fib_trie.c 61.5 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation; either version
 *   2 of the License, or (at your option) any later version.
 *
 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
 *     & Swedish University of Agricultural Sciences.
 *
10
 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11
 *     Agricultural Sciences.
12
 *
13 14 15
 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
 *
 * This work is based on the LPC-trie which is originally descibed in:
16
 *
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
 * An experimental study of compression methods for dynamic tries
 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
 *
 *
 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
 *
 *
 * Code from fib_hash has been reused which includes the following header:
 *
 *
 * INET		An implementation of the TCP/IP protocol suite for the LINUX
 *		operating system.  INET is implemented using the  BSD Socket
 *		interface as the means of communication with the user level.
 *
 *		IPv4 FIB: lookup engine and maintenance routines.
 *
 *
 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
 *
 *		This program is free software; you can redistribute it and/or
 *		modify it under the terms of the GNU General Public License
 *		as published by the Free Software Foundation; either version
 *		2 of the License, or (at your option) any later version.
R
Robert Olsson 已提交
42 43 44 45 46 47 48
 *
 * Substantial contributions to this work comes from:
 *
 *		David S. Miller, <davem@davemloft.net>
 *		Stephen Hemminger <shemminger@osdl.org>
 *		Paul E. McKenney <paulmck@us.ibm.com>
 *		Patrick McHardy <kaber@trash.net>
49 50
 */

J
Jens Låås 已提交
51
#define VERSION "0.409"
52 53 54

#include <asm/uaccess.h>
#include <asm/system.h>
J
Jiri Slaby 已提交
55
#include <linux/bitops.h>
56 57 58 59 60 61 62 63 64
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/inet.h>
S
Stephen Hemminger 已提交
65
#include <linux/inetdevice.h>
66 67 68
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/proc_fs.h>
R
Robert Olsson 已提交
69
#include <linux/rcupdate.h>
70 71 72 73
#include <linux/skbuff.h>
#include <linux/netlink.h>
#include <linux/init.h>
#include <linux/list.h>
74
#include <linux/slab.h>
75
#include <net/net_namespace.h>
76 77 78 79 80 81 82 83
#include <net/ip.h>
#include <net/protocol.h>
#include <net/route.h>
#include <net/tcp.h>
#include <net/sock.h>
#include <net/ip_fib.h>
#include "fib_lookup.h"

R
Robert Olsson 已提交
84
#define MAX_STAT_DEPTH 32
85 86 87 88 89 90 91 92

#define KEYLENGTH (8*sizeof(t_key))

typedef unsigned int t_key;

#define T_TNODE 0
#define T_LEAF  1
#define NODE_TYPE_MASK	0x1UL
R
Robert Olsson 已提交
93 94
#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)

O
Olof Johansson 已提交
95 96
#define IS_TNODE(n) (!(n->parent & T_LEAF))
#define IS_LEAF(n) (n->parent & T_LEAF)
97 98

struct node {
O
Olof Johansson 已提交
99
	unsigned long parent;
100
	t_key key;
101 102 103
};

struct leaf {
O
Olof Johansson 已提交
104
	unsigned long parent;
105
	t_key key;
106
	struct hlist_head list;
R
Robert Olsson 已提交
107
	struct rcu_head rcu;
108 109 110 111
};

struct leaf_info {
	struct hlist_node hlist;
R
Robert Olsson 已提交
112
	struct rcu_head rcu;
113 114 115 116 117
	int plen;
	struct list_head falh;
};

struct tnode {
O
Olof Johansson 已提交
118
	unsigned long parent;
119
	t_key key;
120 121
	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
122 123
	unsigned int full_children;	/* KEYLENGTH bits needed */
	unsigned int empty_children;	/* KEYLENGTH bits needed */
124 125 126
	union {
		struct rcu_head rcu;
		struct work_struct work;
J
Jarek Poplawski 已提交
127
		struct tnode *tnode_free;
128
	};
O
Olof Johansson 已提交
129
	struct node *child[0];
130 131 132 133 134 135 136 137 138
};

#ifdef CONFIG_IP_FIB_TRIE_STATS
struct trie_use_stats {
	unsigned int gets;
	unsigned int backtrack;
	unsigned int semantic_match_passed;
	unsigned int semantic_match_miss;
	unsigned int null_node_hit;
139
	unsigned int resize_node_skipped;
140 141 142 143 144 145 146 147 148
};
#endif

struct trie_stat {
	unsigned int totdepth;
	unsigned int maxdepth;
	unsigned int tnodes;
	unsigned int leaves;
	unsigned int nullpointers;
149
	unsigned int prefixes;
R
Robert Olsson 已提交
150
	unsigned int nodesizes[MAX_STAT_DEPTH];
151
};
152 153

struct trie {
O
Olof Johansson 已提交
154
	struct node *trie;
155 156 157 158 159 160
#ifdef CONFIG_IP_FIB_TRIE_STATS
	struct trie_use_stats stats;
#endif
};

static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
161 162
static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
				  int wasfull);
163
static struct node *resize(struct trie *t, struct tnode *tn);
164 165
static struct tnode *inflate(struct trie *t, struct tnode *tn);
static struct tnode *halve(struct trie *t, struct tnode *tn);
J
Jarek Poplawski 已提交
166 167
/* tnodes to free after resize(); protected by RTNL */
static struct tnode *tnode_free_head;
168 169 170 171 172 173 174 175
static size_t tnode_free_size;

/*
 * synchronize_rcu after call_rcu for that many pages; it should be especially
 * useful before resizing the root node with PREEMPT_NONE configs; the value was
 * obtained experimentally, aiming to avoid visible slowdown.
 */
static const int sync_pages = 128;
176

177
static struct kmem_cache *fn_alias_kmem __read_mostly;
178
static struct kmem_cache *trie_leaf_kmem __read_mostly;
179

S
Stephen Hemminger 已提交
180 181
static inline struct tnode *node_parent(struct node *node)
{
182 183 184 185 186 187
	return (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
}

static inline struct tnode *node_parent_rcu(struct node *node)
{
	struct tnode *ret = node_parent(node);
S
Stephen Hemminger 已提交
188 189 190 191

	return rcu_dereference(ret);
}

192 193 194
/* Same as rcu_assign_pointer
 * but that macro() assumes that value is a pointer.
 */
S
Stephen Hemminger 已提交
195 196
static inline void node_set_parent(struct node *node, struct tnode *ptr)
{
197 198
	smp_wmb();
	node->parent = (unsigned long)ptr | NODE_TYPE(node);
S
Stephen Hemminger 已提交
199
}
R
Robert Olsson 已提交
200

201 202 203
static inline struct node *tnode_get_child(struct tnode *tn, unsigned int i)
{
	BUG_ON(i >= 1U << tn->bits);
R
Robert Olsson 已提交
204

205 206 207 208
	return tn->child[i];
}

static inline struct node *tnode_get_child_rcu(struct tnode *tn, unsigned int i)
209
{
210
	struct node *ret = tnode_get_child(tn, i);
211

212
	return rcu_dereference(ret);
213 214
}

S
Stephen Hemmigner 已提交
215
static inline int tnode_child_length(const struct tnode *tn)
216
{
O
Olof Johansson 已提交
217
	return 1 << tn->bits;
218 219
}

S
Stephen Hemminger 已提交
220 221 222 223 224
static inline t_key mask_pfx(t_key k, unsigned short l)
{
	return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
}

225 226
static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
{
O
Olof Johansson 已提交
227
	if (offset < KEYLENGTH)
228
		return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
O
Olof Johansson 已提交
229
	else
230 231 232 233 234
		return 0;
}

static inline int tkey_equals(t_key a, t_key b)
{
235
	return a == b;
236 237 238 239
}

static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
{
240 241
	if (bits == 0 || offset >= KEYLENGTH)
		return 1;
O
Olof Johansson 已提交
242 243
	bits = bits > KEYLENGTH ? KEYLENGTH : bits;
	return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
244
}
245 246 247 248 249 250

static inline int tkey_mismatch(t_key a, int offset, t_key b)
{
	t_key diff = a ^ b;
	int i = offset;

251 252 253
	if (!diff)
		return 0;
	while ((diff << i) >> (KEYLENGTH-1) == 0)
254 255 256 257 258
		i++;
	return i;
}

/*
259 260
  To understand this stuff, an understanding of keys and all their bits is
  necessary. Every node in the trie has a key associated with it, but not
261 262 263 264
  all of the bits in that key are significant.

  Consider a node 'n' and its parent 'tp'.

265 266 267 268 269
  If n is a leaf, every bit in its key is significant. Its presence is
  necessitated by path compression, since during a tree traversal (when
  searching for a leaf - unless we are doing an insertion) we will completely
  ignore all skipped bits we encounter. Thus we need to verify, at the end of
  a potentially successful search, that we have indeed been walking the
270 271
  correct key path.

272 273 274 275 276
  Note that we can never "miss" the correct key in the tree if present by
  following the wrong path. Path compression ensures that segments of the key
  that are the same for all keys with a given prefix are skipped, but the
  skipped part *is* identical for each node in the subtrie below the skipped
  bit! trie_insert() in this implementation takes care of that - note the
277 278
  call to tkey_sub_equals() in trie_insert().

279
  if n is an internal node - a 'tnode' here, the various parts of its key
280 281
  have many different meanings.

282
  Example:
283 284 285
  _________________________________________________________________
  | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
  -----------------------------------------------------------------
286
    0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
287 288 289 290 291 292 293 294 295

  _________________________________________________________________
  | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
  -----------------------------------------------------------------
   16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31

  tp->pos = 7
  tp->bits = 3
  n->pos = 15
O
Olof Johansson 已提交
296
  n->bits = 4
297

298 299
  First, let's just ignore the bits that come before the parent tp, that is
  the bits from 0 to (tp->pos-1). They are *known* but at this point we do
300 301 302
  not use them for anything.

  The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
303
  index into the parent's child array. That is, they will be used to find
304 305 306 307 308
  'n' among tp's children.

  The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
  for the node n.

309
  All the bits we have seen so far are significant to the node n. The rest
310 311
  of the bits are really not needed or indeed known in n->key.

312
  The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
313
  n's child array, and will of course be different for each child.
314

315

316 317 318 319 320
  The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
  at this point.

