enlighten.c 29.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Core of Xen paravirt_ops implementation.
 *
 * This file contains the xen_paravirt_ops structure itself, and the
 * implementations for:
 * - privileged instructions
 * - interrupt flags
 * - segment operations
 * - booting and setup
 *
 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
 */

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/smp.h>
#include <linux/preempt.h>
18
#include <linux/hardirq.h>
19 20 21 22 23 24
#include <linux/percpu.h>
#include <linux/delay.h>
#include <linux/start_kernel.h>
#include <linux/sched.h>
#include <linux/bootmem.h>
#include <linux/module.h>
25 26 27
#include <linux/mm.h>
#include <linux/page-flags.h>
#include <linux/highmem.h>
28
#include <linux/console.h>
29 30 31 32

#include <xen/interface/xen.h>
#include <xen/interface/physdev.h>
#include <xen/interface/vcpu.h>
J
Jeremy Fitzhardinge 已提交
33
#include <xen/interface/sched.h>
34 35 36 37 38 39 40 41 42 43 44 45
#include <xen/features.h>
#include <xen/page.h>

#include <asm/paravirt.h>
#include <asm/page.h>
#include <asm/xen/hypercall.h>
#include <asm/xen/hypervisor.h>
#include <asm/fixmap.h>
#include <asm/processor.h>
#include <asm/setup.h>
#include <asm/desc.h>
#include <asm/pgtable.h>
J
Jeremy Fitzhardinge 已提交
46
#include <asm/tlbflush.h>
J
Jeremy Fitzhardinge 已提交
47
#include <asm/reboot.h>
48 49

#include "xen-ops.h"
J
Jeremy Fitzhardinge 已提交
50
#include "mmu.h"
51 52 53 54 55 56
#include "multicalls.h"

EXPORT_SYMBOL_GPL(hypercall_page);

DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

/*
 * Note about cr3 (pagetable base) values:
 *
 * xen_cr3 contains the current logical cr3 value; it contains the
 * last set cr3.  This may not be the current effective cr3, because
 * its update may be being lazily deferred.  However, a vcpu looking
 * at its own cr3 can use this value knowing that it everything will
 * be self-consistent.
 *
 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
 * hypercall to set the vcpu cr3 is complete (so it may be a little
 * out of date, but it will never be set early).  If one vcpu is
 * looking at another vcpu's cr3 value, it should use this variable.
 */
DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */
74 75 76 77

struct start_info *xen_start_info;
EXPORT_SYMBOL_GPL(xen_start_info);

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
static /* __initdata */ struct shared_info dummy_shared_info;

/*
 * Point at some empty memory to start with. We map the real shared_info
 * page as soon as fixmap is up and running.
 */
struct shared_info *HYPERVISOR_shared_info = (void *)&dummy_shared_info;

/*
 * Flag to determine whether vcpu info placement is available on all
 * VCPUs.  We assume it is to start with, and then set it to zero on
 * the first failure.  This is because it can succeed on some VCPUs
 * and not others, since it can involve hypervisor memory allocation,
 * or because the guest failed to guarantee all the appropriate
 * constraints on all VCPUs (ie buffer can't cross a page boundary).
 *
 * Note that any particular CPU may be using a placed vcpu structure,
 * but we can only optimise if the all are.
 *
 * 0: not available, 1: available
 */
99
static int have_vcpu_info_placement = 1;
100 101

static void __init xen_vcpu_setup(int cpu)
102
{
103 104 105 106
	struct vcpu_register_vcpu_info info;
	int err;
	struct vcpu_info *vcpup;

107
	BUG_ON(HYPERVISOR_shared_info == &dummy_shared_info);
108
	per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
109 110 111 112 113 114 115 116 117

	if (!have_vcpu_info_placement)
		return;		/* already tested, not available */

	vcpup = &per_cpu(xen_vcpu_info, cpu);

	info.mfn = virt_to_mfn(vcpup);
	info.offset = offset_in_page(vcpup);

118
	printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
119 120 121 122 123 124 125 126 127 128 129 130 131 132
	       cpu, vcpup, info.mfn, info.offset);

	/* Check to see if the hypervisor will put the vcpu_info
	   structure where we want it, which allows direct access via
	   a percpu-variable. */
	err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);

	if (err) {
		printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
		have_vcpu_info_placement = 0;
	} else {
		/* This cpu is using the registered vcpu info, even if
		   later ones fail to. */
		per_cpu(xen_vcpu, cpu) = vcpup;
133

134 135 136
		printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
		       cpu, vcpup);
	}
137 138 139 140 141
}

static void __init xen_banner(void)
{
	printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
142
	       pv_info.name);
143 144 145
	printk(KERN_INFO "Hypervisor signature: %s\n", xen_start_info->magic);
}

146 147
static void xen_cpuid(unsigned int *ax, unsigned int *bx,
		      unsigned int *cx, unsigned int *dx)
148 149 150 151 152 153 154
{
	unsigned maskedx = ~0;

