hrtimer.c 33.7 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/irq.h>
36 37 38 39 40
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
41
#include <linux/kallsyms.h>
42
#include <linux/interrupt.h>
43
#include <linux/tick.h>
44 45
#include <linux/seq_file.h>
#include <linux/err.h>
46 47 48 49 50 51 52 53

#include <asm/uaccess.h>

/**
 * ktime_get - get the monotonic time in ktime_t format
 *
 * returns the time in ktime_t format
 */
54
ktime_t ktime_get(void)
55 56 57 58 59 60 61 62 63 64 65 66 67
{
	struct timespec now;

	ktime_get_ts(&now);

	return timespec_to_ktime(now);
}

/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
68
ktime_t ktime_get_real(void)
69 70 71 72 73 74 75 76 77 78 79 80
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}

EXPORT_SYMBOL_GPL(ktime_get_real);

/*
 * The timer bases:
81 82 83 84 85 86
 *
 * Note: If we want to add new timer bases, we have to skip the two
 * clock ids captured by the cpu-timers. We do this by holding empty
 * entries rather than doing math adjustment of the clock ids.
 * This ensures that we capture erroneous accesses to these clock ids
 * rather than moving them into the range of valid clock id's.
87
 */
88
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
89
{
90 91

	.clock_base =
92
	{
93 94 95
		{
			.index = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
96
			.resolution = KTIME_LOW_RES,
97 98 99 100
		},
		{
			.index = CLOCK_MONOTONIC,
			.get_time = &ktime_get,
101
			.resolution = KTIME_LOW_RES,
102 103
		},
	}
104 105 106 107 108 109 110 111
};

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
112
 * in normalized timespec format in the variable pointed to by @ts.
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
 */
void ktime_get_ts(struct timespec *ts)
{
	struct timespec tomono;
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
		getnstimeofday(ts);
		tomono = wall_to_monotonic;

	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
				ts->tv_nsec + tomono.tv_nsec);
}
M
Matt Helsley 已提交
129
EXPORT_SYMBOL_GPL(ktime_get_ts);
130

131 132 133 134
/*
 * Get the coarse grained time at the softirq based on xtime and
 * wall_to_monotonic.
 */
135
static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
136 137
{
	ktime_t xtim, tomono;
J
john stultz 已提交
138
	struct timespec xts;
139 140 141 142
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
J
john stultz 已提交
143 144 145 146 147
#ifdef CONFIG_NO_HZ
		getnstimeofday(&xts);
#else
		xts = xtime;
#endif
148 149
	} while (read_seqretry(&xtime_lock, seq));

J
john stultz 已提交
150 151
	xtim = timespec_to_ktime(xts);
	tomono = timespec_to_ktime(wall_to_monotonic);
152 153 154
	base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
	base->clock_base[CLOCK_MONOTONIC].softirq_time =
		ktime_add(xtim, tomono);
155 156
}

157 158 159 160 161 162 163 164 165
/*
 * Helper function to check, whether the timer is running the callback
 * function
 */
static inline int hrtimer_callback_running(struct hrtimer *timer)
{
	return timer->state & HRTIMER_STATE_CALLBACK;
}

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
184 185 186
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
187
{
188
	struct hrtimer_clock_base *base;
189 190 191 192

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
193
			spin_lock_irqsave(&base->cpu_base->lock, *flags);
194 195 196
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
197
			spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
198 199 200 201 202 203 204 205
		}
		cpu_relax();
	}
}

/*
 * Switch the timer base to the current CPU when possible.
 */
206 207
static inline struct hrtimer_clock_base *
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
208
{
209 210
	struct hrtimer_clock_base *new_base;
	struct hrtimer_cpu_base *new_cpu_base;
211

212 213
	new_cpu_base = &__get_cpu_var(hrtimer_bases);
	new_base = &new_cpu_base->clock_base[base->index];
214 215 216 217 218 219 220 221 222 223 224

	if (base != new_base) {
		/*
		 * We are trying to schedule the timer on the local CPU.
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
225
		if (unlikely(hrtimer_callback_running(timer)))
226 227 228 229
			return base;

		/* See the comment in lock_timer_base() */
		timer->base = NULL;
230 231
		spin_unlock(&base->cpu_base->lock);
		spin_lock(&new_base->cpu_base->lock);
232 233 234 235 236 237 238
		timer->base = new_base;
	}
	return new_base;
}