*/

S
Stephen Hemminger 已提交
321
static inline void check_tnode(const struct tnode *tn)
322
{
S
Stephen Hemminger 已提交
323
	WARN_ON(tn && tn->pos+tn->bits > 32);
324 325
}

326 327
static const int halve_threshold = 25;
static const int inflate_threshold = 50;
328
static const int halve_threshold_root = 15;
J
Jens Låås 已提交
329
static const int inflate_threshold_root = 30;
R
Robert Olsson 已提交
330 331

static void __alias_free_mem(struct rcu_head *head)
332
{
R
Robert Olsson 已提交
333 334
	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
	kmem_cache_free(fn_alias_kmem, fa);
335 336
}

R
Robert Olsson 已提交
337
static inline void alias_free_mem_rcu(struct fib_alias *fa)
338
{
R
Robert Olsson 已提交
339 340
	call_rcu(&fa->rcu, __alias_free_mem);
}
O
Olof Johansson 已提交
341

R
Robert Olsson 已提交
342 343
static void __leaf_free_rcu(struct rcu_head *head)
{
344 345
	struct leaf *l = container_of(head, struct leaf, rcu);
	kmem_cache_free(trie_leaf_kmem, l);
R
Robert Olsson 已提交
346
}
O
Olof Johansson 已提交
347

348 349 350 351 352
static inline void free_leaf(struct leaf *l)
{
	call_rcu_bh(&l->rcu, __leaf_free_rcu);
}

R
Robert Olsson 已提交
353
static void __leaf_info_free_rcu(struct rcu_head *head)
354
{
R
Robert Olsson 已提交
355
	kfree(container_of(head, struct leaf_info, rcu));
356 357
}

R
Robert Olsson 已提交
358
static inline void free_leaf_info(struct leaf_info *leaf)
359
{
R
Robert Olsson 已提交
360
	call_rcu(&leaf->rcu, __leaf_info_free_rcu);
361 362
}

363
static struct tnode *tnode_alloc(size_t size)
364
{
R
Robert Olsson 已提交
365
	if (size <= PAGE_SIZE)
366
		return kzalloc(size, GFP_KERNEL);
367 368 369
	else
		return __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
}
R
Robert Olsson 已提交
370

371 372 373 374
static void __tnode_vfree(struct work_struct *arg)
{
	struct tnode *tn = container_of(arg, struct tnode, work);
	vfree(tn);
375 376
}

R
Robert Olsson 已提交
377
static void __tnode_free_rcu(struct rcu_head *head)
378
{
R
Robert Olsson 已提交
379
	struct tnode *tn = container_of(head, struct tnode, rcu);
380 381
	size_t size = sizeof(struct tnode) +
		      (sizeof(struct node *) << tn->bits);
382 383 384

	if (size <= PAGE_SIZE)
		kfree(tn);
385 386 387 388
	else {
		INIT_WORK(&tn->work, __tnode_vfree);
		schedule_work(&tn->work);
	}
389 390
}

R
Robert Olsson 已提交
391 392
static inline void tnode_free(struct tnode *tn)
{
393 394 395
	if (IS_LEAF(tn))
		free_leaf((struct leaf *) tn);
	else
R
Robert Olsson 已提交
396
		call_rcu(&tn->rcu, __tnode_free_rcu);
R
Robert Olsson 已提交
397 398
}

J
Jarek Poplawski 已提交
399 400 401
static void tnode_free_safe(struct tnode *tn)
{
	BUG_ON(IS_LEAF(tn));
402 403
	tn->tnode_free = tnode_free_head;
	tnode_free_head = tn;
404 405
	tnode_free_size += sizeof(struct tnode) +
			   (sizeof(struct node *) << tn->bits);
J
Jarek Poplawski 已提交
406 407 408 409 410 411 412 413 414 415 416
}

static void tnode_free_flush(void)
{
	struct tnode *tn;

	while ((tn = tnode_free_head)) {
		tnode_free_head = tn->tnode_free;
		tn->tnode_free = NULL;
		tnode_free(tn);
	}
417 418 419 420 421

	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
		tnode_free_size = 0;
		synchronize_rcu();
	}
J
Jarek Poplawski 已提交
422 423
}

R
Robert Olsson 已提交
424 425
static struct leaf *leaf_new(void)
{
426
	struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
R
Robert Olsson 已提交
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
	if (l) {
		l->parent = T_LEAF;
		INIT_HLIST_HEAD(&l->list);
	}
	return l;
}

static struct leaf_info *leaf_info_new(int plen)
{
	struct leaf_info *li = kmalloc(sizeof(struct leaf_info),  GFP_KERNEL);
	if (li) {
		li->plen = plen;
		INIT_LIST_HEAD(&li->falh);
	}
	return li;
}

444
static struct tnode *tnode_new(t_key key, int pos, int bits)
445
{
446
	size_t sz = sizeof(struct tnode) + (sizeof(struct node *) << bits);
447
	struct tnode *tn = tnode_alloc(sz);
448

O
Olof Johansson 已提交
449
	if (tn) {
R
Robert Olsson 已提交
450
		tn->parent = T_TNODE;
451 452 453 454 455 456
		tn->pos = pos;
		tn->bits = bits;
		tn->key = key;
		tn->full_children = 0;
		tn->empty_children = 1<<bits;
	}
457

458 459
	pr_debug("AT %p s=%u %lu\n", tn, (unsigned int) sizeof(struct tnode),
		 (unsigned long) (sizeof(struct node) << bits));
460 461 462 463 464 465 466 467
	return tn;
}

/*
 * Check whether a tnode 'n' is "full", i.e. it is an internal node
 * and no bits are skipped. See discussion in dyntree paper p. 6
 */

S
Stephen Hemmigner 已提交
468
static inline int tnode_full(const struct tnode *tn, const struct node *n)
469
{
470
	if (n == NULL || IS_LEAF(n))
471 472 473 474 475
		return 0;

	return ((struct tnode *) n)->pos == tn->pos + tn->bits;
}

476 477
static inline void put_child(struct trie *t, struct tnode *tn, int i,
			     struct node *n)
478 479 480 481
{
	tnode_put_child_reorg(tn, i, n, -1);
}

482
 /*
483 484 485 486
  * Add a child at position i overwriting the old value.
  * Update the value of full_children and empty_children.
  */

487 488
static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
				  int wasfull)
489
{
R
Robert Olsson 已提交
490
	struct node *chi = tn->child[i];
491 492
	int isfull;

S
Stephen Hemminger 已提交
493 494
	BUG_ON(i >= 1<<tn->bits);

495 496 497 498 499
	/* update emptyChildren */
	if (n == NULL && chi != NULL)
		tn->empty_children++;
	else if (n != NULL && chi == NULL)
		tn->empty_children--;
500

501
	/* update fullChildren */
O
Olof Johansson 已提交
502
	if (wasfull == -1)
503 504 505
		wasfull = tnode_full(tn, chi);

	isfull = tnode_full(tn, n);
506
	if (wasfull && !isfull)
507
		tn->full_children--;
508
	else if (!wasfull && isfull)
509
		tn->full_children++;
O
Olof Johansson 已提交
510

511
	if (n)
S
Stephen Hemminger 已提交
512
		node_set_parent(n, tn);
513

R
Robert Olsson 已提交
514
	rcu_assign_pointer(tn->child[i], n);
515 516
}

J
Jens Låås 已提交
517
#define MAX_WORK 10
518
static struct node *resize(struct trie *t, struct tnode *tn)
519 520
{
	int i;
521
	struct tnode *old_tn;
522 523
	int inflate_threshold_use;
	int halve_threshold_use;
J
Jens Låås 已提交
524
	int max_work;
525

526
	if (!tn)
527 528
		return NULL;

S
Stephen Hemminger 已提交
529 530
	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
		 tn, inflate_threshold, halve_threshold);
531 532 533

	/* No children */
	if (tn->empty_children == tnode_child_length(tn)) {
J
Jarek Poplawski 已提交
534
		tnode_free_safe(tn);
535 536 537 538
		return NULL;
	}
	/* One child */
	if (tn->empty_children == tnode_child_length(tn) - 1)
J
Jens Låås 已提交
539
		goto one_child;
540
	/*
541 542 543 544 545
	 * Double as long as the resulting node has a number of
	 * nonempty nodes that are above the threshold.
	 */

	/*
546 547
	 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
	 * the Helsinki University of Technology and Matti Tikkanen of Nokia
548
	 * Telecommunications, page 6:
549
	 * "A node is doubled if the ratio of non-empty children to all
550 551
	 * children in the *doubled* node is at least 'high'."
	 *
552 553 554 555 556
	 * 'high' in this instance is the variable 'inflate_threshold'. It
	 * is expressed as a percentage, so we multiply it with
	 * tnode_child_length() and instead of multiplying by 2 (since the
	 * child array will be doubled by inflate()) and multiplying
	 * the left-hand side by 100 (to handle the percentage thing) we
557
	 * multiply the left-hand side by 50.
558 559 560 561
	 *
	 * The left-hand side may look a bit weird: tnode_child_length(tn)
	 * - tn->empty_children is of course the number of non-null children
	 * in the current node. tn->full_children is the number of "full"
562
	 * children, that is non-null tnodes with a skip value of 0.
563
	 * All of those will be doubled in the resulting inflated tnode, so
564
	 * we just count them one extra time here.
565
	 *
566
	 * A clearer way to write this would be:
567
	 *
568
	 * to_be_doubled = tn->full_children;
569
	 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
570 571 572 573
	 *     tn->full_children;
	 *
	 * new_child_length = tnode_child_length(tn) * 2;
	 *
574
	 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
575 576
	 *      new_child_length;
	 * if (new_fill_factor >= inflate_threshold)
577 578 579
	 *
	 * ...and so on, tho it would mess up the while () loop.
	 *
580 581 582
	 * anyway,
	 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
	 *      inflate_threshold
583
	 *
584 585 586
	 * avoid a division:
	 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
	 *      inflate_threshold * new_child_length
587
	 *
588
	 * expand not_to_be_doubled and to_be_doubled, and shorten:
589
	 * 100 * (tnode_child_length(tn) - tn->empty_children +
O
Olof Johansson 已提交
590
	 *    tn->full_children) >= inflate_threshold * new_child_length
591
	 *
592
	 * expand new_child_length:
593
	 * 100 * (tnode_child_length(tn) - tn->empty_children +
O
Olof Johansson 已提交
594
	 *    tn->full_children) >=
595
	 *      inflate_threshold * tnode_child_length(tn) * 2
596
	 *
597
	 * shorten again:
598
	 * 50 * (tn->full_children + tnode_child_length(tn) -
O
Olof Johansson 已提交
599
	 *    tn->empty_children) >= inflate_threshold *
600
	 *    tnode_child_length(tn)
601
	 *
602 603 604
	 */

	check_tnode(tn);
605

606 607
	/* Keep root node larger  */

J
Jens Låås 已提交
608 609 610 611 612
	if (!node_parent((struct node*) tn)) {
		inflate_threshold_use = inflate_threshold_root;
		halve_threshold_use = halve_threshold_root;
	}
	else {
613
		inflate_threshold_use = inflate_threshold;
J
Jens Låås 已提交
614 615
		halve_threshold_use = halve_threshold;
	}
616

J
Jens Låås 已提交
617 618
	max_work = MAX_WORK;
	while ((tn->full_children > 0 &&  max_work-- &&
619 620 621
		50 * (tn->full_children + tnode_child_length(tn)
		      - tn->empty_children)
		>= inflate_threshold_use * tnode_child_length(tn))) {
622

623 624
		old_tn = tn;
		tn = inflate(t, tn);
625

626 627
		if (IS_ERR(tn)) {
			tn = old_tn;
628 629 630 631 632
#ifdef CONFIG_IP_FIB_TRIE_STATS
			t->stats.resize_node_skipped++;
#endif
			break;
		}
633 634 635 636
	}

	check_tnode(tn);

J
Jens Låås 已提交
637 638 639 640
	/* Return if at least one inflate is run */
	if( max_work != MAX_WORK)
		return (struct node *) tn;

641 642 643 644
	/*
	 * Halve as long as the number of empty children in this
	 * node is above threshold.
	 */
645

J
Jens Låås 已提交
646 647
	max_work = MAX_WORK;
	while (tn->bits > 1 &&  max_work-- &&
648
	       100 * (tnode_child_length(tn) - tn->empty_children) <
649
	       halve_threshold_use * tnode_child_length(tn)) {
650