	/*
	 * Mask out inconvenient features, to try and disable as many
	 * unsupported kernel subsystems as possible.
	 */
155
	if (*ax == 1)
156 157
		maskedx = ~((1 << X86_FEATURE_APIC) |  /* disable APIC */
			    (1 << X86_FEATURE_ACPI) |  /* disable ACPI */
158 159
			    (1 << X86_FEATURE_MCE)  |  /* disable MCE */
			    (1 << X86_FEATURE_MCA)  |  /* disable MCA */
160 161 162
			    (1 << X86_FEATURE_ACC));   /* thermal monitoring */

	asm(XEN_EMULATE_PREFIX "cpuid"
163 164 165 166 167 168
		: "=a" (*ax),
		  "=b" (*bx),
		  "=c" (*cx),
		  "=d" (*dx)
		: "0" (*ax), "2" (*cx));
	*dx &= maskedx;
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
}

static void xen_set_debugreg(int reg, unsigned long val)
{
	HYPERVISOR_set_debugreg(reg, val);
}

static unsigned long xen_get_debugreg(int reg)
{
	return HYPERVISOR_get_debugreg(reg);
}

static unsigned long xen_save_fl(void)
{
	struct vcpu_info *vcpu;
	unsigned long flags;

	vcpu = x86_read_percpu(xen_vcpu);
187

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
	/* flag has opposite sense of mask */
	flags = !vcpu->evtchn_upcall_mask;

	/* convert to IF type flag
	   -0 -> 0x00000000
	   -1 -> 0xffffffff
	*/
	return (-flags) & X86_EFLAGS_IF;
}

static void xen_restore_fl(unsigned long flags)
{
	struct vcpu_info *vcpu;

	/* convert from IF type flag */
	flags = !(flags & X86_EFLAGS_IF);
204 205 206 207 208

	/* There's a one instruction preempt window here.  We need to
	   make sure we're don't switch CPUs between getting the vcpu
	   pointer and updating the mask. */
	preempt_disable();
209 210
	vcpu = x86_read_percpu(xen_vcpu);
	vcpu->evtchn_upcall_mask = flags;
211
	preempt_enable_no_resched();
212

213 214
	/* Doesn't matter if we get preempted here, because any
	   pending event will get dealt with anyway. */
215

216 217 218
	if (flags == 0) {
		preempt_check_resched();
		barrier(); /* unmask then check (avoid races) */
219 220
		if (unlikely(vcpu->evtchn_upcall_pending))
			force_evtchn_callback();
221
	}
222 223 224 225
}

static void xen_irq_disable(void)
{
226 227 228
	/* There's a one instruction preempt window here.  We need to
	   make sure we're don't switch CPUs between getting the vcpu
	   pointer and updating the mask. */
229
	preempt_disable();
230
	x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1;
231 232 233 234 235 236 237
	preempt_enable_no_resched();
}

static void xen_irq_enable(void)
{
	struct vcpu_info *vcpu;

238 239 240
	/* There's a one instruction preempt window here.  We need to
	   make sure we're don't switch CPUs between getting the vcpu
	   pointer and updating the mask. */
241 242 243
	preempt_disable();
	vcpu = x86_read_percpu(xen_vcpu);
	vcpu->evtchn_upcall_mask = 0;
244
	preempt_enable_no_resched();
245

246 247
	/* Doesn't matter if we get preempted here, because any
	   pending event will get dealt with anyway. */
248

249
	barrier(); /* unmask then check (avoid races) */
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
	if (unlikely(vcpu->evtchn_upcall_pending))
		force_evtchn_callback();
}

static void xen_safe_halt(void)
{
	/* Blocking includes an implicit local_irq_enable(). */
	if (HYPERVISOR_sched_op(SCHEDOP_block, 0) != 0)
		BUG();
}

static void xen_halt(void)
{
	if (irqs_disabled())
		HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
	else
		xen_safe_halt();
}

269
static void xen_leave_lazy(void)
270
{
271
	paravirt_leave_lazy(paravirt_get_lazy_mode());
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
	xen_mc_flush();
}

static unsigned long xen_store_tr(void)
{
	return 0;
}

static void xen_set_ldt(const void *addr, unsigned entries)
{
	struct mmuext_op *op;
	struct multicall_space mcs = xen_mc_entry(sizeof(*op));

	op = mcs.args;
	op->cmd = MMUEXT_SET_LDT;
287
	op->arg1.linear_addr = (unsigned long)addr;
288 289 290 291 292 293 294
	op->arg2.nr_ents = entries;

	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_CPU);
}

295
static void xen_load_gdt(const struct desc_ptr *dtr)
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
{
	unsigned long *frames;
	unsigned long va = dtr->address;
	unsigned int size = dtr->size + 1;
	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
	int f;
	struct multicall_space mcs;

	/* A GDT can be up to 64k in size, which corresponds to 8192
	   8-byte entries, or 16 4k pages.. */

	BUG_ON(size > 65536);
	BUG_ON(va & ~PAGE_MASK);

	mcs = xen_mc_entry(sizeof(*frames) * pages);
	frames = mcs.args;

	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
		frames[f] = virt_to_mfn(va);
		make_lowmem_page_readonly((void *)va);
	}

	MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));

	xen_mc_issue(PARAVIRT_LAZY_CPU);
}

static void load_TLS_descriptor(struct thread_struct *t,
				unsigned int cpu, unsigned int i)
{
	struct desc_struct *gdt = get_cpu_gdt_table(cpu);
	xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
	struct multicall_space mc = __xen_mc_entry(0);

	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
}

static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
{
	xen_mc_batch();

	load_TLS_descriptor(t, cpu, 0);
	load_TLS_descriptor(t, cpu, 1);
	load_TLS_descriptor(t, cpu, 2);

	xen_mc_issue(PARAVIRT_LAZY_CPU);
342 343 344 345 346 347 348 349 350 351

	/*
	 * XXX sleazy hack: If we're being called in a lazy-cpu zone,
	 * it means we're in a context switch, and %gs has just been
	 * saved.  This means we can zero it out to prevent faults on
	 * exit from the hypervisor if the next process has no %gs.
	 * Either way, it has been saved, and the new value will get
	 * loaded properly.  This will go away as soon as Xen has been
	 * modified to not save/restore %gs for normal hypercalls.
	 */
352
	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU)
353
		loadsegment(gs, 0);
354 355 356
}

static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
357
				const void *ptr)
358 359 360
{
	unsigned long lp = (unsigned long)&dt[entrynum];
	xmaddr_t mach_lp = virt_to_machine(lp);
361
	u64 entry = *(u64 *)ptr;
362

363 364
	preempt_disable();

365 366 367
	xen_mc_flush();
	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
		BUG();
368 369

	preempt_enable();
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
}

static int cvt_gate_to_trap(int vector, u32 low, u32 high,
			    struct trap_info *info)
{
	u8 type, dpl;

	type = (high >> 8) & 0x1f;
	dpl = (high >> 13) & 3;

	if (type != 0xf && type != 0xe)
		return 0;

	info->vector = vector;
	info->address = (high & 0xffff0000) | (low & 0x0000ffff);
	info->cs = low >> 16;
	info->flags = dpl;
	/* interrupt gates clear IF */
	if (type == 0xe)
		info->flags |= 4;

	return 1;
}

/* Locations of each CPU's IDT */
395
static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
396 397 398

/* Set an IDT entry.  If the entry is part of the current IDT, then
   also update Xen. */
399
static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
400 401
{
	unsigned long p = (unsigned long)&dt[entrynum];
402 403 404 405 406 407
	unsigned long start, end;

	preempt_disable();

	start = __get_cpu_var(idt_desc).address;
	end = start + __get_cpu_var(idt_desc).size + 1;
408 409 410

	xen_mc_flush();

411
	native_write_idt_entry(dt, entrynum, g);
412 413 414

	if (p >= start && (p + 8) <= end) {
		struct trap_info info[2];
415
		u32 *desc = (u32 *)g;
416 417 418

		info[1].address = 0;

419
		if (cvt_gate_to_trap(entrynum, desc[0], desc[1], &info[0]))
420 421 422
			if (HYPERVISOR_set_trap_table(info))
				BUG();
	}
423 424

	preempt_enable();
425 426
}

427
static void xen_convert_trap_info(const struct desc_ptr *desc,
J
Jeremy Fitzhardinge 已提交
428
				  struct trap_info *traps)
429 430 431 432 433 434 435 436 437 438 439 440 441
{
	unsigned in, out, count;

	count = (desc->size+1) / 8;
	BUG_ON(count > 256);

	for (in = out = 0; in < count; in++) {
		const u32 *entry = (u32 *)(desc->address + in * 8);

		if (cvt_gate_to_trap(in, entry[0], entry[1], &traps[out]))
			out++;
	}
	traps[out].address = 0;
J
Jeremy Fitzhardinge 已提交
442 443 444 445
}

void xen_copy_trap_info(struct trap_info *traps)
{
446
	const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
J
Jeremy Fitzhardinge 已提交
447 448 449 450 451 452 453

	xen_convert_trap_info(desc, traps);
}

/* Load a new IDT into Xen.  In principle this can be per-CPU, so we
   hold a spinlock to protect the static traps[] array (static because
   it avoids allocation, and saves stack space). */
454
static void xen_load_idt(const struct desc_ptr *desc)
J
Jeremy Fitzhardinge 已提交
455 456 457 458 459 460
{
	static DEFINE_SPINLOCK(lock);
	static struct trap_info traps[257];

	spin_lock(&lock);

461 462
	__get_cpu_var(idt_desc) = *desc;

J
Jeremy Fitzhardinge 已提交
463
	xen_convert_trap_info(desc, traps);
464 465 466 467 468 469 470 471 472 473 474

	xen_mc_flush();
	if (HYPERVISOR_set_trap_table(traps))
		BUG();

	spin_unlock(&lock);
}

/* Write a GDT descriptor entry.  Ignore LDT descriptors, since
   they're handled differently. */
static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
475
				const void *desc, int type)
476
{
477 478
	preempt_disable();

479 480 481
	switch (type) {
	case DESC_LDT:
	case DESC_TSS:
482 483 484 485 486 487 488
		/* ignore */
		break;

	default: {
		xmaddr_t maddr = virt_to_machine(&dt[entry]);

		xen_mc_flush();
489
		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
490 491 492 493
			BUG();
	}