#else /* CONFIG_SMP */

239
static inline struct hrtimer_clock_base *
240 241
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
242
	struct hrtimer_clock_base *base = timer->base;
243

244
	spin_lock_irqsave(&base->cpu_base->lock, *flags);
245 246 247 248

	return base;
}

249
# define switch_hrtimer_base(t, b)	(b)
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
# ifndef CONFIG_KTIME_SCALAR
/**
 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 * @kt:		addend
 * @nsec:	the scalar nsec value to add
 *
 * Returns the sum of kt and nsec in ktime_t format
 */
ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_add(kt, tmp);
}
# endif /* !CONFIG_KTIME_SCALAR */

/*
 * Divide a ktime value by a nanosecond value
 */
285
unsigned long ktime_divns(const ktime_t kt, s64 div)
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
{
	u64 dclc, inc, dns;
	int sft = 0;

	dclc = dns = ktime_to_ns(kt);
	inc = div;
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

	return (unsigned long) dclc;
}
#endif /* BITS_PER_LONG >= 64 */

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
static inline int hrtimer_hres_active(void)
{
	return __get_cpu_var(hrtimer_bases).hres_active;
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
{
	int i;
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	ktime_t expires;

	cpu_base->expires_next.tv64 = KTIME_MAX;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
		struct hrtimer *timer;

		if (!base->first)
			continue;
		timer = rb_entry(base->first, struct hrtimer, node);
		expires = ktime_sub(timer->expires, base->offset);
		if (expires.tv64 < cpu_base->expires_next.tv64)
			cpu_base->expires_next = expires;
	}

	if (cpu_base->expires_next.tv64 != KTIME_MAX)
		tick_program_event(cpu_base->expires_next, 1);
}

/*
 * Shared reprogramming for clock_realtime and clock_monotonic
 *
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
static int hrtimer_reprogram(struct hrtimer *timer,
			     struct hrtimer_clock_base *base)
{
	ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
	ktime_t expires = ktime_sub(timer->expires, base->offset);
	int res;

	/*
	 * When the callback is running, we do not reprogram the clock event
	 * device. The timer callback is either running on a different CPU or
	 * the callback is executed in the hrtimer_interupt context. The
	 * reprogramming is handled either by the softirq, which called the
	 * callback or at the end of the hrtimer_interrupt.
	 */
	if (hrtimer_callback_running(timer))
		return 0;

	if (expires.tv64 >= expires_next->tv64)
		return 0;

	/*
	 * Clockevents returns -ETIME, when the event was in the past.
	 */
	res = tick_program_event(expires, 0);
	if (!IS_ERR_VALUE(res))
		*expires_next = expires;
	return res;
}


/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
	struct hrtimer_cpu_base *base;
	struct timespec realtime_offset;
	unsigned long seq;

	if (!hrtimer_hres_active())
		return;

	do {
		seq = read_seqbegin(&xtime_lock);
		set_normalized_timespec(&realtime_offset,
					-wall_to_monotonic.tv_sec,
					-wall_to_monotonic.tv_nsec);
	} while (read_seqretry(&xtime_lock, seq));

	base = &__get_cpu_var(hrtimer_bases);

	/* Adjust CLOCK_REALTIME offset */
	spin_lock(&base->lock);
	base->clock_base[CLOCK_REALTIME].offset =
		timespec_to_ktime(realtime_offset);

	hrtimer_force_reprogram(base);
	spin_unlock(&base->lock);
}

/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 0, 1);
}

/*
 * Check, whether the timer is on the callback pending list
 */
static inline int hrtimer_cb_pending(const struct hrtimer *timer)
{
	return timer->state & HRTIMER_STATE_PENDING;
}

/*
 * Remove a timer from the callback pending list
 */
static inline void hrtimer_remove_cb_pending(struct hrtimer *timer)
{
	list_del_init(&timer->cb_entry);
}

/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
	INIT_LIST_HEAD(&base->cb_pending);
}

/*
 * Initialize the high resolution related parts of a hrtimer
 */
static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
{
	INIT_LIST_HEAD(&timer->cb_entry);
}

/*
 * When High resolution timers are active, try to reprogram. Note, that in case
 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
 * check happens. The timer gets enqueued into the rbtree. The reprogramming
 * and expiry check is done in the hrtimer_interrupt or in the softirq.
 */
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
					    struct hrtimer_clock_base *base)
{
	if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {

