages_sub(nr_pages);
1141 1142 1143
					unlock_page(hpage);
					return 0;
				}
1144 1145 1146
			}
			set_page_hwpoison_huge_page(hpage);
			res = dequeue_hwpoisoned_huge_page(hpage);
1147 1148
			action_result(pfn, MF_MSG_FREE_HUGE,
				      res ? MF_IGNORED : MF_DELAYED);
1149 1150
			unlock_page(hpage);
			return res;
1151
		} else {
1152
			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1153 1154
			return -EBUSY;
		}
1155 1156
	}

1157
	if (!PageHuge(p) && PageTransHuge(hpage)) {
1158 1159 1160 1161 1162
		if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
			if (!PageAnon(hpage))
				pr_err("MCE: %#lx: non anonymous thp\n", pfn);
			else
				pr_err("MCE: %#lx: thp split failed\n", pfn);
1163
			if (TestClearPageHWPoison(p))
1164
				num_poisoned_pages_sub(nr_pages);
1165
			put_hwpoison_page(p);
1166 1167 1168 1169 1170 1171
			return -EBUSY;
		}
		VM_BUG_ON_PAGE(!page_count(p), p);
		hpage = compound_head(p);
	}

1172 1173 1174 1175 1176 1177 1178 1179
	/*
	 * We ignore non-LRU pages for good reasons.
	 * - PG_locked is only well defined for LRU pages and a few others
	 * - to avoid races with __set_page_locked()
	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
	 * The check (unnecessarily) ignores LRU pages being isolated and
	 * walked by the page reclaim code, however that's not a big loss.
	 */
1180
	if (!PageHuge(p)) {
1181 1182 1183
		if (!PageLRU(p))
			shake_page(p, 0);
		if (!PageLRU(p)) {
1184 1185 1186 1187
			/*
			 * shake_page could have turned it free.
			 */
			if (is_free_buddy_page(p)) {
1188
				if (flags & MF_COUNT_INCREASED)
1189
					action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1190
				else
1191 1192
					action_result(pfn, MF_MSG_BUDDY_2ND,
						      MF_DELAYED);
1193 1194
				return 0;
			}
1195
		}
1196 1197
	}

J
Jens Axboe 已提交
1198
	lock_page(hpage);
W
Wu Fengguang 已提交
1199

1200 1201 1202 1203
	/*
	 * The page could have changed compound pages during the locking.
	 * If this happens just bail out.
	 */
1204
	if (PageCompound(p) && compound_head(p) != orig_head) {
1205
		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1206 1207 1208 1209
		res = -EBUSY;
		goto out;
	}

1210 1211 1212 1213 1214 1215 1216 1217 1218
	/*
	 * We use page flags to determine what action should be taken, but
	 * the flags can be modified by the error containment action.  One
	 * example is an mlocked page, where PG_mlocked is cleared by
	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
	 * correctly, we save a copy of the page flags at this time.
	 */
	page_flags = p->flags;

W
Wu Fengguang 已提交
1219 1220 1221 1222
	/*
	 * unpoison always clear PG_hwpoison inside page lock
	 */
	if (!PageHWPoison(p)) {
1223
		printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1224
		num_poisoned_pages_sub(nr_pages);
1225
		unlock_page(hpage);
1226
		put_hwpoison_page(hpage);
1227
		return 0;
W
Wu Fengguang 已提交
1228
	}
W
Wu Fengguang 已提交
1229 1230
	if (hwpoison_filter(p)) {
		if (TestClearPageHWPoison(p))
1231
			num_poisoned_pages_sub(nr_pages);
1232
		unlock_page(hpage);
1233
		put_hwpoison_page(hpage);
W
Wu Fengguang 已提交
1234 1235
		return 0;
	}
W
Wu Fengguang 已提交
1236

1237 1238 1239
	if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
		goto identify_page_state;

1240 1241 1242 1243
	/*
	 * For error on the tail page, we should set PG_hwpoison
	 * on the head page to show that the hugepage is hwpoisoned
	 */
1244
	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1245
		action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED);
1246
		unlock_page(hpage);
1247
		put_hwpoison_page(hpage);
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
		return 0;
	}
	/*
	 * Set PG_hwpoison on all pages in an error hugepage,
	 * because containment is done in hugepage unit for now.
	 * Since we have done TestSetPageHWPoison() for the head page with
	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
	 */
	if (PageHuge(p))
		set_page_hwpoison_huge_page(hpage);