	}
494 495

	preempt_enable();
496 497
}

498
static void xen_load_sp0(struct tss_struct *tss,
499
			  struct thread_struct *thread)
500 501
{
	struct multicall_space mcs = xen_mc_entry(0);
502
	MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
	xen_mc_issue(PARAVIRT_LAZY_CPU);
}

static void xen_set_iopl_mask(unsigned mask)
{
	struct physdev_set_iopl set_iopl;

	/* Force the change at ring 0. */
	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
}

static void xen_io_delay(void)
{
}

#ifdef CONFIG_X86_LOCAL_APIC
520
static u32 xen_apic_read(unsigned long reg)
521 522 523
{
	return 0;
}
J
Jeremy Fitzhardinge 已提交
524

525
static void xen_apic_write(unsigned long reg, u32 val)
J
Jeremy Fitzhardinge 已提交
526 527 528 529
{
	/* Warn to see if there's any stray references */
	WARN_ON(1);
}
530 531 532 533
#endif

static void xen_flush_tlb(void)
{
J
Jeremy Fitzhardinge 已提交
534 535
	struct mmuext_op *op;
	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
536

J
Jeremy Fitzhardinge 已提交
537 538 539 540 541
	op = mcs.args;
	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_MMU);
542 543 544 545
}

static void xen_flush_tlb_single(unsigned long addr)
{
J
Jeremy Fitzhardinge 已提交
546 547
	struct mmuext_op *op;
	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
548

J
Jeremy Fitzhardinge 已提交
549 550 551 552 553 554
	op = mcs.args;
	op->cmd = MMUEXT_INVLPG_LOCAL;
	op->arg1.linear_addr = addr & PAGE_MASK;
	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_MMU);
555 556
}

J
Jeremy Fitzhardinge 已提交
557 558 559
static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
				 unsigned long va)
{
J
Jeremy Fitzhardinge 已提交
560 561 562 563
	struct {
		struct mmuext_op op;
		cpumask_t mask;
	} *args;
J
Jeremy Fitzhardinge 已提交
564
	cpumask_t cpumask = *cpus;
J
Jeremy Fitzhardinge 已提交
565
	struct multicall_space mcs;
J
Jeremy Fitzhardinge 已提交
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581

	/*
	 * A couple of (to be removed) sanity checks:
	 *
	 * - current CPU must not be in mask
	 * - mask must exist :)
	 */
	BUG_ON(cpus_empty(cpumask));
	BUG_ON(cpu_isset(smp_processor_id(), cpumask));
	BUG_ON(!mm);

	/* If a CPU which we ran on has gone down, OK. */
	cpus_and(cpumask, cpumask, cpu_online_map);
	if (cpus_empty(cpumask))
		return;

J
Jeremy Fitzhardinge 已提交
582 583 584 585 586
	mcs = xen_mc_entry(sizeof(*args));
	args = mcs.args;
	args->mask = cpumask;
	args->op.arg2.vcpumask = &args->mask;

J
Jeremy Fitzhardinge 已提交
587
	if (va == TLB_FLUSH_ALL) {
J
Jeremy Fitzhardinge 已提交
588
		args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
J
Jeremy Fitzhardinge 已提交
589
	} else {
J
Jeremy Fitzhardinge 已提交
590 591
		args->op.cmd = MMUEXT_INVLPG_MULTI;
		args->op.arg1.linear_addr = va;
J
Jeremy Fitzhardinge 已提交
592 593
	}

J
Jeremy Fitzhardinge 已提交
594 595 596
	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_MMU);
J
Jeremy Fitzhardinge 已提交
597 598
}

599 600 601 602 603
static void xen_write_cr2(unsigned long cr2)
{
	x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
}

604 605 606 607 608
static unsigned long xen_read_cr2(void)
{
	return x86_read_percpu(xen_vcpu)->arch.cr2;
}

609 610 611 612 613
static unsigned long xen_read_cr2_direct(void)
{
	return x86_read_percpu(xen_vcpu_info.arch.cr2);
}

614 615
static void xen_write_cr4(unsigned long cr4)
{
616 617
	/* Just ignore cr4 changes; Xen doesn't allow us to do
	   anything anyway. */
618 619 620 621 622 623 624
}

static unsigned long xen_read_cr3(void)
{
	return x86_read_percpu(xen_cr3);
}

625 626 627 628 629
static void set_current_cr3(void *v)
{
	x86_write_percpu(xen_current_cr3, (unsigned long)v);
}

630 631
static void xen_write_cr3(unsigned long cr3)
{
632 633 634 635
	struct mmuext_op *op;
	struct multicall_space mcs;
	unsigned long mfn = pfn_to_mfn(PFN_DOWN(cr3));

636 637
	BUG_ON(preemptible());

638
	mcs = xen_mc_entry(sizeof(*op));  /* disables interrupts */
639

640 641
	/* Update while interrupts are disabled, so its atomic with
	   respect to ipis */
642 643
	x86_write_percpu(xen_cr3, cr3);

644 645 646
	op = mcs.args;
	op->cmd = MMUEXT_NEW_BASEPTR;
	op->arg1.mfn = mfn;
647