		/* Timer is expired, act upon the callback mode */
		switch(timer->cb_mode) {
		case HRTIMER_CB_IRQSAFE_NO_RESTART:
			/*
			 * We can call the callback from here. No restart
			 * happens, so no danger of recursion
			 */
			BUG_ON(timer->function(timer) != HRTIMER_NORESTART);
			return 1;
		case HRTIMER_CB_IRQSAFE_NO_SOFTIRQ:
			/*
			 * This is solely for the sched tick emulation with
			 * dynamic tick support to ensure that we do not
			 * restart the tick right on the edge and end up with
			 * the tick timer in the softirq ! The calling site
			 * takes care of this.
			 */
			return 1;
		case HRTIMER_CB_IRQSAFE:
		case HRTIMER_CB_SOFTIRQ:
			/*
			 * Move everything else into the softirq pending list !
			 */
			list_add_tail(&timer->cb_entry,
				      &base->cpu_base->cb_pending);
			timer->state = HRTIMER_STATE_PENDING;
			raise_softirq(HRTIMER_SOFTIRQ);
			return 1;
		default:
			BUG();
		}
	}
	return 0;
}

/*
 * Switch to high resolution mode
 */
static void hrtimer_switch_to_hres(void)
{
	struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);
	unsigned long flags;

	if (base->hres_active)
		return;

	local_irq_save(flags);

	if (tick_init_highres()) {
		local_irq_restore(flags);
		return;
	}
	base->hres_active = 1;
	base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
	base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;

	tick_setup_sched_timer();

	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
	local_irq_restore(flags);
	printk(KERN_INFO "Switched to high resolution mode on CPU %d\n",
	       smp_processor_id());
}

#else

static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
static inline void hrtimer_switch_to_hres(void) { }
static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
					    struct hrtimer_clock_base *base)
{
	return 0;
}
static inline int hrtimer_cb_pending(struct hrtimer *timer) { return 0; }
static inline void hrtimer_remove_cb_pending(struct hrtimer *timer) { }
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }

#endif /* CONFIG_HIGH_RES_TIMERS */

588 589 590 591 592 593
/*
 * Counterpart to lock_timer_base above:
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
594
	spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
595 596 597 598 599
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
600
 * @now:	forward past this time
601 602 603
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
604
 * Returns the number of overruns.
605 606
 */
unsigned long
607
hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
608 609
{
	unsigned long orun = 1;
610
	ktime_t delta;
611 612 613 614 615 616

	delta = ktime_sub(now, timer->expires);

	if (delta.tv64 < 0)
		return 0;

617 618 619
	if (interval.tv64 < timer->base->resolution.tv64)
		interval.tv64 = timer->base->resolution.tv64;

620
	if (unlikely(delta.tv64 >= interval.tv64)) {
621
		s64 incr = ktime_to_ns(interval);
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643

		orun = ktime_divns(delta, incr);
		timer->expires = ktime_add_ns(timer->expires, incr * orun);
		if (timer->expires.tv64 > now.tv64)
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
	timer->expires = ktime_add(timer->expires, interval);

	return orun;
}

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
 */
644
static void enqueue_hrtimer(struct hrtimer *timer,
645
			    struct hrtimer_clock_base *base, int reprogram)
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
{
	struct rb_node **link = &base->active.rb_node;
	struct rb_node *parent = NULL;
	struct hrtimer *entry;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct hrtimer, node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same expiry time stay together.
		 */
		if (timer->expires.tv64 < entry->expires.tv64)
			link = &(*link)->rb_left;
663
		else
664 665 666 667
			link = &(*link)->rb_right;
	}

	/*
668 669
	 * Insert the timer to the rbtree and check whether it
	 * replaces the first pending timer
670
	 */
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
	if (!base->first || timer->expires.tv64 <
	    rb_entry(base->first, struct hrtimer, node)->expires.tv64) {
		/*
		 * Reprogram the clock event device. When the timer is already
		 * expired hrtimer_enqueue_reprogram has either called the
		 * callback or added it to the pending list and raised the
		 * softirq.
		 *
		 * This is a NOP for !HIGHRES
		 */
		if (reprogram && hrtimer_enqueue_reprogram(timer, base))
			return;

		base->first = &timer->node;
	}

687 688
	rb_link_node(&timer->node, parent, link);
	rb_insert_color(&timer->node, &base->active);
689 690 691 692 693
	/*
	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
	 * state of a possibly running callback.
	 */
	timer->state |= HRTIMER_STATE_ENQUEUED;
694
}
695 696 697 698 699