651 652 653 654
		old_tn = tn;
		tn = halve(t, tn);
		if (IS_ERR(tn)) {
			tn = old_tn;
655 656 657 658 659 660
#ifdef CONFIG_IP_FIB_TRIE_STATS
			t->stats.resize_node_skipped++;
#endif
			break;
		}
	}
661

662

663
	/* Only one child remains */
J
Jens Låås 已提交
664 665
	if (tn->empty_children == tnode_child_length(tn) - 1) {
one_child:
666
		for (i = 0; i < tnode_child_length(tn); i++) {
O
Olof Johansson 已提交
667
			struct node *n;
668

O
Olof Johansson 已提交
669
			n = tn->child[i];
R
Robert Olsson 已提交
670
			if (!n)
O
Olof Johansson 已提交
671 672 673 674
				continue;

			/* compress one level */

S
Stephen Hemminger 已提交
675
			node_set_parent(n, NULL);
J
Jarek Poplawski 已提交
676
			tnode_free_safe(tn);
O
Olof Johansson 已提交
677
			return n;
678
		}
J
Jens Låås 已提交
679
	}
680 681 682
	return (struct node *) tn;
}

683
static struct tnode *inflate(struct trie *t, struct tnode *tn)
684 685 686 687 688
{
	struct tnode *oldtnode = tn;
	int olen = tnode_child_length(tn);
	int i;

S
Stephen Hemminger 已提交
689
	pr_debug("In inflate\n");
690 691 692

	tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);

S
Stephen Hemminger 已提交
693
	if (!tn)
694
		return ERR_PTR(-ENOMEM);
695 696

	/*
697 698 699
	 * Preallocate and store tnodes before the actual work so we
	 * don't get into an inconsistent state if memory allocation
	 * fails. In case of failure we return the oldnode and  inflate
700 701
	 * of tnode is ignored.
	 */
O
Olof Johansson 已提交
702 703

	for (i = 0; i < olen; i++) {
704
		struct tnode *inode;
705

706
		inode = (struct tnode *) tnode_get_child(oldtnode, i);
707 708 709 710 711
		if (inode &&
		    IS_TNODE(inode) &&
		    inode->pos == oldtnode->pos + oldtnode->bits &&
		    inode->bits > 1) {
			struct tnode *left, *right;
S
Stephen Hemminger 已提交
712
			t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
713

714 715
			left = tnode_new(inode->key&(~m), inode->pos + 1,
					 inode->bits - 1);
716 717
			if (!left)
				goto nomem;
O
Olof Johansson 已提交
718

719 720 721
			right = tnode_new(inode->key|m, inode->pos + 1,
					  inode->bits - 1);

722
			if (!right) {
723 724
				tnode_free(left);
				goto nomem;
725
			}
726 727 728 729 730 731

			put_child(t, tn, 2*i, (struct node *) left);
			put_child(t, tn, 2*i+1, (struct node *) right);
		}
	}

O
Olof Johansson 已提交
732
	for (i = 0; i < olen; i++) {
733
		struct tnode *inode;
734
		struct node *node = tnode_get_child(oldtnode, i);
O
Olof Johansson 已提交
735 736
		struct tnode *left, *right;
		int size, j;
737

738 739 740 741 742 743
		/* An empty child */
		if (node == NULL)
			continue;

		/* A leaf or an internal node with skipped bits */

744
		if (IS_LEAF(node) || ((struct tnode *) node)->pos >
745
		   tn->pos + tn->bits - 1) {
746 747 748
			if (tkey_extract_bits(node->key,
					      oldtnode->pos + oldtnode->bits,
					      1) == 0)
749 750 751 752 753 754 755 756 757 758 759 760 761
				put_child(t, tn, 2*i, node);
			else
				put_child(t, tn, 2*i+1, node);
			continue;
		}

		/* An internal node with two children */
		inode = (struct tnode *) node;

		if (inode->bits == 1) {
			put_child(t, tn, 2*i, inode->child[0]);
			put_child(t, tn, 2*i+1, inode->child[1]);

J
Jarek Poplawski 已提交
762
			tnode_free_safe(inode);
O
Olof Johansson 已提交
763
			continue;
764 765
		}

O
Olof Johansson 已提交
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
		/* An internal node with more than two children */

		/* We will replace this node 'inode' with two new
		 * ones, 'left' and 'right', each with half of the
		 * original children. The two new nodes will have
		 * a position one bit further down the key and this
		 * means that the "significant" part of their keys
		 * (see the discussion near the top of this file)
		 * will differ by one bit, which will be "0" in
		 * left's key and "1" in right's key. Since we are
		 * moving the key position by one step, the bit that
		 * we are moving away from - the bit at position
		 * (inode->pos) - is the one that will differ between
		 * left and right. So... we synthesize that bit in the
		 * two  new keys.
		 * The mask 'm' below will be a single "one" bit at
		 * the position (inode->pos)
		 */
784

O
Olof Johansson 已提交
785 786 787
		/* Use the old key, but set the new significant
		 *   bit to zero.
		 */
788

O
Olof Johansson 已提交
789 790
		left = (struct tnode *) tnode_get_child(tn, 2*i);
		put_child(t, tn, 2*i, NULL);
791

O
Olof Johansson 已提交
792
		BUG_ON(!left);
793

O
Olof Johansson 已提交
794 795
		right = (struct tnode *) tnode_get_child(tn, 2*i+1);
		put_child(t, tn, 2*i+1, NULL);
796

O
Olof Johansson 已提交
797
		BUG_ON(!right);
798

O
Olof Johansson 已提交
799 800 801 802
		size = tnode_child_length(left);
		for (j = 0; j < size; j++) {
			put_child(t, left, j, inode->child[j]);
			put_child(t, right, j, inode->child[j + size]);
803
		}
O
Olof Johansson 已提交
804 805 806
		put_child(t, tn, 2*i, resize(t, left));
		put_child(t, tn, 2*i+1, resize(t, right));

J
Jarek Poplawski 已提交
807
		tnode_free_safe(inode);
808
	}
J
Jarek Poplawski 已提交
809
	tnode_free_safe(oldtnode);
810
	return tn;
811 812 813 814 815
nomem:
	{
		int size = tnode_child_length(tn);
		int j;

S
Stephen Hemminger 已提交
816
		for (j = 0; j < size; j++)
817 818 819 820
			if (tn->child[j])
				tnode_free((struct tnode *)tn->child[j]);

		tnode_free(tn);
S
Stephen Hemminger 已提交
821

822 823
		return ERR_PTR(-ENOMEM);
	}
824 825
}

826
static struct tnode *halve(struct trie *t, struct tnode *tn)
827 828 829 830 831 832
{
	struct tnode *oldtnode = tn;
	struct node *left, *right;
	int i;
	int olen = tnode_child_length(tn);

S
Stephen Hemminger 已提交
833
	pr_debug("In halve\n");
834 835

	tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
836

837 838
	if (!tn)
		return ERR_PTR(-ENOMEM);
839 840

	/*
841 842 843
	 * Preallocate and store tnodes before the actual work so we
	 * don't get into an inconsistent state if memory allocation
	 * fails. In case of failure we return the oldnode and halve
844 845 846
	 * of tnode is ignored.
	 */

O
Olof Johansson 已提交
847
	for (i = 0; i < olen; i += 2) {
848 849
		left = tnode_get_child(oldtnode, i);
		right = tnode_get_child(oldtnode, i+1);
850

851
		/* Two nonempty children */
S
Stephen Hemminger 已提交
852
		if (left && right) {
853
			struct tnode *newn;
S
Stephen Hemminger 已提交
854

855
			newn = tnode_new(left->key, tn->pos + tn->bits, 1);
S
Stephen Hemminger 已提交
856 857

			if (!newn)
858
				goto nomem;
S
Stephen Hemminger 已提交
859

860
			put_child(t, tn, i/2, (struct node *)newn);
861 862 863
		}

	}
864

O
Olof Johansson 已提交
865 866 867
	for (i = 0; i < olen; i += 2) {
		struct tnode *newBinNode;

868 869
		left = tnode_get_child(oldtnode, i);
		right = tnode_get_child(oldtnode, i+1);
870

871 872 873 874 875
		/* At least one of the children is empty */
		if (left == NULL) {
			if (right == NULL)    /* Both are empty */
				continue;
			put_child(t, tn, i/2, right);
O
Olof Johansson 已提交
876
			continue;
S
Stephen Hemminger 已提交
877
		}
O
Olof Johansson 已提交
878 879

		if (right == NULL) {
880
			put_child(t, tn, i/2, left);
O
Olof Johansson 已提交
881 882
			continue;
		}
883

884
		/* Two nonempty children */
O
Olof Johansson 已提交
885 886 887 888 889
		newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
		put_child(t, tn, i/2, NULL);
		put_child(t, newBinNode, 0, left);
		put_child(t, newBinNode, 1, right);
		put_child(t, tn, i/2, resize(t, newBinNode));
890
	}
J
Jarek Poplawski 已提交
891
	tnode_free_safe(oldtnode);
892
	return tn;
893 894 895 896 897
nomem:
	{
		int size = tnode_child_length(tn);
		int j;

S
Stephen Hemminger 已提交
898
		for (j = 0; j < size; j++)
899 900 901 902
			if (tn->child[j])
				tnode_free((struct tnode *)tn->child[j]);

		tnode_free(tn);
S
Stephen Hemminger 已提交
903

904 905
		return ERR_PTR(-ENOMEM);
	}
906 907
}

R
Robert Olsson 已提交
908
/* readside must use rcu_read_lock currently dump routines
R
Robert Olsson 已提交
909 910
 via get_fa_head and dump */

R
Robert Olsson 已提交
911
static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
912
{
R
Robert Olsson 已提交
913
	struct hlist_head *head = &l->list;
914 915 916
	struct hlist_node *node;
	struct leaf_info *li;

R
Robert Olsson 已提交
917
	hlist_for_each_entry_rcu(li, node, head, hlist)
918
		if (li->plen == plen)
919
			return li;
O
Olof Johansson 已提交
920

921 922 923
	return NULL;
}

924
static inline struct list_head *get_fa_head(struct leaf *l, int plen)
925
{
R
Robert Olsson 已提交
926
	struct leaf_info *li = find_leaf_info(l, plen);
927

O
Olof Johansson 已提交
928 929
	if (!li)
		return NULL;
930

O
Olof Johansson 已提交
931
	return &li->falh;
932 933 934 935
}

static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
{
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
	struct leaf_info *li = NULL, *last = NULL;
	struct hlist_node *node;

	if (hlist_empty(head)) {
		hlist_add_head_rcu(&new->hlist, head);
	} else {
		hlist_for_each_entry(li, node, head, hlist) {
			if (new->plen > li->plen)
				break;

			last = li;
		}
		if (last)
			hlist_add_after_rcu(&last->hlist, &new->hlist);
		else
			hlist_add_before_rcu(&new->hlist, &li->hlist);
	}
953 954
}

R
Robert Olsson 已提交
955 956
/* rcu_read_lock needs to be hold by caller from readside */

957 958 959 960 961 962 963 964
static struct leaf *
fib_find_node(struct trie *t, u32 key)
{
	int pos;
	struct tnode *tn;
	struct node *n;

	pos = 0;
965 966 967
	n = rcu_dereference_check(t->trie,
				  rcu_read_lock_held() ||
				  lockdep_rtnl_is_held());
968 969 970

	while (n != NULL &&  NODE_TYPE(n) == T_TNODE) {
		tn = (struct tnode *) n;
O
Olof Johansson 已提交
971