648
	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
649

650 651 652
	/* Update xen_update_cr3 once the batch has actually
	   been submitted. */
	xen_mc_callback(set_current_cr3, (void *)cr3);
653

654
	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
655 656
}

657 658
/* Early in boot, while setting up the initial pagetable, assume
   everything is pinned. */
659
static __init void xen_alloc_pte_init(struct mm_struct *mm, u32 pfn)
660
{
661
	BUG_ON(mem_map);	/* should only be used early */
662 663 664
	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
}

665
/* Early release_pte assumes that all pts are pinned, since there's
666
   only init_mm and anything attached to that is pinned. */
667
static void xen_release_pte_init(u32 pfn)
668 669 670 671
{
	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
}

672
static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
673 674
{
	struct mmuext_op op;
675
	op.cmd = cmd;
676 677 678 679 680
	op.arg1.mfn = pfn_to_mfn(pfn);
	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
		BUG();
}

681 682
/* This needs to make sure the new pte page is pinned iff its being
   attached to a pinned pagetable. */
683
static void xen_alloc_ptpage(struct mm_struct *mm, u32 pfn, unsigned level)
684
{
685
	struct page *page = pfn_to_page(pfn);
686

687 688 689
	if (PagePinned(virt_to_page(mm->pgd))) {
		SetPagePinned(page);

690
		if (!PageHighMem(page)) {
691
			make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
692 693
			if (level == PT_PTE)
				pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
694
		} else
695 696 697 698
			/* make sure there are no stray mappings of
			   this page */
			kmap_flush_unused();
	}
699 700
}

701
static void xen_alloc_pte(struct mm_struct *mm, u32 pfn)
702
{
703
	xen_alloc_ptpage(mm, pfn, PT_PTE);
704 705
}

706
static void xen_alloc_pmd(struct mm_struct *mm, u32 pfn)
707
{
708
	xen_alloc_ptpage(mm, pfn, PT_PMD);
709 710
}

711
/* This should never happen until we're OK to use struct page */
712
static void xen_release_ptpage(u32 pfn, unsigned level)
713
{
714 715 716
	struct page *page = pfn_to_page(pfn);

	if (PagePinned(page)) {
717
		if (!PageHighMem(page)) {
718 719
			if (level == PT_PTE)
				pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
720
			make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
721
		}
722
		ClearPagePinned(page);
723
	}
724 725
}

726
static void xen_release_pte(u32 pfn)
727 728 729 730
{
	xen_release_ptpage(pfn, PT_PTE);
}

731
static void xen_release_pmd(u32 pfn)
732 733 734 735
{
	xen_release_ptpage(pfn, PT_PMD);
}

736 737
#ifdef CONFIG_HIGHPTE
static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
738
{
739 740 741 742 743 744 745 746 747 748 749
	pgprot_t prot = PAGE_KERNEL;

	if (PagePinned(page))
		prot = PAGE_KERNEL_RO;

	if (0 && PageHighMem(page))
		printk("mapping highpte %lx type %d prot %s\n",
		       page_to_pfn(page), type,
		       (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");

	return kmap_atomic_prot(page, type, prot);
750
}
751
#endif
752

753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
{
	/* If there's an existing pte, then don't allow _PAGE_RW to be set */
	if (pte_val_ma(*ptep) & _PAGE_PRESENT)
		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
			       pte_val_ma(pte));

	return pte;
}

/* Init-time set_pte while constructing initial pagetables, which
   doesn't allow RO pagetable pages to be remapped RW */
static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
{
	pte = mask_rw_pte(ptep, pte);

	xen_set_pte(ptep, pte);
}

772 773 774 775
static __init void xen_pagetable_setup_start(pgd_t *base)
{
	pgd_t *xen_pgd = (pgd_t *)xen_start_info->pt_base;

776
	/* special set_pte for pagetable initialization */
777
	pv_mmu_ops.set_pte = xen_set_pte_init;
778

779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
	init_mm.pgd = base;
	/*
	 * copy top-level of Xen-supplied pagetable into place.	 For
	 * !PAE we can use this as-is, but for PAE it is a stand-in
	 * while we copy the pmd pages.
	 */
	memcpy(base, xen_pgd, PTRS_PER_PGD * sizeof(pgd_t));

	if (PTRS_PER_PMD > 1) {
		int i;
		/*
		 * For PAE, need to allocate new pmds, rather than
		 * share Xen's, since Xen doesn't like pmd's being
		 * shared between address spaces.
		 */
		for (i = 0; i < PTRS_PER_PGD; i++) {
			if (pgd_val_ma(xen_pgd[i]) & _PAGE_PRESENT) {
				pmd_t *pmd = (pmd_t *)alloc_bootmem_low_pages(PAGE_SIZE);

				memcpy(pmd, (void *)pgd_page_vaddr(xen_pgd[i]),
				       PAGE_SIZE);

801
				make_lowmem_page_readonly(pmd);
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817

				set_pgd(&base[i], __pgd(1 + __pa(pmd)));
			} else
				pgd_clear(&base[i]);
		}
	}