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
700 701 702 703 704
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
705
 */
706
static void __remove_hrtimer(struct hrtimer *timer,
707
			     struct hrtimer_clock_base *base,
708
			     unsigned long newstate, int reprogram)
709
{
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
	/* High res. callback list. NOP for !HIGHRES */
	if (hrtimer_cb_pending(timer))
		hrtimer_remove_cb_pending(timer);
	else {
		/*
		 * Remove the timer from the rbtree and replace the
		 * first entry pointer if necessary.
		 */
		if (base->first == &timer->node) {
			base->first = rb_next(&timer->node);
			/* Reprogram the clock event device. if enabled */
			if (reprogram && hrtimer_hres_active())
				hrtimer_force_reprogram(base->cpu_base);
		}
		rb_erase(&timer->node, &base->active);
	}
726
	timer->state = newstate;
727 728 729 730 731 732
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
733
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
734
{
735
	if (hrtimer_is_queued(timer)) {
736 737 738 739 740 741 742 743 744 745 746 747 748
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
		__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
				 reprogram);
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
		return 1;
	}
	return 0;
}

/**
 * hrtimer_start - (re)start an relative timer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
{
767
	struct hrtimer_clock_base *base, *new_base;
768 769 770 771 772 773 774 775 776 777 778
	unsigned long flags;
	int ret;

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
	ret = remove_hrtimer(timer, base);

	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base);

779
	if (mode == HRTIMER_MODE_REL) {
780
		tim = ktime_add(tim, new_base->get_time());
781 782 783 784 785 786 787 788 789 790 791
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
		tim = ktime_add(tim, base->resolution);
#endif
	}
792 793
	timer->expires = tim;

794
	enqueue_hrtimer(timer, new_base, base == new_base);
795 796 797 798 799

	unlock_hrtimer_base(timer, &flags);

	return ret;
}
800
EXPORT_SYMBOL_GPL(hrtimer_start);
801 802 803 804 805 806 807 808 809

/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
810
 *    cannot be stopped
811 812 813
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
814
	struct hrtimer_clock_base *base;
815 816 817 818 819
	unsigned long flags;
	int ret = -1;

	base = lock_hrtimer_base(timer, &flags);

820
	if (!hrtimer_callback_running(timer))
821 822 823 824 825 826 827
		ret = remove_hrtimer(timer, base);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
828
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
845
		cpu_relax();
846 847
	}
}
848
EXPORT_SYMBOL_GPL(hrtimer_cancel);
849 850 851 852 853 854 855

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
856
	struct hrtimer_clock_base *base;
857 858 859 860
	unsigned long flags;
	ktime_t rem;

	base = lock_hrtimer_base(timer, &flags);
861
	rem = ktime_sub(timer->expires, base->get_time());
862 863 864 865
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
866
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
867

868
#if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
869 870 871 872 873 874 875 876
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
 * Returns the delta to the next expiry event or KTIME_MAX if no timer
 * is pending.
 */
ktime_t hrtimer_get_next_event(void)
{
877 878
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base = cpu_base->clock_base;
879 880 881 882
	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
	unsigned long flags;
	int i;

883 884
	spin_lock_irqsave(&cpu_base->lock, flags);

885 886 887
	if (!hrtimer_hres_active()) {
		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
			struct hrtimer *timer;
888

889 890
			if (!base->first)
				continue;
891

892 893 894 895 896 897
			timer = rb_entry(base->first, struct hrtimer, node);
			delta.tv64 = timer->expires.tv64;
			delta = ktime_sub(delta, base->get_time());
			if (delta.tv64 < mindelta.tv64)
				mindelta.tv64 = delta.tv64;
		}
898
	}
899 900 901

	spin_unlock_irqrestore(&cpu_base->lock, flags);

902 903 904 905 906 907
	if (mindelta.tv64 < 0)
		mindelta.tv64 = 0;
	return mindelta;
}
#endif

908
/**
909 910
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
911
 * @clock_id:	the clock to be used
912
 * @mode:	timer mode abs/rel
913
 */
914 915
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
916
{
917
	struct hrtimer_cpu_base *cpu_base;
918