972
		check_tnode(tn);
O
Olof Johansson 已提交
973

974
		if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
O
Olof Johansson 已提交
975
			pos = tn->pos + tn->bits;
976 977 978 979
			n = tnode_get_child_rcu(tn,
						tkey_extract_bits(key,
								  tn->pos,
								  tn->bits));
O
Olof Johansson 已提交
980
		} else
981 982 983 984
			break;
	}
	/* Case we have found a leaf. Compare prefixes */

O
Olof Johansson 已提交
985 986 987
	if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
		return (struct leaf *)n;

988 989 990
	return NULL;
}

991
static void trie_rebalance(struct trie *t, struct tnode *tn)
992 993
{
	int wasfull;
R
Robert Olsson 已提交
994
	t_key cindex, key;
S
Stephen Hemminger 已提交
995
	struct tnode *tp;
996

R
Robert Olsson 已提交
997 998
	key = tn->key;

S
Stephen Hemminger 已提交
999
	while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) {
1000 1001
		cindex = tkey_extract_bits(key, tp->pos, tp->bits);
		wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
1002 1003 1004 1005
		tn = (struct tnode *) resize(t, (struct tnode *)tn);

		tnode_put_child_reorg((struct tnode *)tp, cindex,
				      (struct node *)tn, wasfull);
O
Olof Johansson 已提交
1006

S
Stephen Hemminger 已提交
1007
		tp = node_parent((struct node *) tn);
1008 1009 1010
		if (!tp)
			rcu_assign_pointer(t->trie, (struct node *)tn);

J
Jarek Poplawski 已提交
1011
		tnode_free_flush();
S
Stephen Hemminger 已提交
1012
		if (!tp)
1013
			break;
S
Stephen Hemminger 已提交
1014
		tn = tp;
1015
	}
S
Stephen Hemminger 已提交
1016

1017
	/* Handle last (top) tnode */
1018
	if (IS_TNODE(tn))
1019
		tn = (struct tnode *)resize(t, (struct tnode *)tn);
1020

1021 1022 1023 1024
	rcu_assign_pointer(t->trie, (struct node *)tn);
	tnode_free_flush();

	return;
1025 1026
}

R
Robert Olsson 已提交
1027 1028
/* only used from updater-side */

1029
static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
1030 1031 1032 1033 1034 1035
{
	int pos, newpos;
	struct tnode *tp = NULL, *tn = NULL;
	struct node *n;
	struct leaf *l;
	int missbit;
1036
	struct list_head *fa_head = NULL;
1037 1038 1039 1040
	struct leaf_info *li;
	t_key cindex;

	pos = 0;
1041
	n = t->trie;
1042

1043 1044
	/* If we point to NULL, stop. Either the tree is empty and we should
	 * just put a new leaf in if, or we have reached an empty child slot,
1045
	 * and we should just put our new leaf in that.
1046 1047
	 * If we point to a T_TNODE, check if it matches our key. Note that
	 * a T_TNODE might be skipping any number of bits - its 'pos' need
1048 1049
	 * not be the parent's 'pos'+'bits'!
	 *
1050
	 * If it does match the current key, get pos/bits from it, extract
1051 1052 1053 1054
	 * the index from our key, push the T_TNODE and walk the tree.
	 *
	 * If it doesn't, we have to replace it with a new T_TNODE.
	 *
1055 1056 1057
	 * If we point to a T_LEAF, it might or might not have the same key
	 * as we do. If it does, just change the value, update the T_LEAF's
	 * value, and return it.
1058 1059 1060 1061 1062
	 * If it doesn't, we need to replace it with a T_TNODE.
	 */

	while (n != NULL &&  NODE_TYPE(n) == T_TNODE) {
		tn = (struct tnode *) n;
O
Olof Johansson 已提交
1063

1064
		check_tnode(tn);
O
Olof Johansson 已提交
1065

1066
		if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1067
			tp = tn;
O
Olof Johansson 已提交
1068
			pos = tn->pos + tn->bits;
1069 1070 1071 1072
			n = tnode_get_child(tn,
					    tkey_extract_bits(key,
							      tn->pos,
							      tn->bits));
1073

S
Stephen Hemminger 已提交
1074
			BUG_ON(n && node_parent(n) != tn);
O
Olof Johansson 已提交
1075
		} else
1076 1077 1078 1079 1080 1081
			break;
	}

	/*
	 * n  ----> NULL, LEAF or TNODE
	 *
1082
	 * tp is n's (parent) ----> NULL or TNODE
1083 1084
	 */

O
Olof Johansson 已提交
1085
	BUG_ON(tp && IS_LEAF(tp));
1086 1087 1088

	/* Case 1: n is a leaf. Compare prefixes */

1089
	if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1090
		l = (struct leaf *) n;
1091
		li = leaf_info_new(plen);
O
Olof Johansson 已提交
1092

1093 1094
		if (!li)
			return NULL;
1095 1096 1097 1098 1099 1100 1101

		fa_head = &li->falh;
		insert_leaf_info(&l->list, li);
		goto done;
	}
	l = leaf_new();

1102 1103
	if (!l)
		return NULL;
1104 1105 1106 1107

	l->key = key;
	li = leaf_info_new(plen);

1108
	if (!li) {
1109
		free_leaf(l);
1110
		return NULL;
1111
	}
1112 1113 1114 1115 1116

	fa_head = &li->falh;
	insert_leaf_info(&l->list, li);

	if (t->trie && n == NULL) {
O
Olof Johansson 已提交
1117
		/* Case 2: n is NULL, and will just insert a new leaf */
1118

S
Stephen Hemminger 已提交
1119
		node_set_parent((struct node *)l, tp);
1120

O
Olof Johansson 已提交
1121 1122 1123 1124
		cindex = tkey_extract_bits(key, tp->pos, tp->bits);
		put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
	} else {
		/* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1125 1126
		/*
		 *  Add a new tnode here
1127 1128 1129 1130
		 *  first tnode need some special handling
		 */

		if (tp)
O
Olof Johansson 已提交
1131
			pos = tp->pos+tp->bits;
1132
		else
O
Olof Johansson 已提交
1133 1134
			pos = 0;

1135
		if (n) {
1136 1137
			newpos = tkey_mismatch(key, pos, n->key);
			tn = tnode_new(n->key, newpos, 1);
O
Olof Johansson 已提交
1138
		} else {
1139
			newpos = 0;
1140
			tn = tnode_new(key, newpos, 1); /* First tnode */
1141 1142
		}

1143
		if (!tn) {
1144
			free_leaf_info(li);
1145
			free_leaf(l);
1146
			return NULL;
O
Olof Johansson 已提交
1147 1148
		}

S
Stephen Hemminger 已提交
1149
		node_set_parent((struct node *)tn, tp);
1150

O
Olof Johansson 已提交
1151
		missbit = tkey_extract_bits(key, newpos, 1);
1152 1153 1154
		put_child(t, tn, missbit, (struct node *)l);
		put_child(t, tn, 1-missbit, n);

1155
		if (tp) {
1156
			cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1157 1158
			put_child(t, (struct tnode *)tp, cindex,
				  (struct node *)tn);
O
Olof Johansson 已提交
1159
		} else {
1160
			rcu_assign_pointer(t->trie, (struct node *)tn);
1161 1162 1163
			tp = tn;
		}
	}
O
Olof Johansson 已提交
1164 1165

	if (tp && tp->pos + tp->bits > 32)
1166 1167 1168
		pr_warning("fib_trie"
			   " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
			   tp, tp->pos, tp->bits, key, plen);
O
Olof Johansson 已提交
1169

1170
	/* Rebalance the trie */
R
Robert Olsson 已提交
1171

1172
	trie_rebalance(t, tp);
1173
done:
1174 1175 1176
	return fa_head;
}

1177 1178 1179
/*
 * Caller must hold RTNL.
 */
1180
int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1181 1182 1183
{
	struct trie *t = (struct trie *) tb->tb_data;
	struct fib_alias *fa, *new_fa;
1184
	struct list_head *fa_head = NULL;
1185
	struct fib_info *fi;
1186 1187
	int plen = cfg->fc_dst_len;
	u8 tos = cfg->fc_tos;
1188 1189 1190 1191 1192 1193 1194
	u32 key, mask;
	int err;
	struct leaf *l;

	if (plen > 32)
		return -EINVAL;

1195
	key = ntohl(cfg->fc_dst);
1196

1197
	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1198

O
Olof Johansson 已提交
1199
	mask = ntohl(inet_make_mask(plen));
1200

1201
	if (key & ~mask)
1202 1203 1204 1205
		return -EINVAL;

	key = key & mask;

1206 1207 1208
	fi = fib_create_info(cfg);
	if (IS_ERR(fi)) {
		err = PTR_ERR(fi);
1209
		goto err;
1210
	}
1211 1212

	l = fib_find_node(t, key);
1213
	fa = NULL;
1214

1215
	if (l) {
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
		fa_head = get_fa_head(l, plen);
		fa = fib_find_alias(fa_head, tos, fi->fib_priority);
	}

	/* Now fa, if non-NULL, points to the first fib alias
	 * with the same keys [prefix,tos,priority], if such key already
	 * exists or to the node before which we will insert new one.
	 *
	 * If fa is NULL, we will need to allocate a new one and
	 * insert to the head of f.
	 *
	 * If f is NULL, no fib node matched the destination key
	 * and we need to allocate a new one of those as well.
	 */

1231 1232 1233
	if (fa && fa->fa_tos == tos &&
	    fa->fa_info->fib_priority == fi->fib_priority) {
		struct fib_alias *fa_first, *fa_match;
1234 1235

		err = -EEXIST;
1236
		if (cfg->fc_nlflags & NLM_F_EXCL)
1237 1238
			goto out;

1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
		/* We have 2 goals:
		 * 1. Find exact match for type, scope, fib_info to avoid
		 * duplicate routes
		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
		 */
		fa_match = NULL;
		fa_first = fa;
		fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
		list_for_each_entry_continue(fa, fa_head, fa_list) {
			if (fa->fa_tos != tos)
				break;
			if (fa->fa_info->fib_priority != fi->fib_priority)
				break;
			if (fa->fa_type == cfg->fc_type &&
			    fa->fa_scope == cfg->fc_scope &&
			    fa->fa_info == fi) {
				fa_match = fa;
				break;
			}
		}

1260
		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1261 1262 1263
			struct fib_info *fi_drop;
			u8 state;

1264 1265 1266 1267
			fa = fa_first;
			if (fa_match) {
				if (fa == fa_match)
					err = 0;
1268
				goto out;
1269
			}
R
Robert Olsson 已提交
1270
			err = -ENOBUFS;
1271
			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
R
Robert Olsson 已提交
1272 1273
			if (new_fa == NULL)
				goto out;
1274 1275

			fi_drop = fa->fa_info;
R
Robert Olsson 已提交
1276 1277
			new_fa->fa_tos = fa->fa_tos;
			new_fa->fa_info = fi;
1278 1279
			new_fa->fa_type = cfg->fc_type;
			new_fa->fa_scope = cfg->fc_scope;
1280
			state = fa->fa_state;
1281
			new_fa->fa_state = state & ~FA_S_ACCESSED;
1282

R
Robert Olsson 已提交
1283 1284
			list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
			alias_free_mem_rcu(fa);
1285 1286 1287

			fib_release_info(fi_drop);
			if (state & FA_S_ACCESSED)
1288
				rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1289 1290
			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
				tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1291