1259 1260 1261 1262
	/*
	 * It's very difficult to mess with pages currently under IO
	 * and in many cases impossible, so we just avoid it here.
	 */
1263 1264 1265 1266
	wait_on_page_writeback(p);

	/*
	 * Now take care of user space mappings.
1267
	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1268 1269 1270
	 *
	 * When the raw error page is thp tail page, hpage points to the raw
	 * page after thp split.
1271
	 */
1272 1273
	if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
	    != SWAP_SUCCESS) {
1274
		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
W
Wu Fengguang 已提交
1275 1276 1277
		res = -EBUSY;
		goto out;
	}
1278 1279 1280 1281

	/*
	 * Torn down by someone else?
	 */
1282
	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1283
		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1284
		res = -EBUSY;
1285 1286 1287
		goto out;
	}

1288
identify_page_state:
1289
	res = -EBUSY;
1290 1291 1292 1293 1294 1295 1296
	/*
	 * The first check uses the current page flags which may not have any
	 * relevant information. The second check with the saved page flagss is
	 * carried out only if the first check can't determine the page status.
	 */
	for (ps = error_states;; ps++)
		if ((p->flags & ps->mask) == ps->res)
1297
			break;
1298 1299 1300

	page_flags |= (p->flags & (1UL << PG_dirty));

1301 1302 1303 1304 1305
	if (!ps->mask)
		for (ps = error_states;; ps++)
			if ((page_flags & ps->mask) == ps->res)
				break;
	res = page_action(ps, p, pfn);
1306
out:
1307
	unlock_page(hpage);
1308 1309
	return res;
}
1310
EXPORT_SYMBOL_GPL(memory_failure);
W
Wu Fengguang 已提交
1311

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
#define MEMORY_FAILURE_FIFO_ORDER	4
#define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)

struct memory_failure_entry {
	unsigned long pfn;
	int trapno;
	int flags;
};

struct memory_failure_cpu {
	DECLARE_KFIFO(fifo, struct memory_failure_entry,
		      MEMORY_FAILURE_FIFO_SIZE);
	spinlock_t lock;
	struct work_struct work;
};

static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);

/**
 * memory_failure_queue - Schedule handling memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @trapno: Trap number reported in the signal to user space.
 * @flags: Flags for memory failure handling
 *
 * This function is called by the low level hardware error handler
 * when it detects hardware memory corruption of a page. It schedules
 * the recovering of error page, including dropping pages, killing
 * processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Can run in IRQ context.
 */
void memory_failure_queue(unsigned long pfn, int trapno, int flags)
{
	struct memory_failure_cpu *mf_cpu;
	unsigned long proc_flags;
	struct memory_failure_entry entry = {
		.pfn =		pfn,
		.trapno =	trapno,
		.flags =	flags,
	};

	mf_cpu = &get_cpu_var(memory_failure_cpu);
	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
S
Stefani Seibold 已提交
1359
	if (kfifo_put(&mf_cpu->fifo, entry))
1360 1361
		schedule_work_on(smp_processor_id(), &mf_cpu->work);
	else
J
Joe Perches 已提交
1362
		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
		       pfn);
	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
	put_cpu_var(memory_failure_cpu);
}
EXPORT_SYMBOL_GPL(memory_failure_queue);

static void memory_failure_work_func(struct work_struct *work)
{
	struct memory_failure_cpu *mf_cpu;
	struct memory_failure_entry entry = { 0, };
	unsigned long proc_flags;
	int gotten;

1376
	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1377 1378 1379 1380 1381 1382
	for (;;) {
		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
		gotten = kfifo_get(&mf_cpu->fifo, &entry);
		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
		if (!gotten)
			break;
1383 1384 1385 1386
		if (entry.flags & MF_SOFT_OFFLINE)
			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
		else
			memory_failure(entry.pfn, entry.trapno, entry.flags);
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
	}
}

static int __init memory_failure_init(void)
{
	struct memory_failure_cpu *mf_cpu;
	int cpu;

	for_each_possible_cpu(cpu) {
		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
		spin_lock_init(&mf_cpu->lock);
		INIT_KFIFO(mf_cpu->fifo);
		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
	}

	return 0;
}
core_initcall(memory_failure_init);