919 920
	memset(timer, 0, sizeof(struct hrtimer));

921
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
922

923
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
924 925
		clock_id = CLOCK_MONOTONIC;

926
	timer->base = &cpu_base->clock_base[clock_id];
927
	hrtimer_init_timer_hres(timer);
928
}
929
EXPORT_SYMBOL_GPL(hrtimer_init);
930 931 932 933 934 935

/**
 * hrtimer_get_res - get the timer resolution for a clock
 * @which_clock: which clock to query
 * @tp:		 pointer to timespec variable to store the resolution
 *
936 937
 * Store the resolution of the clock selected by @which_clock in the
 * variable pointed to by @tp.
938 939 940
 */
int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
{
941
	struct hrtimer_cpu_base *cpu_base;
942

943 944
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
	*tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
945 946 947

	return 0;
}
948
EXPORT_SYMBOL_GPL(hrtimer_get_res);
949

950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	ktime_t expires_next, now;
	int i, raise = 0;

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

 retry:
	now = ktime_get();

	expires_next.tv64 = KTIME_MAX;

	base = cpu_base->clock_base;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
		ktime_t basenow;
		struct rb_node *node;

		spin_lock(&cpu_base->lock);

		basenow = ktime_add(now, base->offset);

		while ((node = base->first)) {
			struct hrtimer *timer;

			timer = rb_entry(node, struct hrtimer, node);

			if (basenow.tv64 < timer->expires.tv64) {
				ktime_t expires;

				expires = ktime_sub(timer->expires,
						    base->offset);
				if (expires.tv64 < expires_next.tv64)
					expires_next = expires;
				break;
			}

			/* Move softirq callbacks to the pending list */
			if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
				__remove_hrtimer(timer, base,
						 HRTIMER_STATE_PENDING, 0);
				list_add_tail(&timer->cb_entry,
					      &base->cpu_base->cb_pending);
				raise = 1;
				continue;
			}

			__remove_hrtimer(timer, base,
					 HRTIMER_STATE_CALLBACK, 0);

			/*
			 * Note: We clear the CALLBACK bit after
			 * enqueue_hrtimer to avoid reprogramming of
			 * the event hardware. This happens at the end
			 * of this function anyway.
			 */
			if (timer->function(timer) != HRTIMER_NORESTART) {
				BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
				enqueue_hrtimer(timer, base, 0);
			}
			timer->state &= ~HRTIMER_STATE_CALLBACK;
		}
		spin_unlock(&cpu_base->lock);
		base++;
	}

	cpu_base->expires_next = expires_next;

	/* Reprogramming necessary ? */
	if (expires_next.tv64 != KTIME_MAX) {
		if (tick_program_event(expires_next, 0))
			goto retry;
	}

	/* Raise softirq ? */
	if (raise)
		raise_softirq(HRTIMER_SOFTIRQ);
}

static void run_hrtimer_softirq(struct softirq_action *h)
{
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);

	spin_lock_irq(&cpu_base->lock);

	while (!list_empty(&cpu_base->cb_pending)) {
		enum hrtimer_restart (*fn)(struct hrtimer *);
		struct hrtimer *timer;
		int restart;

		timer = list_entry(cpu_base->cb_pending.next,
				   struct hrtimer, cb_entry);

		fn = timer->function;
		__remove_hrtimer(timer, timer->base, HRTIMER_STATE_CALLBACK, 0);
		spin_unlock_irq(&cpu_base->lock);

		restart = fn(timer);

		spin_lock_irq(&cpu_base->lock);

		timer->state &= ~HRTIMER_STATE_CALLBACK;
		if (restart == HRTIMER_RESTART) {
			BUG_ON(hrtimer_active(timer));
			/*
			 * Enqueue the timer, allow reprogramming of the event
			 * device
			 */
			enqueue_hrtimer(timer, timer->base, 1);
		} else if (hrtimer_active(timer)) {
			/*
			 * If the timer was rearmed on another CPU, reprogram
			 * the event device.
			 */
			if (timer->base->first == &timer->node)
				hrtimer_reprogram(timer, timer->base);
		}
	}
	spin_unlock_irq(&cpu_base->lock);
}