O
Olof Johansson 已提交
1292
			goto succeeded;
1293 1294 1295 1296 1297
		}
		/* Error if we find a perfect match which
		 * uses the same scope, type, and nexthop
		 * information.
		 */
1298 1299
		if (fa_match)
			goto out;
1300

1301
		if (!(cfg->fc_nlflags & NLM_F_APPEND))
1302
			fa = fa_first;
1303 1304
	}
	err = -ENOENT;
1305
	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1306 1307 1308
		goto out;

	err = -ENOBUFS;
1309
	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1310 1311 1312 1313 1314
	if (new_fa == NULL)
		goto out;

	new_fa->fa_info = fi;
	new_fa->fa_tos = tos;
1315 1316
	new_fa->fa_type = cfg->fc_type;
	new_fa->fa_scope = cfg->fc_scope;
1317 1318 1319 1320 1321
	new_fa->fa_state = 0;
	/*
	 * Insert new entry to the list.
	 */

1322
	if (!fa_head) {
1323 1324 1325
		fa_head = fib_insert_node(t, key, plen);
		if (unlikely(!fa_head)) {
			err = -ENOMEM;
1326
			goto out_free_new_fa;
1327
		}
1328
	}
1329

R
Robert Olsson 已提交
1330 1331
	list_add_tail_rcu(&new_fa->fa_list,
			  (fa ? &fa->fa_list : fa_head));
1332

1333
	rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1334
	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1335
		  &cfg->fc_nlinfo, 0);
1336 1337
succeeded:
	return 0;
1338 1339 1340

out_free_new_fa:
	kmem_cache_free(fn_alias_kmem, new_fa);
1341 1342
out:
	fib_release_info(fi);
O
Olof Johansson 已提交
1343
err:
1344 1345 1346
	return err;
}

R
Robert Olsson 已提交
1347
/* should be called with rcu_read_lock */
1348 1349 1350
static int check_leaf(struct trie *t, struct leaf *l,
		      t_key key,  const struct flowi *flp,
		      struct fib_result *res)
1351 1352 1353 1354
{
	struct leaf_info *li;
	struct hlist_head *hhead = &l->list;
	struct hlist_node *node;
1355

R
Robert Olsson 已提交
1356
	hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1357 1358 1359 1360
		int err;
		int plen = li->plen;
		__be32 mask = inet_make_mask(plen);

1361
		if (l->key != (key & ntohl(mask)))
1362 1363
			continue;

1364
		err = fib_semantic_match(&li->falh, flp, res, plen);
1365

1366
#ifdef CONFIG_IP_FIB_TRIE_STATS
1367
		if (err <= 0)
1368
			t->stats.semantic_match_passed++;
1369 1370
		else
			t->stats.semantic_match_miss++;
1371
#endif
1372
		if (err <= 0)
1373
			return err;
1374
	}
1375

1376
	return 1;
1377 1378
}

1379 1380
int fib_table_lookup(struct fib_table *tb, const struct flowi *flp,
		     struct fib_result *res)
1381 1382
{
	struct trie *t = (struct trie *) tb->tb_data;
1383
	int ret;
1384 1385 1386
	struct node *n;
	struct tnode *pn;
	int pos, bits;
O
Olof Johansson 已提交
1387
	t_key key = ntohl(flp->fl4_dst);
1388 1389 1390
	int chopped_off;
	t_key cindex = 0;
	int current_prefix_length = KEYLENGTH;
O
Olof Johansson 已提交
1391 1392 1393 1394
	struct tnode *cn;
	t_key node_prefix, key_prefix, pref_mismatch;
	int mp;

R
Robert Olsson 已提交
1395
	rcu_read_lock();
O
Olof Johansson 已提交
1396

R
Robert Olsson 已提交
1397
	n = rcu_dereference(t->trie);
1398
	if (!n)
1399 1400 1401 1402 1403 1404 1405 1406
		goto failed;

#ifdef CONFIG_IP_FIB_TRIE_STATS
	t->stats.gets++;
#endif

	/* Just a leaf? */
	if (IS_LEAF(n)) {
1407
		ret = check_leaf(t, (struct leaf *)n, key, flp, res);
1408
		goto found;
1409
	}
1410

1411 1412
	pn = (struct tnode *) n;
	chopped_off = 0;
1413

O
Olof Johansson 已提交
1414
	while (pn) {
1415 1416 1417
		pos = pn->pos;
		bits = pn->bits;

1418
		if (!chopped_off)
S
Stephen Hemminger 已提交
1419 1420
			cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
						   pos, bits);
1421

1422
		n = tnode_get_child_rcu(pn, cindex);
1423 1424 1425 1426 1427 1428 1429 1430

		if (n == NULL) {
#ifdef CONFIG_IP_FIB_TRIE_STATS
			t->stats.null_node_hit++;
#endif
			goto backtrace;
		}

O
Olof Johansson 已提交
1431
		if (IS_LEAF(n)) {
1432 1433
			ret = check_leaf(t, (struct leaf *)n, key, flp, res);
			if (ret > 0)
O
Olof Johansson 已提交
1434
				goto backtrace;
1435
			goto found;
O
Olof Johansson 已提交
1436 1437 1438
		}

		cn = (struct tnode *)n;
1439

O
Olof Johansson 已提交
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
		/*
		 * It's a tnode, and we can do some extra checks here if we
		 * like, to avoid descending into a dead-end branch.
		 * This tnode is in the parent's child array at index
		 * key[p_pos..p_pos+p_bits] but potentially with some bits
		 * chopped off, so in reality the index may be just a
		 * subprefix, padded with zero at the end.
		 * We can also take a look at any skipped bits in this
		 * tnode - everything up to p_pos is supposed to be ok,
		 * and the non-chopped bits of the index (se previous
		 * paragraph) are also guaranteed ok, but the rest is
		 * considered unknown.
		 *
		 * The skipped bits are key[pos+bits..cn->pos].
		 */
1455

O
Olof Johansson 已提交
1456 1457 1458 1459 1460 1461 1462 1463 1464
		/* If current_prefix_length < pos+bits, we are already doing
		 * actual prefix  matching, which means everything from
		 * pos+(bits-chopped_off) onward must be zero along some
		 * branch of this subtree - otherwise there is *no* valid
		 * prefix present. Here we can only check the skipped
		 * bits. Remember, since we have already indexed into the
		 * parent's child array, we know that the bits we chopped of
		 * *are* zero.
		 */
1465

1466 1467
		/* NOTA BENE: Checking only skipped bits
		   for the new node here */
1468

O
Olof Johansson 已提交
1469 1470
		if (current_prefix_length < pos+bits) {
			if (tkey_extract_bits(cn->key, current_prefix_length,
1471 1472
						cn->pos - current_prefix_length)
			    || !(cn->child[0]))
O
Olof Johansson 已提交
1473 1474
				goto backtrace;
		}
1475

O
Olof Johansson 已提交
1476 1477 1478 1479 1480 1481 1482 1483 1484
		/*
		 * If chopped_off=0, the index is fully validated and we
		 * only need to look at the skipped bits for this, the new,
		 * tnode. What we actually want to do is to find out if
		 * these skipped bits match our key perfectly, or if we will
		 * have to count on finding a matching prefix further down,
		 * because if we do, we would like to have some way of
		 * verifying the existence of such a prefix at this point.
		 */
1485

O
Olof Johansson 已提交
1486 1487 1488 1489 1490 1491 1492 1493
		/* The only thing we can do at this point is to verify that
		 * any such matching prefix can indeed be a prefix to our
		 * key, and if the bits in the node we are inspecting that
		 * do not match our key are not ZERO, this cannot be true.
		 * Thus, find out where there is a mismatch (before cn->pos)
		 * and verify that all the mismatching bits are zero in the
		 * new tnode's key.
		 */
1494

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
		/*
		 * Note: We aren't very concerned about the piece of
		 * the key that precede pn->pos+pn->bits, since these
		 * have already been checked. The bits after cn->pos
		 * aren't checked since these are by definition
		 * "unknown" at this point. Thus, what we want to see
		 * is if we are about to enter the "prefix matching"
		 * state, and in that case verify that the skipped
		 * bits that will prevail throughout this subtree are
		 * zero, as they have to be if we are to find a
		 * matching prefix.
O
Olof Johansson 已提交
1506 1507
		 */

S
Stephen Hemminger 已提交
1508 1509
		node_prefix = mask_pfx(cn->key, cn->pos);
		key_prefix = mask_pfx(key, cn->pos);
O
Olof Johansson 已提交
1510 1511 1512
		pref_mismatch = key_prefix^node_prefix;
		mp = 0;

1513 1514 1515 1516
		/*
		 * In short: If skipped bits in this node do not match
		 * the search key, enter the "prefix matching"
		 * state.directly.
O
Olof Johansson 已提交
1517 1518 1519 1520
		 */
		if (pref_mismatch) {
			while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
				mp++;
1521
				pref_mismatch = pref_mismatch << 1;
O
Olof Johansson 已提交
1522 1523 1524 1525 1526 1527 1528 1529
			}
			key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);

			if (key_prefix != 0)
				goto backtrace;

			if (current_prefix_length >= cn->pos)
				current_prefix_length = mp;
1530
		}
1531

O
Olof Johansson 已提交
1532 1533 1534 1535
		pn = (struct tnode *)n; /* Descend */
		chopped_off = 0;
		continue;

1536 1537 1538 1539
backtrace:
		chopped_off++;

		/* As zero don't change the child key (cindex) */
1540 1541
		while ((chopped_off <= pn->bits)
		       && !(cindex & (1<<(chopped_off-1))))
1542 1543 1544 1545
			chopped_off++;

		/* Decrease current_... with bits chopped off */
		if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1546 1547
			current_prefix_length = pn->pos + pn->bits
				- chopped_off;
O
Olof Johansson 已提交
1548

1549
		/*
1550
		 * Either we do the actual chop off according or if we have
1551 1552 1553
		 * chopped off all bits in this tnode walk up to our parent.
		 */

O
Olof Johansson 已提交
1554
		if (chopped_off <= pn->bits) {
1555
			cindex &= ~(1 << (chopped_off-1));
O
Olof Johansson 已提交
1556
		} else {
1557
			struct tnode *parent = node_parent_rcu((struct node *) pn);
S
Stephen Hemminger 已提交
1558
			if (!parent)
1559
				goto failed;
O
Olof Johansson 已提交
1560

1561
			/* Get Child's index */
S
Stephen Hemminger 已提交
1562 1563
			cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
			pn = parent;
1564 1565 1566 1567 1568 1569
			chopped_off = 0;

#ifdef CONFIG_IP_FIB_TRIE_STATS
			t->stats.backtrack++;
#endif
			goto backtrace;
1570
		}
1571 1572
	}
failed:
1573
	ret = 1;
1574
found:
R
Robert Olsson 已提交
1575
	rcu_read_unlock();
1576 1577 1578
	return ret;
}

1579 1580 1581 1582
/*
 * Remove the leaf and return parent.
 */
static void trie_leaf_remove(struct trie *t, struct leaf *l)
1583
{
1584
	struct tnode *tp = node_parent((struct node *) l);
1585

1586
	pr_debug("entering trie_leaf_remove(%p)\n", l);
1587

1588
	if (tp) {
1589
		t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
1590
		put_child(t, (struct tnode *)tp, cindex, NULL);
1591
		trie_rebalance(t, tp);
O
Olof Johansson 已提交
1592
	} else
R
Robert Olsson 已提交
1593
		rcu_assign_pointer(t->trie, NULL);
1594