W
Wu Fengguang 已提交
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
/**
 * unpoison_memory - Unpoison a previously poisoned page
 * @pfn: Page number of the to be unpoisoned page
 *
 * Software-unpoison a page that has been poisoned by
 * memory_failure() earlier.
 *
 * This is only done on the software-level, so it only works
 * for linux injected failures, not real hardware failures
 *
 * Returns 0 for success, otherwise -errno.
 */
int unpoison_memory(unsigned long pfn)
{
	struct page *page;
	struct page *p;
	int freeit = 0;
1423
	unsigned int nr_pages;
W
Wu Fengguang 已提交
1424 1425 1426 1427 1428 1429 1430 1431

	if (!pfn_valid(pfn))
		return -ENXIO;

	p = pfn_to_page(pfn);
	page = compound_head(p);

	if (!PageHWPoison(p)) {
1432
		pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
W
Wu Fengguang 已提交
1433 1434 1435
		return 0;
	}

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
	if (page_count(page) > 1) {
		pr_info("MCE: Someone grabs the hwpoison page %#lx\n", pfn);
		return 0;
	}

	if (page_mapped(page)) {
		pr_info("MCE: Someone maps the hwpoison page %#lx\n", pfn);
		return 0;
	}

	if (page_mapping(page)) {
		pr_info("MCE: the hwpoison page has non-NULL mapping %#lx\n",
			pfn);
		return 0;
	}

1452 1453 1454 1455 1456
	/*
	 * unpoison_memory() can encounter thp only when the thp is being
	 * worked by memory_failure() and the page lock is not held yet.
	 * In such case, we yield to memory_failure() and make unpoison fail.
	 */
1457
	if (!PageHuge(page) && PageTransHuge(page)) {
1458
		pr_info("MCE: Memory failure is now running on %#lx\n", pfn);
1459
		return 0;
1460 1461
	}

1462
	nr_pages = 1 << compound_order(page);
1463

1464
	if (!get_hwpoison_page(p)) {
1465 1466 1467 1468 1469 1470 1471
		/*
		 * Since HWPoisoned hugepage should have non-zero refcount,
		 * race between memory failure and unpoison seems to happen.
		 * In such case unpoison fails and memory failure runs
		 * to the end.
		 */
		if (PageHuge(page)) {
1472
			pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1473 1474
			return 0;
		}
W
Wu Fengguang 已提交
1475
		if (TestClearPageHWPoison(p))
1476
			num_poisoned_pages_dec();
1477
		pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
W
Wu Fengguang 已提交
1478 1479 1480
		return 0;
	}

J
Jens Axboe 已提交
1481
	lock_page(page);
W
Wu Fengguang 已提交
1482 1483 1484 1485 1486 1487
	/*
	 * This test is racy because PG_hwpoison is set outside of page lock.
	 * That's acceptable because that won't trigger kernel panic. Instead,
	 * the PG_hwpoison page will be caught and isolated on the entrance to
	 * the free buddy page pool.
	 */
1488
	if (TestClearPageHWPoison(page)) {
1489
		pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1490
		num_poisoned_pages_sub(nr_pages);
W
Wu Fengguang 已提交
1491
		freeit = 1;
1492 1493
		if (PageHuge(page))
			clear_page_hwpoison_huge_page(page);
W
Wu Fengguang 已提交
1494 1495 1496
	}
	unlock_page(page);

1497
	put_hwpoison_page(page);
1498
	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1499
		put_hwpoison_page(page);
W
Wu Fengguang 已提交
1500 1501 1502 1503

	return 0;
}
EXPORT_SYMBOL(unpoison_memory);
1504 1505 1506

static struct page *new_page(struct page *p, unsigned long private, int **x)
{
1507
	int nid = page_to_nid(p);
1508 1509 1510 1511
	if (PageHuge(p))
		return alloc_huge_page_node(page_hstate(compound_head(p)),
						   nid);
	else
1512
		return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1513 1514 1515 1516 1517 1518 1519 1520
}