#endif	/* CONFIG_HIGH_RES_TIMERS */

1083 1084 1085
/*
 * Expire the per base hrtimer-queue:
 */
1086 1087
static inline void run_hrtimer_queue(struct hrtimer_cpu_base *cpu_base,
				     int index)
1088
{
1089
	struct rb_node *node;
1090
	struct hrtimer_clock_base *base = &cpu_base->clock_base[index];
1091

1092 1093 1094
	if (!base->first)
		return;

1095 1096 1097
	if (base->get_softirq_time)
		base->softirq_time = base->get_softirq_time();

1098
	spin_lock_irq(&cpu_base->lock);
1099

1100
	while ((node = base->first)) {
1101
		struct hrtimer *timer;
1102
		enum hrtimer_restart (*fn)(struct hrtimer *);
1103 1104
		int restart;

1105
		timer = rb_entry(node, struct hrtimer, node);
1106
		if (base->softirq_time.tv64 <= timer->expires.tv64)
1107 1108 1109
			break;

		fn = timer->function;
1110
		__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1111
		spin_unlock_irq(&cpu_base->lock);
1112

1113
		restart = fn(timer);
1114

1115
		spin_lock_irq(&cpu_base->lock);
1116

1117
		timer->state &= ~HRTIMER_STATE_CALLBACK;
1118 1119
		if (restart != HRTIMER_NORESTART) {
			BUG_ON(hrtimer_active(timer));
1120
			enqueue_hrtimer(timer, base, 0);
1121
		}
1122
	}
1123
	spin_unlock_irq(&cpu_base->lock);
1124 1125 1126 1127
}

/*
 * Called from timer softirq every jiffy, expire hrtimers:
1128 1129 1130 1131
 *
 * For HRT its the fall back code to run the softirq in the timer
 * softirq context in case the hrtimer initialization failed or has
 * not been done yet.
1132 1133 1134
 */
void hrtimer_run_queues(void)
{
1135
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1136 1137
	int i;

1138 1139 1140
	if (hrtimer_hres_active())
		return;

1141 1142 1143 1144 1145 1146 1147 1148
	/*
	 * This _is_ ugly: We have to check in the softirq context,
	 * whether we can switch to highres and / or nohz mode. The
	 * clocksource switch happens in the timer interrupt with
	 * xtime_lock held. Notification from there only sets the
	 * check bit in the tick_oneshot code, otherwise we might
	 * deadlock vs. xtime_lock.
	 */
1149 1150
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
		hrtimer_switch_to_hres();
1151

1152
	hrtimer_get_softirq_time(cpu_base);
1153

1154 1155
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
		run_hrtimer_queue(cpu_base, i);
1156 1157
}

1158 1159 1160
/*
 * Sleep related functions:
 */
1161
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1174
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1175 1176 1177
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
1178 1179 1180
#ifdef CONFIG_HIGH_RES_TIMERS
	sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_RESTART;
#endif
1181 1182
}

1183
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1184
{
1185
	hrtimer_init_sleeper(t, current);
1186

1187 1188 1189 1190
	do {
		set_current_state(TASK_INTERRUPTIBLE);
		hrtimer_start(&t->timer, t->timer.expires, mode);

1191 1192
		if (likely(t->task))
			schedule();
1193

1194
		hrtimer_cancel(&t->timer);
1195
		mode = HRTIMER_MODE_ABS;
1196 1197

	} while (t->task && !signal_pending(current));
1198

1199
	return t->task == NULL;
1200 1201
}

1202
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1203
{
1204
	struct hrtimer_sleeper t;
1205 1206
	struct timespec __user *rmtp;
	struct timespec tu;
1207
	ktime_t time;
1208 1209 1210

	restart->fn = do_no_restart_syscall;

1211
	hrtimer_init(&t.timer, restart->arg0, HRTIMER_MODE_ABS);
1212
	t.timer.expires.tv64 = ((u64)restart->arg3 << 32) | (u64) restart->arg2;
1213

1214
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1215 1216
		return 0;

1217
	rmtp = (struct timespec __user *) restart->arg1;
1218 1219 1220 1221 1222 1223 1224 1225
	if (rmtp) {
		time = ktime_sub(t.timer.expires, t.timer.base->get_time());
		if (time.tv64 <= 0)
			return 0;
		tu = ktime_to_timespec(time);
		if (copy_to_user(rmtp, &tu, sizeof(tu)))
			return -EFAULT;
	}
1226

1227
	restart->fn = hrtimer_nanosleep_restart;
1228 1229 1230 1231 1232 1233 1234 1235 1236