	/* make sure zero_page is mapped RO so we can use it in pagetables */
	make_lowmem_page_readonly(empty_zero_page);
	make_lowmem_page_readonly(base);
	/*
	 * Switch to new pagetable.  This is done before
	 * pagetable_init has done anything so that the new pages
	 * added to the table can be prepared properly for Xen.
	 */
	xen_write_cr3(__pa(base));
818 819 820 821

	/* Unpin initial Xen pagetable */
	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
			  PFN_DOWN(__pa(xen_start_info->pt_base)));
822 823
}

824
static __init void setup_shared_info(void)
825 826
{
	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
827 828
		unsigned long addr = fix_to_virt(FIX_PARAVIRT_BOOTMAP);

829 830 831 832 833
		/*
		 * Create a mapping for the shared info page.
		 * Should be set_fixmap(), but shared_info is a machine
		 * address with no corresponding pseudo-phys address.
		 */
834
		set_pte_mfn(addr,
835 836 837
			    PFN_DOWN(xen_start_info->shared_info),
			    PAGE_KERNEL);

838
		HYPERVISOR_shared_info = (struct shared_info *)addr;
839 840 841 842
	} else
		HYPERVISOR_shared_info =
			(struct shared_info *)__va(xen_start_info->shared_info);

843 844 845 846 847 848 849 850 851 852
#ifndef CONFIG_SMP
	/* In UP this is as good a place as any to set up shared info */
	xen_setup_vcpu_info_placement();
#endif
}

static __init void xen_pagetable_setup_done(pgd_t *base)
{
	/* This will work as long as patching hasn't happened yet
	   (which it hasn't) */
853 854 855 856
	pv_mmu_ops.alloc_pte = xen_alloc_pte;
	pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
	pv_mmu_ops.release_pte = xen_release_pte;
	pv_mmu_ops.release_pmd = xen_release_pmd;
857 858 859 860
	pv_mmu_ops.set_pte = xen_set_pte;

	setup_shared_info();

861 862 863
	/* Actually pin the pagetable down, but we can't set PG_pinned
	   yet because the page structures don't exist yet. */
	{
864 865
		unsigned level;

866
#ifdef CONFIG_X86_PAE
867
		level = MMUEXT_PIN_L3_TABLE;
868
#else
869
		level = MMUEXT_PIN_L2_TABLE;
870
#endif
871 872

		pin_pagetable_pfn(level, PFN_DOWN(__pa(base)));
873
	}
874
}
875

876 877 878 879 880 881 882 883 884 885 886 887 888
/* This is called once we have the cpu_possible_map */
void __init xen_setup_vcpu_info_placement(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		xen_vcpu_setup(cpu);

	/* xen_vcpu_setup managed to place the vcpu_info within the
	   percpu area for all cpus, so make use of it */
	if (have_vcpu_info_placement) {
		printk(KERN_INFO "Xen: using vcpu_info placement\n");

889 890 891 892 893
		pv_irq_ops.save_fl = xen_save_fl_direct;
		pv_irq_ops.restore_fl = xen_restore_fl_direct;
		pv_irq_ops.irq_disable = xen_irq_disable_direct;
		pv_irq_ops.irq_enable = xen_irq_enable_direct;
		pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
894
	}
895 896
}

897 898
static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
			  unsigned long addr, unsigned len)
899 900 901 902 903 904
{
	char *start, *end, *reloc;
	unsigned ret;

	start = end = reloc = NULL;

905 906
#define SITE(op, x)							\
	case PARAVIRT_PATCH(op.x):					\
907 908 909 910 911 912 913 914
	if (have_vcpu_info_placement) {					\
		start = (char *)xen_##x##_direct;			\
		end = xen_##x##_direct_end;				\
		reloc = xen_##x##_direct_reloc;				\
	}								\
	goto patch_site

	switch (type) {
915 916 917 918
		SITE(pv_irq_ops, irq_enable);
		SITE(pv_irq_ops, irq_disable);
		SITE(pv_irq_ops, save_fl);
		SITE(pv_irq_ops, restore_fl);
919 920 921 922 923 924
#undef SITE

	patch_site:
		if (start == NULL || (end-start) > len)
			goto default_patch;

925
		ret = paravirt_patch_insns(insnbuf, len, start, end);
926 927 928 929 930 931 932

		/* Note: because reloc is assigned from something that
		   appears to be an array, gcc assumes it's non-null,
		   but doesn't know its relationship with start and
		   end. */
		if (reloc > start && reloc < end) {
			int reloc_off = reloc - start;
933 934
			long *relocp = (long *)(insnbuf + reloc_off);
			long delta = start - (char *)addr;
935 936 937 938 939 940 941

			*relocp += delta;
		}
		break;

	default_patch:
	default:
942 943
		ret = paravirt_patch_default(type, clobbers, insnbuf,
					     addr, len);
944 945 946 947 948 949
		break;
	}

	return ret;
}

950
static const struct pv_info xen_info __initdata = {
951 952 953 954
	.paravirt_enabled = 1,
	.shared_kernel_pmd = 0,

	.name = "Xen",
955
};
956

957
static const struct pv_init_ops xen_init_ops __initdata = {
958
	.patch = xen_patch,
959

960
	.banner = xen_banner,
961 962
	.memory_setup = xen_memory_setup,
	.arch_setup = xen_arch_setup,
963
	.post_allocator_init = xen_mark_init_mm_pinned,
964
};
965