/*
 * Safely get reference count of an arbitrary page.
 * Returns 0 for a free page, -EIO for a zero refcount page
 * that is not free, and 1 for any other page type.
 * For 1 the page is returned with increased page count, otherwise not.
 */
1521
static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1522 1523 1524 1525 1526 1527
{
	int ret;

	if (flags & MF_COUNT_INCREASED)
		return 1;

1528 1529 1530 1531
	/*
	 * When the target page is a free hugepage, just remove it
	 * from free hugepage list.
	 */
1532
	if (!get_hwpoison_page(p)) {
1533
		if (PageHuge(p)) {
1534
			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1535
			ret = 0;
1536
		} else if (is_free_buddy_page(p)) {
1537
			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1538 1539
			ret = 0;
		} else {
1540 1541
			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
				__func__, pfn, p->flags);
1542 1543 1544 1545 1546 1547 1548 1549 1550
			ret = -EIO;
		}
	} else {
		/* Not a free page */
		ret = 1;
	}
	return ret;
}

1551 1552 1553 1554 1555 1556 1557 1558
static int get_any_page(struct page *page, unsigned long pfn, int flags)
{
	int ret = __get_any_page(page, pfn, flags);

	if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
		/*
		 * Try to free it.
		 */
1559
		put_hwpoison_page(page);
1560 1561 1562 1563 1564 1565 1566
		shake_page(page, 1);

		/*
		 * Did it turn free?
		 */
		ret = __get_any_page(page, pfn, 0);
		if (!PageLRU(page)) {
1567
			/* Drop page reference which is from __get_any_page() */
1568
			put_hwpoison_page(page);
1569 1570 1571 1572 1573 1574 1575 1576
			pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
				pfn, page->flags);
			return -EIO;
		}
	}
	return ret;
}

1577 1578 1579 1580 1581
static int soft_offline_huge_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);
	struct page *hpage = compound_head(page);
1582
	LIST_HEAD(pagelist);
1583

1584 1585 1586 1587 1588
	/*
	 * This double-check of PageHWPoison is to avoid the race with
	 * memory_failure(). See also comment in __soft_offline_page().
	 */
	lock_page(hpage);
1589
	if (PageHWPoison(hpage)) {
1590
		unlock_page(hpage);
1591
		put_hwpoison_page(hpage);
1592
		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1593
		return -EBUSY;
1594
	}
1595
	unlock_page(hpage);
1596

1597
	ret = isolate_huge_page(hpage, &pagelist);
1598 1599 1600 1601
	/*
	 * get_any_page() and isolate_huge_page() takes a refcount each,
	 * so need to drop one here.
	 */
1602
	put_hwpoison_page(hpage);
1603
	if (!ret) {
1604 1605 1606 1607
		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
		return -EBUSY;
	}

1608
	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1609
				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1610
	if (ret) {
1611 1612
		pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
			pfn, ret, page->flags);
1613 1614 1615 1616 1617 1618 1619 1620
		/*
		 * We know that soft_offline_huge_page() tries to migrate
		 * only one hugepage pointed to by hpage, so we need not
		 * run through the pagelist here.
		 */
		putback_active_hugepage(hpage);
		if (ret > 0)
			ret = -EIO;
1621
	} else {
1622 1623 1624 1625
		/* overcommit hugetlb page will be freed to buddy */
		if (PageHuge(page)) {
			set_page_hwpoison_huge_page(hpage);
			dequeue_hwpoisoned_huge_page(hpage);
1626
			num_poisoned_pages_add(1 << compound_order(hpage));
1627 1628
		} else {
			SetPageHWPoison(page);
1629
			num_poisoned_pages_inc();
1630
		}
1631 1632 1633 1634
	}
	return ret;
}

1635 1636 1637 1638
static int __soft_offline_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);
1639 1640