	/* The other values in restart are already filled in */
	return -ERESTART_RESTARTBLOCK;
}

long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1237
	struct hrtimer_sleeper t;
1238 1239 1240
	struct timespec tu;
	ktime_t rem;

1241 1242 1243
	hrtimer_init(&t.timer, clockid, mode);
	t.timer.expires = timespec_to_ktime(*rqtp);
	if (do_nanosleep(&t, mode))
1244 1245
		return 0;

1246
	/* Absolute timers do not update the rmtp value and restart: */
1247
	if (mode == HRTIMER_MODE_ABS)
1248 1249
		return -ERESTARTNOHAND;

1250 1251 1252 1253 1254 1255 1256 1257
	if (rmtp) {
		rem = ktime_sub(t.timer.expires, t.timer.base->get_time());
		if (rem.tv64 <= 0)
			return 0;
		tu = ktime_to_timespec(rem);
		if (copy_to_user(rmtp, &tu, sizeof(tu)))
			return -EFAULT;
	}
1258 1259

	restart = &current_thread_info()->restart_block;
1260 1261 1262 1263 1264
	restart->fn = hrtimer_nanosleep_restart;
	restart->arg0 = (unsigned long) t.timer.base->index;
	restart->arg1 = (unsigned long) rmtp;
	restart->arg2 = t.timer.expires.tv64 & 0xFFFFFFFF;
	restart->arg3 = t.timer.expires.tv64 >> 32;
1265 1266 1267 1268

	return -ERESTART_RESTARTBLOCK;
}

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
asmlinkage long
sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
{
	struct timespec tu;

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1280
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1281 1282
}

1283 1284 1285 1286 1287
/*
 * Functions related to boot-time initialization:
 */
static void __devinit init_hrtimers_cpu(int cpu)
{
1288
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1289 1290
	int i;

1291 1292 1293 1294 1295 1296
	spin_lock_init(&cpu_base->lock);
	lockdep_set_class(&cpu_base->lock, &cpu_base->lock_key);

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
		cpu_base->clock_base[i].cpu_base = cpu_base;

1297
	hrtimer_init_hres(cpu_base);
1298 1299 1300 1301
}

#ifdef CONFIG_HOTPLUG_CPU

1302 1303
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
				struct hrtimer_clock_base *new_base)
1304 1305 1306 1307 1308 1309
{
	struct hrtimer *timer;
	struct rb_node *node;

	while ((node = rb_first(&old_base->active))) {
		timer = rb_entry(node, struct hrtimer, node);
1310 1311
		BUG_ON(hrtimer_callback_running(timer));
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_INACTIVE, 0);
1312
		timer->base = new_base;
1313 1314 1315 1316
		/*
		 * Enqueue the timer. Allow reprogramming of the event device
		 */
		enqueue_hrtimer(timer, new_base, 1);
1317 1318 1319 1320 1321
	}
}

static void migrate_hrtimers(int cpu)
{
1322
	struct hrtimer_cpu_base *old_base, *new_base;
1323 1324 1325
	int i;

	BUG_ON(cpu_online(cpu));
1326 1327
	old_base = &per_cpu(hrtimer_bases, cpu);
	new_base = &get_cpu_var(hrtimer_bases);
1328

1329 1330
	tick_cancel_sched_timer(cpu);

1331 1332
	local_irq_disable();

1333 1334
	spin_lock(&new_base->lock);
	spin_lock(&old_base->lock);
1335

1336 1337 1338
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
		migrate_hrtimer_list(&old_base->clock_base[i],
				     &new_base->clock_base[i]);
1339
	}
1340 1341
	spin_unlock(&old_base->lock);
	spin_unlock(&new_base->lock);
1342 1343 1344 1345 1346 1347

	local_irq_enable();
	put_cpu_var(hrtimer_bases);
}
#endif /* CONFIG_HOTPLUG_CPU */

1348
static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
					unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
		init_hrtimers_cpu(cpu);
		break;

#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
1361
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &cpu);
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
		migrate_hrtimers(cpu);
		break;
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1373
static struct notifier_block __cpuinitdata hrtimers_nb = {
1374 1375 1376 1377 1378 1379 1380 1381
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
1382 1383 1384
#ifdef CONFIG_HIGH_RES_TIMERS
	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq, NULL);
#endif
1385 1386
}