1595
	free_leaf(l);
1596 1597
}

1598 1599 1600
/*
 * Caller must hold RTNL.
 */
1601
int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1602 1603 1604
{
	struct trie *t = (struct trie *) tb->tb_data;
	u32 key, mask;
1605 1606
	int plen = cfg->fc_dst_len;
	u8 tos = cfg->fc_tos;
1607 1608 1609
	struct fib_alias *fa, *fa_to_delete;
	struct list_head *fa_head;
	struct leaf *l;
O
Olof Johansson 已提交
1610 1611
	struct leaf_info *li;

1612
	if (plen > 32)
1613 1614
		return -EINVAL;

1615
	key = ntohl(cfg->fc_dst);
O
Olof Johansson 已提交
1616
	mask = ntohl(inet_make_mask(plen));
1617

1618
	if (key & ~mask)
1619 1620 1621 1622 1623
		return -EINVAL;

	key = key & mask;
	l = fib_find_node(t, key);

1624
	if (!l)
1625 1626 1627 1628 1629 1630 1631 1632
		return -ESRCH;

	fa_head = get_fa_head(l, plen);
	fa = fib_find_alias(fa_head, tos, 0);

	if (!fa)
		return -ESRCH;

S
Stephen Hemminger 已提交
1633
	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1634 1635

	fa_to_delete = NULL;
1636 1637
	fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
	list_for_each_entry_continue(fa, fa_head, fa_list) {
1638 1639 1640 1641 1642
		struct fib_info *fi = fa->fa_info;

		if (fa->fa_tos != tos)
			break;

1643 1644 1645 1646 1647 1648
		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
		     fa->fa_scope == cfg->fc_scope) &&
		    (!cfg->fc_protocol ||
		     fi->fib_protocol == cfg->fc_protocol) &&
		    fib_nh_match(cfg, fi) == 0) {
1649 1650 1651 1652 1653
			fa_to_delete = fa;
			break;
		}
	}

O
Olof Johansson 已提交
1654 1655
	if (!fa_to_delete)
		return -ESRCH;
1656

O
Olof Johansson 已提交
1657
	fa = fa_to_delete;
1658
	rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1659
		  &cfg->fc_nlinfo, 0);
O
Olof Johansson 已提交
1660 1661

	l = fib_find_node(t, key);
R
Robert Olsson 已提交
1662
	li = find_leaf_info(l, plen);
1663

R
Robert Olsson 已提交
1664
	list_del_rcu(&fa->fa_list);
1665

O
Olof Johansson 已提交
1666
	if (list_empty(fa_head)) {
R
Robert Olsson 已提交
1667
		hlist_del_rcu(&li->hlist);
O
Olof Johansson 已提交
1668
		free_leaf_info(li);
R
Robert Olsson 已提交
1669
	}
1670

O
Olof Johansson 已提交
1671
	if (hlist_empty(&l->list))
1672
		trie_leaf_remove(t, l);
1673

O
Olof Johansson 已提交
1674
	if (fa->fa_state & FA_S_ACCESSED)
1675
		rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1676

R
Robert Olsson 已提交
1677 1678
	fib_release_info(fa->fa_info);
	alias_free_mem_rcu(fa);
O
Olof Johansson 已提交
1679
	return 0;
1680 1681
}

1682
static int trie_flush_list(struct list_head *head)
1683 1684 1685 1686 1687 1688 1689
{
	struct fib_alias *fa, *fa_node;
	int found = 0;

	list_for_each_entry_safe(fa, fa_node, head, fa_list) {
		struct fib_info *fi = fa->fa_info;

R
Robert Olsson 已提交
1690 1691 1692 1693
		if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
			list_del_rcu(&fa->fa_list);
			fib_release_info(fa->fa_info);
			alias_free_mem_rcu(fa);
1694 1695 1696 1697 1698 1699
			found++;
		}
	}
	return found;
}

1700
static int trie_flush_leaf(struct leaf *l)
1701 1702 1703 1704 1705 1706 1707
{
	int found = 0;
	struct hlist_head *lih = &l->list;
	struct hlist_node *node, *tmp;
	struct leaf_info *li = NULL;

	hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1708
		found += trie_flush_list(&li->falh);
1709 1710

		if (list_empty(&li->falh)) {
R
Robert Olsson 已提交
1711
			hlist_del_rcu(&li->hlist);
1712 1713 1714 1715 1716 1717
			free_leaf_info(li);
		}
	}
	return found;
}

1718 1719 1720 1721 1722
/*
 * Scan for the next right leaf starting at node p->child[idx]
 * Since we have back pointer, no recursion necessary.
 */
static struct leaf *leaf_walk_rcu(struct tnode *p, struct node *c)
1723
{
1724 1725
	do {
		t_key idx;
1726 1727

		if (c)
1728
			idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
1729
		else
1730
			idx = 0;
R
Robert Olsson 已提交
1731

1732 1733
		while (idx < 1u << p->bits) {
			c = tnode_get_child_rcu(p, idx++);
R
Robert Olsson 已提交
1734
			if (!c)
O
Olof Johansson 已提交
1735 1736
				continue;

1737 1738 1739
			if (IS_LEAF(c)) {
				prefetch(p->child[idx]);
				return (struct leaf *) c;
1740
			}
1741 1742 1743 1744

			/* Rescan start scanning in new node */
			p = (struct tnode *) c;
			idx = 0;
1745
		}
1746 1747

		/* Node empty, walk back up to parent */
O
Olof Johansson 已提交
1748
		c = (struct node *) p;
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
	} while ( (p = node_parent_rcu(c)) != NULL);

	return NULL; /* Root of trie */
}

static struct leaf *trie_firstleaf(struct trie *t)
{
	struct tnode *n = (struct tnode *) rcu_dereference(t->trie);

	if (!n)
		return NULL;

	if (IS_LEAF(n))          /* trie is just a leaf */
		return (struct leaf *) n;

	return leaf_walk_rcu(n, NULL);
}

static struct leaf *trie_nextleaf(struct leaf *l)
{
	struct node *c = (struct node *) l;
1770
	struct tnode *p = node_parent_rcu(c);
1771 1772 1773 1774 1775

	if (!p)
		return NULL;	/* trie with just one leaf */

	return leaf_walk_rcu(p, c);
1776 1777
}

1778 1779 1780 1781
static struct leaf *trie_leafindex(struct trie *t, int index)
{
	struct leaf *l = trie_firstleaf(t);

S
Stephen Hemminger 已提交
1782
	while (l && index-- > 0)
1783
		l = trie_nextleaf(l);
S
Stephen Hemminger 已提交
1784

1785 1786 1787 1788
	return l;
}


1789 1790 1791
/*
 * Caller must hold RTNL.
 */
1792
int fib_table_flush(struct fib_table *tb)
1793 1794
{
	struct trie *t = (struct trie *) tb->tb_data;
1795
	struct leaf *l, *ll = NULL;
1796
	int found = 0;
1797

1798
	for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1799
		found += trie_flush_leaf(l);
1800 1801

		if (ll && hlist_empty(&ll->list))
1802
			trie_leaf_remove(t, ll);
1803 1804 1805 1806
		ll = l;
	}

	if (ll && hlist_empty(&ll->list))
1807
		trie_leaf_remove(t, ll);
1808

S
Stephen Hemminger 已提交
1809
	pr_debug("trie_flush found=%d\n", found);
1810 1811 1812
	return found;
}

1813 1814 1815
void fib_table_select_default(struct fib_table *tb,
			      const struct flowi *flp,
			      struct fib_result *res)
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
{
	struct trie *t = (struct trie *) tb->tb_data;
	int order, last_idx;
	struct fib_info *fi = NULL;
	struct fib_info *last_resort;
	struct fib_alias *fa = NULL;
	struct list_head *fa_head;
	struct leaf *l;

	last_idx = -1;
	last_resort = NULL;
	order = -1;

R
Robert Olsson 已提交
1829
	rcu_read_lock();
1830

1831
	l = fib_find_node(t, 0);
1832
	if (!l)
1833 1834 1835
		goto out;

	fa_head = get_fa_head(l, 0);
1836
	if (!fa_head)
1837 1838
		goto out;

1839
	if (list_empty(fa_head))
1840 1841
		goto out;

R
Robert Olsson 已提交
1842
	list_for_each_entry_rcu(fa, fa_head, fa_list) {
1843
		struct fib_info *next_fi = fa->fa_info;
O
Olof Johansson 已提交
1844

1845 1846 1847
		if (fa->fa_scope != res->scope ||
		    fa->fa_type != RTN_UNICAST)
			continue;
O
Olof Johansson 已提交
1848

1849 1850 1851 1852 1853 1854
		if (next_fi->fib_priority > res->fi->fib_priority)
			break;
		if (!next_fi->fib_nh[0].nh_gw ||
		    next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
			continue;
		fa->fa_state |= FA_S_ACCESSED;
O
Olof Johansson 已提交
1855

1856 1857 1858 1859
		if (fi == NULL) {
			if (next_fi != res->fi)
				break;
		} else if (!fib_detect_death(fi, order, &last_resort,
1860
					     &last_idx, tb->tb_default)) {
1861
			fib_result_assign(res, fi);
1862
			tb->tb_default = order;
1863 1864 1865 1866 1867 1868
			goto out;
		}
		fi = next_fi;
		order++;
	}
	if (order <= 0 || fi == NULL) {
1869
		tb->tb_default = -1;
1870 1871 1872
		goto out;
	}

1873 1874
	if (!fib_detect_death(fi, order, &last_resort, &last_idx,
				tb->tb_default)) {
1875
		fib_result_assign(res, fi);
1876
		tb->tb_default = order;
1877 1878
		goto out;
	}
1879 1880
	if (last_idx >= 0)
		fib_result_assign(res, last_resort);
1881 1882
	tb->tb_default = last_idx;
out:
R
Robert Olsson 已提交
1883
	rcu_read_unlock();
1884 1885
}

1886 1887
static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
			   struct fib_table *tb,
1888 1889 1890 1891
			   struct sk_buff *skb, struct netlink_callback *cb)
{
	int i, s_i;
	struct fib_alias *fa;
A
Al Viro 已提交
1892
	__be32 xkey = htonl(key);
1893

1894
	s_i = cb->args[5];
1895 1896
	i = 0;

R
Robert Olsson 已提交
1897 1898 1899
	/* rcu_read_lock is hold by caller */

	list_for_each_entry_rcu(fa, fah, fa_list) {
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
		if (i < s_i) {
			i++;
			continue;
		}

		if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
				  cb->nlh->nlmsg_seq,
				  RTM_NEWROUTE,
				  tb->tb_id,
				  fa->fa_type,
				  fa->fa_scope,
1911
				  xkey,
1912 1913
				  plen,
				  fa->fa_tos,
1914
				  fa->fa_info, NLM_F_MULTI) < 0) {
1915
			cb->args[5] = i;
1916
			return -1;
O
Olof Johansson 已提交
1917
		}
1918 1919
		i++;
	}
1920
	cb->args[5] = i;
1921 1922 1923
	return skb->len;
}

1924 1925
static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
			struct sk_buff *skb, struct netlink_callback *cb)
1926
{
1927 1928 1929
	struct leaf_info *li;
	struct hlist_node *node;
	int i, s_i;
1930