966
static const struct pv_time_ops xen_time_ops __initdata = {
J
Jeremy Fitzhardinge 已提交
967
	.time_init = xen_time_init,
968

J
Jeremy Fitzhardinge 已提交
969 970 971
	.set_wallclock = xen_set_wallclock,
	.get_wallclock = xen_get_wallclock,
	.get_cpu_khz = xen_cpu_khz,
J
Jeremy Fitzhardinge 已提交
972
	.sched_clock = xen_sched_clock,
973
};
J
Jeremy Fitzhardinge 已提交
974

975
static const struct pv_cpu_ops xen_cpu_ops __initdata = {
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
	.cpuid = xen_cpuid,

	.set_debugreg = xen_set_debugreg,
	.get_debugreg = xen_get_debugreg,

	.clts = native_clts,

	.read_cr0 = native_read_cr0,
	.write_cr0 = native_write_cr0,

	.read_cr4 = native_read_cr4,
	.read_cr4_safe = native_read_cr4_safe,
	.write_cr4 = xen_write_cr4,

	.wbinvd = native_wbinvd,

	.read_msr = native_read_msr_safe,
	.write_msr = native_write_msr_safe,
	.read_tsc = native_read_tsc,
	.read_pmc = native_read_pmc,

997
	.iret = xen_iret,
998
	.irq_enable_syscall_ret = xen_sysexit,
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012

	.load_tr_desc = paravirt_nop,
	.set_ldt = xen_set_ldt,
	.load_gdt = xen_load_gdt,
	.load_idt = xen_load_idt,
	.load_tls = xen_load_tls,

	.store_gdt = native_store_gdt,
	.store_idt = native_store_idt,
	.store_tr = xen_store_tr,

	.write_ldt_entry = xen_write_ldt_entry,
	.write_gdt_entry = xen_write_gdt_entry,
	.write_idt_entry = xen_write_idt_entry,
1013
	.load_sp0 = xen_load_sp0,
1014 1015 1016 1017

	.set_iopl_mask = xen_set_iopl_mask,
	.io_delay = xen_io_delay,

1018 1019 1020 1021
	.lazy_mode = {
		.enter = paravirt_enter_lazy_cpu,
		.leave = xen_leave_lazy,
	},
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
};

static const struct pv_irq_ops xen_irq_ops __initdata = {
	.init_IRQ = xen_init_IRQ,
	.save_fl = xen_save_fl,
	.restore_fl = xen_restore_fl,
	.irq_disable = xen_irq_disable,
	.irq_enable = xen_irq_enable,
	.safe_halt = xen_safe_halt,
	.halt = xen_halt,
};
1033

1034
static const struct pv_apic_ops xen_apic_ops __initdata = {
1035
#ifdef CONFIG_X86_LOCAL_APIC
J
Jeremy Fitzhardinge 已提交
1036 1037
	.apic_write = xen_apic_write,
	.apic_write_atomic = xen_apic_write,
1038 1039 1040 1041 1042
	.apic_read = xen_apic_read,
	.setup_boot_clock = paravirt_nop,
	.setup_secondary_clock = paravirt_nop,
	.startup_ipi_hook = paravirt_nop,
#endif
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
};

static const struct pv_mmu_ops xen_mmu_ops __initdata = {
	.pagetable_setup_start = xen_pagetable_setup_start,
	.pagetable_setup_done = xen_pagetable_setup_done,

	.read_cr2 = xen_read_cr2,
	.write_cr2 = xen_write_cr2,

	.read_cr3 = xen_read_cr3,
	.write_cr3 = xen_write_cr3,
1054 1055 1056 1057

	.flush_tlb_user = xen_flush_tlb,
	.flush_tlb_kernel = xen_flush_tlb,
	.flush_tlb_single = xen_flush_tlb_single,
J
Jeremy Fitzhardinge 已提交
1058
	.flush_tlb_others = xen_flush_tlb_others,
1059 1060 1061 1062

	.pte_update = paravirt_nop,
	.pte_update_defer = paravirt_nop,

1063 1064 1065 1066 1067
	.alloc_pte = xen_alloc_pte_init,
	.release_pte = xen_release_pte_init,
	.alloc_pmd = xen_alloc_pte_init,
	.alloc_pmd_clone = paravirt_nop,
	.release_pmd = xen_release_pte_init,
1068 1069 1070 1071

#ifdef CONFIG_HIGHPTE
	.kmap_atomic_pte = xen_kmap_atomic_pte,
#endif
1072

1073
	.set_pte = NULL,	/* see xen_pagetable_setup_* */
J
Jeremy Fitzhardinge 已提交
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
	.set_pte_at = xen_set_pte_at,
	.set_pmd = xen_set_pmd,

	.pte_val = xen_pte_val,
	.pgd_val = xen_pgd_val,

	.make_pte = xen_make_pte,
	.make_pgd = xen_make_pgd,

#ifdef CONFIG_X86_PAE
	.set_pte_atomic = xen_set_pte_atomic,
	.set_pte_present = xen_set_pte_at,
	.set_pud = xen_set_pud,
	.pte_clear = xen_pte_clear,
	.pmd_clear = xen_pmd_clear,