	/*
1641 1642 1643 1644
	 * Check PageHWPoison again inside page lock because PageHWPoison
	 * is set by memory_failure() outside page lock. Note that
	 * memory_failure() also double-checks PageHWPoison inside page lock,
	 * so there's no race between soft_offline_page() and memory_failure().
1645
	 */
1646 1647
	lock_page(page);
	wait_on_page_writeback(page);
1648 1649
	if (PageHWPoison(page)) {
		unlock_page(page);
1650
		put_hwpoison_page(page);
1651 1652 1653
		pr_info("soft offline: %#lx page already poisoned\n", pfn);
		return -EBUSY;
	}
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
	/*
	 * Try to invalidate first. This should work for
	 * non dirty unmapped page cache pages.
	 */
	ret = invalidate_inode_page(page);
	unlock_page(page);
	/*
	 * RED-PEN would be better to keep it isolated here, but we
	 * would need to fix isolation locking first.
	 */
	if (ret == 1) {
1665
		put_hwpoison_page(page);
1666
		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1667
		SetPageHWPoison(page);
1668
		num_poisoned_pages_inc();
1669
		return 0;
1670 1671 1672 1673 1674 1675 1676 1677
	}

	/*
	 * Simple invalidation didn't work.
	 * Try to migrate to a new page instead. migrate.c
	 * handles a large number of cases for us.
	 */
	ret = isolate_lru_page(page);
1678 1679 1680 1681
	/*
	 * Drop page reference which is came from get_any_page()
	 * successful isolate_lru_page() already took another one.
	 */
1682
	put_hwpoison_page(page);
1683 1684
	if (!ret) {
		LIST_HEAD(pagelist);
1685
		inc_zone_page_state(page, NR_ISOLATED_ANON +
1686
					page_is_file_cache(page));
1687
		list_add(&page->lru, &pagelist);
1688
		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1689
					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1690
		if (ret) {
1691 1692 1693 1694 1695 1696 1697
			if (!list_empty(&pagelist)) {
				list_del(&page->lru);
				dec_zone_page_state(page, NR_ISOLATED_ANON +
						page_is_file_cache(page));
				putback_lru_page(page);
			}

1698
			pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1699 1700 1701 1702 1703
				pfn, ret, page->flags);
			if (ret > 0)
				ret = -EIO;
		}
	} else {
1704
		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1705
			pfn, ret, page_count(page), page->flags);
1706 1707 1708
	}
	return ret;
}
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735

/**
 * soft_offline_page - Soft offline a page.
 * @page: page to offline
 * @flags: flags. Same as memory_failure().
 *
 * Returns 0 on success, otherwise negated errno.
 *
 * Soft offline a page, by migration or invalidation,
 * without killing anything. This is for the case when
 * a page is not corrupted yet (so it's still valid to access),
 * but has had a number of corrected errors and is better taken
 * out.
 *
 * The actual policy on when to do that is maintained by
 * user space.
 *
 * This should never impact any application or cause data loss,
 * however it might take some time.
 *
 * This is not a 100% solution for all memory, but tries to be
 * ``good enough'' for the majority of memory.
 */
int soft_offline_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);
D
David Rientjes 已提交
1736
	struct page *hpage = compound_head(page);
1737 1738 1739

	if (PageHWPoison(page)) {
		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1740
		if (flags & MF_COUNT_INCREASED)
1741
			put_hwpoison_page(page);
1742 1743 1744 1745 1746 1747
		return -EBUSY;
	}
	if (!PageHuge(page) && PageTransHuge(hpage)) {
		if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
			pr_info("soft offline: %#lx: failed to split THP\n",
				pfn);
1748
			if (flags & MF_COUNT_INCREASED)
1749
				put_hwpoison_page(page);
1750 1751 1752 1753
			return -EBUSY;
		}
	}

1754
	get_online_mems();
1755

1756
	ret = get_any_page(page, pfn, flags);
1757
	put_online_mems();
1758
	if (ret > 0) { /* for in-use pages */
1759 1760 1761 1762
		if (PageHuge(page))
			ret = soft_offline_huge_page(page, flags);
		else
			ret = __soft_offline_page(page, flags);
1763
	} else if (ret == 0) { /* for free pages */
1764 1765
		if (PageHuge(page)) {
			set_page_hwpoison_huge_page(hpage);
1766
			if (!dequeue_hwpoisoned_huge_page(hpage))
1767
				num_poisoned_pages_add(1 << compound_order(hpage));
1768
		} else {
1769
			if (!TestSetPageHWPoison(page))
1770
				num_poisoned_pages_inc();
1771 1772 1773 1774
		}
	}
	return ret;
}