1931
	s_i = cb->args[4];
1932
	i = 0;
1933

1934 1935 1936 1937
	/* rcu_read_lock is hold by caller */
	hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
		if (i < s_i) {
			i++;
1938
			continue;
1939
		}
O
Olof Johansson 已提交
1940

1941
		if (i > s_i)
1942
			cb->args[5] = 0;
1943

1944
		if (list_empty(&li->falh))
1945 1946
			continue;

1947
		if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1948
			cb->args[4] = i;
1949 1950
			return -1;
		}
1951
		i++;
1952
	}
1953

1954
	cb->args[4] = i;
1955 1956 1957
	return skb->len;
}

1958 1959
int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
		   struct netlink_callback *cb)
1960
{
1961
	struct leaf *l;
1962
	struct trie *t = (struct trie *) tb->tb_data;
1963
	t_key key = cb->args[2];
1964
	int count = cb->args[3];
1965

R
Robert Olsson 已提交
1966
	rcu_read_lock();
1967 1968 1969
	/* Dump starting at last key.
	 * Note: 0.0.0.0/0 (ie default) is first key.
	 */
1970
	if (count == 0)
1971 1972
		l = trie_firstleaf(t);
	else {
1973 1974 1975
		/* Normally, continue from last key, but if that is missing
		 * fallback to using slow rescan
		 */
1976
		l = fib_find_node(t, key);
1977 1978
		if (!l)
			l = trie_leafindex(t, count);
1979
	}
1980

1981 1982
	while (l) {
		cb->args[2] = l->key;
1983
		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1984
			cb->args[3] = count;
1985 1986
			rcu_read_unlock();
			return -1;
1987
		}
1988

1989
		++count;
1990
		l = trie_nextleaf(l);
1991 1992
		memset(&cb->args[4], 0,
		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
1993
	}
1994
	cb->args[3] = count;
R
Robert Olsson 已提交
1995
	rcu_read_unlock();
1996

1997 1998 1999
	return skb->len;
}

2000 2001
void __init fib_hash_init(void)
{
2002 2003
	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
					  sizeof(struct fib_alias),
2004 2005 2006 2007 2008 2009
					  0, SLAB_PANIC, NULL);

	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
					   max(sizeof(struct leaf),
					       sizeof(struct leaf_info)),
					   0, SLAB_PANIC, NULL);
2010
}
2011

2012 2013 2014

/* Fix more generic FIB names for init later */
struct fib_table *fib_hash_table(u32 id)
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
{
	struct fib_table *tb;
	struct trie *t;

	tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
		     GFP_KERNEL);
	if (tb == NULL)
		return NULL;

	tb->tb_id = id;
2025
	tb->tb_default = -1;
2026 2027

	t = (struct trie *) tb->tb_data;
2028
	memset(t, 0, sizeof(*t));
2029 2030

	if (id == RT_TABLE_LOCAL)
2031
		pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION);
2032 2033 2034 2035

	return tb;
}

2036 2037 2038
#ifdef CONFIG_PROC_FS
/* Depth first Trie walk iterator */
struct fib_trie_iter {
2039
	struct seq_net_private p;
2040
	struct fib_table *tb;
2041 2042 2043 2044
	struct tnode *tnode;
	unsigned index;
	unsigned depth;
};
2045

2046
static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
2047
{
2048 2049 2050
	struct tnode *tn = iter->tnode;
	unsigned cindex = iter->index;
	struct tnode *p;
2051

2052 2053 2054 2055
	/* A single entry routing table */
	if (!tn)
		return NULL;

2056 2057 2058 2059
	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
		 iter->tnode, iter->index, iter->depth);
rescan:
	while (cindex < (1<<tn->bits)) {
2060
		struct node *n = tnode_get_child_rcu(tn, cindex);
2061

2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
		if (n) {
			if (IS_LEAF(n)) {
				iter->tnode = tn;
				iter->index = cindex + 1;
			} else {
				/* push down one level */
				iter->tnode = (struct tnode *) n;
				iter->index = 0;
				++iter->depth;
			}
			return n;
		}
2074

2075 2076
		++cindex;
	}
O
Olof Johansson 已提交
2077

2078
	/* Current node exhausted, pop back up */
2079
	p = node_parent_rcu((struct node *)tn);
2080 2081 2082 2083 2084
	if (p) {
		cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
		tn = p;
		--iter->depth;
		goto rescan;
2085
	}
2086 2087 2088

	/* got root? */
	return NULL;
2089 2090
}

2091 2092
static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
				       struct trie *t)
2093
{
2094
	struct node *n;
2095

S
Stephen Hemminger 已提交
2096
	if (!t)
2097 2098 2099
		return NULL;

	n = rcu_dereference(t->trie);
2100
	if (!n)
2101
		return NULL;
2102

2103 2104 2105 2106 2107 2108 2109 2110
	if (IS_TNODE(n)) {
		iter->tnode = (struct tnode *) n;
		iter->index = 0;
		iter->depth = 1;
	} else {
		iter->tnode = NULL;
		iter->index = 0;
		iter->depth = 0;
O
Olof Johansson 已提交
2111
	}
2112 2113

	return n;
2114
}
O
Olof Johansson 已提交
2115

2116 2117 2118 2119
static void trie_collect_stats(struct trie *t, struct trie_stat *s)
{
	struct node *n;
	struct fib_trie_iter iter;
O
Olof Johansson 已提交
2120

2121
	memset(s, 0, sizeof(*s));
O
Olof Johansson 已提交
2122

2123
	rcu_read_lock();
2124
	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2125
		if (IS_LEAF(n)) {
2126 2127 2128 2129
			struct leaf *l = (struct leaf *)n;
			struct leaf_info *li;
			struct hlist_node *tmp;

2130 2131 2132 2133
			s->leaves++;
			s->totdepth += iter.depth;
			if (iter.depth > s->maxdepth)
				s->maxdepth = iter.depth;
2134 2135 2136

			hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
				++s->prefixes;
2137 2138 2139 2140 2141
		} else {
			const struct tnode *tn = (const struct tnode *) n;
			int i;

			s->tnodes++;
S
Stephen Hemminger 已提交
2142
			if (tn->bits < MAX_STAT_DEPTH)
R
Robert Olsson 已提交
2143 2144
				s->nodesizes[tn->bits]++;

2145 2146 2147
			for (i = 0; i < (1<<tn->bits); i++)
				if (!tn->child[i])
					s->nullpointers++;
2148 2149
		}
	}
R
Robert Olsson 已提交
2150
	rcu_read_unlock();
2151 2152
}

2153 2154 2155 2156
/*
 *	This outputs /proc/net/fib_triestats
 */
static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2157
{
2158
	unsigned i, max, pointers, bytes, avdepth;
2159

2160 2161 2162 2163
	if (stat->leaves)
		avdepth = stat->totdepth*100 / stat->leaves;
	else
		avdepth = 0;
O
Olof Johansson 已提交
2164

2165 2166
	seq_printf(seq, "\tAver depth:     %u.%02d\n",
		   avdepth / 100, avdepth % 100);
2167
	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
O
Olof Johansson 已提交
2168

2169 2170
	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
	bytes = sizeof(struct leaf) * stat->leaves;
2171 2172 2173 2174

	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
	bytes += sizeof(struct leaf_info) * stat->prefixes;

2175
	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2176
	bytes += sizeof(struct tnode) * stat->tnodes;
2177

R
Robert Olsson 已提交
2178 2179
	max = MAX_STAT_DEPTH;
	while (max > 0 && stat->nodesizes[max-1] == 0)
2180
		max--;
2181

2182 2183 2184
	pointers = 0;
	for (i = 1; i <= max; i++)
		if (stat->nodesizes[i] != 0) {
2185
			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2186 2187 2188
			pointers += (1<<i) * stat->nodesizes[i];
		}
	seq_putc(seq, '\n');
2189
	seq_printf(seq, "\tPointers: %u\n", pointers);
R
Robert Olsson 已提交
2190

2191
	bytes += sizeof(struct node *) * pointers;
2192 2193
	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2194
}
R
Robert Olsson 已提交
2195

2196
#ifdef CONFIG_IP_FIB_TRIE_STATS
2197 2198 2199 2200
static void trie_show_usage(struct seq_file *seq,
			    const struct trie_use_stats *stats)
{
	seq_printf(seq, "\nCounters:\n---------\n");
2201 2202 2203 2204 2205 2206 2207 2208 2209
	seq_printf(seq, "gets = %u\n", stats->gets);
	seq_printf(seq, "backtracks = %u\n", stats->backtrack);
	seq_printf(seq, "semantic match passed = %u\n",
		   stats->semantic_match_passed);
	seq_printf(seq, "semantic match miss = %u\n",
		   stats->semantic_match_miss);
	seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
	seq_printf(seq, "skipped node resize = %u\n\n",
		   stats->resize_node_skipped);
2210
}
2211 2212
#endif /*  CONFIG_IP_FIB_TRIE_STATS */

2213
static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2214
{
2215 2216 2217 2218 2219 2220
	if (tb->tb_id == RT_TABLE_LOCAL)
		seq_puts(seq, "Local:\n");
	else if (tb->tb_id == RT_TABLE_MAIN)
		seq_puts(seq, "Main:\n");
	else
		seq_printf(seq, "Id %d:\n", tb->tb_id);
2221
}
2222

2223

2224 2225
static int fib_triestat_seq_show(struct seq_file *seq, void *v)
{
2226
	struct net *net = (struct net *)seq->private;
2227
	unsigned int h;
2228

2229
	seq_printf(seq,
2230 2231
		   "Basic info: size of leaf:"
		   " %Zd bytes, size of tnode: %Zd bytes.\n",
2232 2233
		   sizeof(struct leaf), sizeof(struct tnode));

2234 2235 2236 2237 2238 2239 2240 2241
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct hlist_node *node;
		struct fib_table *tb;

		hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
			struct trie *t = (struct trie *) tb->tb_data;
			struct trie_stat stat;
2242

2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
			if (!t)
				continue;

			fib_table_print(seq, tb);

			trie_collect_stats(t, &stat);
			trie_show_stats(seq, &stat);
#ifdef CONFIG_IP_FIB_TRIE_STATS
			trie_show_usage(seq, &t->stats);
#endif
		}
	}
2255

2256
	return 0;
2257 2258
}

2259
static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2260
{
2261
	return single_open_net(inode, file, fib_triestat_seq_show);
2262 2263
}

2264
static const struct file_operations fib_triestat_fops = {
2265 2266 2267 2268
	.owner	= THIS_MODULE,
	.open	= fib_triestat_seq_open,
	.read	= seq_read,
	.llseek	= seq_lseek,
2269
	.release = single_release_net,
2270 2271
};

2272
static struct node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2273
{
2274 2275
	struct fib_trie_iter *iter = seq->private;
	struct net *net = seq_file_net(seq);
2276
	loff_t idx = 0;
2277
	unsigned int h;
2278

2279 2280 2281 2282
	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		struct hlist_node *node;
		struct fib_table *tb;
2283

2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
		hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
			struct node *n;

			for (n = fib_trie_get_first(iter,
						    (struct trie *) tb->tb_data);
			     n; n = fib_trie_get_next(iter))
				if (pos == idx++) {
					iter->tb = tb;
					return n;
				}
		}
2295
	}
2296

2297 2298 2299
	return NULL;
}

2300
static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2301
	__acquires(RCU)
2302
{
2303
	rcu_read_lock();
2304
	return fib_trie_get_idx(seq, *pos);
2305 2306
}