	.make_pmd = xen_make_pmd,
	.pmd_val = xen_pmd_val,
#endif	/* PAE */

	.activate_mm = xen_activate_mm,
	.dup_mmap = xen_dup_mmap,
	.exit_mmap = xen_exit_mmap,

1098 1099 1100 1101
	.lazy_mode = {
		.enter = paravirt_enter_lazy_mmu,
		.leave = xen_leave_lazy,
	},
1102 1103
};

J
Jeremy Fitzhardinge 已提交
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
#ifdef CONFIG_SMP
static const struct smp_ops xen_smp_ops __initdata = {
	.smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu,
	.smp_prepare_cpus = xen_smp_prepare_cpus,
	.cpu_up = xen_cpu_up,
	.smp_cpus_done = xen_smp_cpus_done,

	.smp_send_stop = xen_smp_send_stop,
	.smp_send_reschedule = xen_smp_send_reschedule,
	.smp_call_function_mask = xen_smp_call_function_mask,
};
#endif	/* CONFIG_SMP */

J
Jeremy Fitzhardinge 已提交
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
static void xen_reboot(int reason)
{
#ifdef CONFIG_SMP
	smp_send_stop();
#endif

	if (HYPERVISOR_sched_op(SCHEDOP_shutdown, reason))
		BUG();
}

static void xen_restart(char *msg)
{
	xen_reboot(SHUTDOWN_reboot);
}

static void xen_emergency_restart(void)
{
	xen_reboot(SHUTDOWN_reboot);
}

static void xen_machine_halt(void)
{
	xen_reboot(SHUTDOWN_poweroff);
}

static void xen_crash_shutdown(struct pt_regs *regs)
{
	xen_reboot(SHUTDOWN_crash);
}

static const struct machine_ops __initdata xen_machine_ops = {
	.restart = xen_restart,
	.halt = xen_machine_halt,
	.power_off = xen_machine_halt,
	.shutdown = xen_machine_halt,
	.crash_shutdown = xen_crash_shutdown,
	.emergency_restart = xen_emergency_restart,
};

1156

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
static void __init xen_reserve_top(void)
{
	unsigned long top = HYPERVISOR_VIRT_START;
	struct xen_platform_parameters pp;

	if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
		top = pp.virt_start;

	reserve_top_address(-top + 2 * PAGE_SIZE);
}

1168 1169 1170 1171 1172 1173 1174 1175
/* First C function to be called on Xen boot */
asmlinkage void __init xen_start_kernel(void)
{
	pgd_t *pgd;

	if (!xen_start_info)
		return;

J
Jeremy Fitzhardinge 已提交
1176
	BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
1177 1178

	/* Install Xen paravirt ops */
1179 1180 1181 1182 1183 1184 1185 1186
	pv_info = xen_info;
	pv_init_ops = xen_init_ops;
	pv_time_ops = xen_time_ops;
	pv_cpu_ops = xen_cpu_ops;
	pv_irq_ops = xen_irq_ops;
	pv_apic_ops = xen_apic_ops;
	pv_mmu_ops = xen_mmu_ops;

J
Jeremy Fitzhardinge 已提交
1187 1188
	machine_ops = xen_machine_ops;

J
Jeremy Fitzhardinge 已提交
1189 1190 1191
#ifdef CONFIG_SMP
	smp_ops = xen_smp_ops;
#endif
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207

	xen_setup_features();

	/* Get mfn list */
	if (!xen_feature(XENFEAT_auto_translated_physmap))
		phys_to_machine_mapping = (unsigned long *)xen_start_info->mfn_list;

	pgd = (pgd_t *)xen_start_info->pt_base;

	init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;

	init_mm.pgd = pgd; /* use the Xen pagetables to start */

	/* keep using Xen gdt for now; no urgent need to change it */

	x86_write_percpu(xen_cr3, __pa(pgd));
1208
	x86_write_percpu(xen_current_cr3, __pa(pgd));
1209 1210

	/* Don't do the full vcpu_info placement stuff until we have a
1211
	   possible map and a non-dummy shared_info. */
1212
	per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1213

1214
	pv_info.kernel_rpl = 1;
1215
	if (xen_feature(XENFEAT_supervisor_mode_kernel))
1216
		pv_info.kernel_rpl = 0;
1217 1218

	/* set the limit of our address space */
1219
	xen_reserve_top();
1220 1221 1222 1223 1224 1225 1226

	/* set up basic CPUID stuff */
	cpu_detect(&new_cpu_data);
	new_cpu_data.hard_math = 1;
	new_cpu_data.x86_capability[0] = cpuid_edx(1);

	/* Poke various useful things into boot_params */
1227 1228 1229 1230
	boot_params.hdr.type_of_loader = (9 << 4) | 0;
	boot_params.hdr.ramdisk_image = xen_start_info->mod_start
		? __pa(xen_start_info->mod_start) : 0;
	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1231

1232 1233 1234
	if (!is_initial_xendomain())
		add_preferred_console("hvc", 0, NULL);

1235 1236 1237
	/* Start the world */
	start_kernel();
}