2307
static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2308
{
2309
	struct fib_trie_iter *iter = seq->private;
2310
	struct net *net = seq_file_net(seq);
2311 2312 2313 2314
	struct fib_table *tb = iter->tb;
	struct hlist_node *tb_node;
	unsigned int h;
	struct node *n;
2315

2316
	++*pos;
2317 2318 2319 2320
	/* next node in same table */
	n = fib_trie_get_next(iter);
	if (n)
		return n;
2321

2322 2323 2324 2325 2326 2327 2328 2329
	/* walk rest of this hash chain */
	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
	while ( (tb_node = rcu_dereference(tb->tb_hlist.next)) ) {
		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
		if (n)
			goto found;
	}
2330

2331 2332 2333 2334 2335 2336 2337 2338 2339
	/* new hash chain */
	while (++h < FIB_TABLE_HASHSZ) {
		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
		hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
			if (n)
				goto found;
		}
	}
2340
	return NULL;
2341 2342 2343 2344

found:
	iter->tb = tb;
	return n;
2345
}
2346

2347
static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2348
	__releases(RCU)
2349
{
2350 2351
	rcu_read_unlock();
}
O
Olof Johansson 已提交
2352

2353 2354 2355 2356
static void seq_indent(struct seq_file *seq, int n)
{
	while (n-- > 0) seq_puts(seq, "   ");
}
2357

2358
static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2359
{
S
Stephen Hemminger 已提交
2360
	switch (s) {
2361 2362 2363 2364 2365 2366
	case RT_SCOPE_UNIVERSE: return "universe";
	case RT_SCOPE_SITE:	return "site";
	case RT_SCOPE_LINK:	return "link";
	case RT_SCOPE_HOST:	return "host";
	case RT_SCOPE_NOWHERE:	return "nowhere";
	default:
2367
		snprintf(buf, len, "scope=%d", s);
2368 2369 2370
		return buf;
	}
}
2371

2372
static const char *const rtn_type_names[__RTN_MAX] = {
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
	[RTN_UNSPEC] = "UNSPEC",
	[RTN_UNICAST] = "UNICAST",
	[RTN_LOCAL] = "LOCAL",
	[RTN_BROADCAST] = "BROADCAST",
	[RTN_ANYCAST] = "ANYCAST",
	[RTN_MULTICAST] = "MULTICAST",
	[RTN_BLACKHOLE] = "BLACKHOLE",
	[RTN_UNREACHABLE] = "UNREACHABLE",
	[RTN_PROHIBIT] = "PROHIBIT",
	[RTN_THROW] = "THROW",
	[RTN_NAT] = "NAT",
	[RTN_XRESOLVE] = "XRESOLVE",
};
2386

2387
static inline const char *rtn_type(char *buf, size_t len, unsigned t)
2388 2389 2390
{
	if (t < __RTN_MAX && rtn_type_names[t])
		return rtn_type_names[t];
2391
	snprintf(buf, len, "type %u", t);
2392
	return buf;
2393 2394
}

2395 2396
/* Pretty print the trie */
static int fib_trie_seq_show(struct seq_file *seq, void *v)
2397
{
2398 2399
	const struct fib_trie_iter *iter = seq->private;
	struct node *n = v;
2400

2401 2402
	if (!node_parent_rcu(n))
		fib_table_print(seq, iter->tb);
2403

2404 2405
	if (IS_TNODE(n)) {
		struct tnode *tn = (struct tnode *) n;
S
Stephen Hemminger 已提交
2406
		__be32 prf = htonl(mask_pfx(tn->key, tn->pos));
O
Olof Johansson 已提交
2407

2408
		seq_indent(seq, iter->depth-1);
2409 2410
		seq_printf(seq, "  +-- %pI4/%d %d %d %d\n",
			   &prf, tn->pos, tn->bits, tn->full_children,
2411
			   tn->empty_children);
2412

2413 2414
	} else {
		struct leaf *l = (struct leaf *) n;
2415 2416
		struct leaf_info *li;
		struct hlist_node *node;
A
Al Viro 已提交
2417
		__be32 val = htonl(l->key);
2418 2419

		seq_indent(seq, iter->depth);
2420
		seq_printf(seq, "  |-- %pI4\n", &val);
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434

		hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
			struct fib_alias *fa;

			list_for_each_entry_rcu(fa, &li->falh, fa_list) {
				char buf1[32], buf2[32];

				seq_indent(seq, iter->depth+1);
				seq_printf(seq, "  /%d %s %s", li->plen,
					   rtn_scope(buf1, sizeof(buf1),
						     fa->fa_scope),
					   rtn_type(buf2, sizeof(buf2),
						    fa->fa_type));
				if (fa->fa_tos)
2435
					seq_printf(seq, " tos=%d", fa->fa_tos);
2436
				seq_putc(seq, '\n');
2437 2438
			}
		}
2439
	}
2440

2441 2442 2443
	return 0;
}

2444
static const struct seq_operations fib_trie_seq_ops = {
2445 2446 2447 2448
	.start  = fib_trie_seq_start,
	.next   = fib_trie_seq_next,
	.stop   = fib_trie_seq_stop,
	.show   = fib_trie_seq_show,
2449 2450
};

2451
static int fib_trie_seq_open(struct inode *inode, struct file *file)
2452
{
2453 2454
	return seq_open_net(inode, file, &fib_trie_seq_ops,
			    sizeof(struct fib_trie_iter));
2455 2456
}

2457
static const struct file_operations fib_trie_fops = {
2458 2459 2460 2461
	.owner  = THIS_MODULE,
	.open   = fib_trie_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2462
	.release = seq_release_net,
2463 2464
};

2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
struct fib_route_iter {
	struct seq_net_private p;
	struct trie *main_trie;
	loff_t	pos;
	t_key	key;
};

static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
{
	struct leaf *l = NULL;
	struct trie *t = iter->main_trie;

	/* use cache location of last found key */
	if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
		pos -= iter->pos;
	else {
		iter->pos = 0;
		l = trie_firstleaf(t);
	}

	while (l && pos-- > 0) {
		iter->pos++;
		l = trie_nextleaf(l);
	}

	if (l)
		iter->key = pos;	/* remember it */
	else
		iter->pos = 0;		/* forget it */

	return l;
}

static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
	__acquires(RCU)
{
	struct fib_route_iter *iter = seq->private;
	struct fib_table *tb;

	rcu_read_lock();
2505
	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
	if (!tb)
		return NULL;

	iter->main_trie = (struct trie *) tb->tb_data;
	if (*pos == 0)
		return SEQ_START_TOKEN;
	else
		return fib_route_get_idx(iter, *pos - 1);
}

static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
	struct fib_route_iter *iter = seq->private;
	struct leaf *l = v;

	++*pos;
	if (v == SEQ_START_TOKEN) {
		iter->pos = 0;
		l = trie_firstleaf(iter->main_trie);
	} else {
		iter->pos++;
		l = trie_nextleaf(l);
	}

	if (l)
		iter->key = l->key;
	else
		iter->pos = 0;
	return l;
}

static void fib_route_seq_stop(struct seq_file *seq, void *v)
	__releases(RCU)
{
	rcu_read_unlock();
}

A
Al Viro 已提交
2543
static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2544
{
2545 2546 2547 2548
	static unsigned type2flags[RTN_MAX + 1] = {
		[7] = RTF_REJECT, [8] = RTF_REJECT,
	};
	unsigned flags = type2flags[type];
2549

2550 2551
	if (fi && fi->fib_nh->nh_gw)
		flags |= RTF_GATEWAY;
A
Al Viro 已提交
2552
	if (mask == htonl(0xFFFFFFFF))
2553 2554 2555
		flags |= RTF_HOST;
	flags |= RTF_UP;
	return flags;
2556 2557
}

2558 2559 2560 2561 2562 2563 2564
/*
 *	This outputs /proc/net/route.
 *	The format of the file is not supposed to be changed
 * 	and needs to be same as fib_hash output to avoid breaking
 *	legacy utilities
 */
static int fib_route_seq_show(struct seq_file *seq, void *v)
2565
{
2566
	struct leaf *l = v;
2567 2568
	struct leaf_info *li;
	struct hlist_node *node;
2569

2570 2571 2572 2573 2574 2575
	if (v == SEQ_START_TOKEN) {
		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
			   "\tWindow\tIRTT");
		return 0;
	}
2576

2577
	hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2578
		struct fib_alias *fa;
A
Al Viro 已提交
2579
		__be32 mask, prefix;
O
Olof Johansson 已提交
2580

2581 2582
		mask = inet_make_mask(li->plen);
		prefix = htonl(l->key);
2583

2584
		list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2585
			const struct fib_info *fi = fa->fa_info;
2586
			unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
2587
			int len;
2588

2589 2590 2591
			if (fa->fa_type == RTN_BROADCAST
			    || fa->fa_type == RTN_MULTICAST)
				continue;
2592

2593
			if (fi)
2594 2595 2596
				seq_printf(seq,
					 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
					 "%d\t%08X\t%d\t%u\t%u%n",
2597 2598 2599 2600 2601
					 fi->fib_dev ? fi->fib_dev->name : "*",
					 prefix,
					 fi->fib_nh->nh_gw, flags, 0, 0,
					 fi->fib_priority,
					 mask,
2602 2603
					 (fi->fib_advmss ?
					  fi->fib_advmss + 40 : 0),
2604
					 fi->fib_window,
2605
					 fi->fib_rtt >> 3, &len);
2606
			else
2607 2608 2609
				seq_printf(seq,
					 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
					 "%d\t%08X\t%d\t%u\t%u%n",
2610
					 prefix, 0, flags, 0, 0, 0,
2611
					 mask, 0, 0, 0, &len);
2612

2613
			seq_printf(seq, "%*s\n", 127 - len, "");
2614
		}
2615 2616 2617 2618 2619
	}

	return 0;
}

2620
static const struct seq_operations fib_route_seq_ops = {
2621 2622 2623
	.start  = fib_route_seq_start,
	.next   = fib_route_seq_next,
	.stop   = fib_route_seq_stop,
2624
	.show   = fib_route_seq_show,
2625 2626
};

2627
static int fib_route_seq_open(struct inode *inode, struct file *file)
2628
{
2629
	return seq_open_net(inode, file, &fib_route_seq_ops,
2630
			    sizeof(struct fib_route_iter));
2631 2632
}

2633
static const struct file_operations fib_route_fops = {
2634 2635 2636 2637
	.owner  = THIS_MODULE,
	.open   = fib_route_seq_open,
	.read   = seq_read,
	.llseek = seq_lseek,
2638
	.release = seq_release_net,
2639 2640
};

2641
int __net_init fib_proc_init(struct net *net)
2642
{
2643
	if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
2644 2645
		goto out1;

2646 2647
	if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
				  &fib_triestat_fops))
2648 2649
		goto out2;

2650
	if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
2651 2652
		goto out3;

2653
	return 0;
2654 2655

out3:
2656
	proc_net_remove(net, "fib_triestat");
2657
out2:
2658
	proc_net_remove(net, "fib_trie");
2659 2660
out1:
	return -ENOMEM;
2661 2662
}

2663
void __net_exit fib_proc_exit(struct net *net)
2664
{
2665 2666 2667
	proc_net_remove(net, "fib_trie");
	proc_net_remove(net, "fib_triestat");
	proc_net_remove(net, "route");
2668 2669 2670
}

#endif /* CONFIG_PROC_FS */