enlighten.c 29.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Core of Xen paravirt_ops implementation.
 *
 * This file contains the xen_paravirt_ops structure itself, and the
 * implementations for:
 * - privileged instructions
 * - interrupt flags
 * - segment operations
 * - booting and setup
 *
 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
 */

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/smp.h>
#include <linux/preempt.h>
18
#include <linux/hardirq.h>
19 20 21 22 23 24
#include <linux/percpu.h>
#include <linux/delay.h>
#include <linux/start_kernel.h>
#include <linux/sched.h>
#include <linux/bootmem.h>
#include <linux/module.h>
25 26 27
#include <linux/mm.h>
#include <linux/page-flags.h>
#include <linux/highmem.h>
28 29 30 31

#include <xen/interface/xen.h>
#include <xen/interface/physdev.h>
#include <xen/interface/vcpu.h>
J
Jeremy Fitzhardinge 已提交
32
#include <xen/interface/sched.h>
33 34 35 36 37 38 39 40 41 42 43 44
#include <xen/features.h>
#include <xen/page.h>

#include <asm/paravirt.h>
#include <asm/page.h>
#include <asm/xen/hypercall.h>
#include <asm/xen/hypervisor.h>
#include <asm/fixmap.h>
#include <asm/processor.h>
#include <asm/setup.h>
#include <asm/desc.h>
#include <asm/pgtable.h>
J
Jeremy Fitzhardinge 已提交
45
#include <asm/tlbflush.h>
J
Jeremy Fitzhardinge 已提交
46
#include <asm/reboot.h>
47 48

#include "xen-ops.h"
J
Jeremy Fitzhardinge 已提交
49
#include "mmu.h"
50 51 52 53 54 55
#include "multicalls.h"

EXPORT_SYMBOL_GPL(hypercall_page);

DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

/*
 * Note about cr3 (pagetable base) values:
 *
 * xen_cr3 contains the current logical cr3 value; it contains the
 * last set cr3.  This may not be the current effective cr3, because
 * its update may be being lazily deferred.  However, a vcpu looking
 * at its own cr3 can use this value knowing that it everything will
 * be self-consistent.
 *
 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
 * hypercall to set the vcpu cr3 is complete (so it may be a little
 * out of date, but it will never be set early).  If one vcpu is
 * looking at another vcpu's cr3 value, it should use this variable.
 */
DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */
73 74 75 76

struct start_info *xen_start_info;
EXPORT_SYMBOL_GPL(xen_start_info);

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
static /* __initdata */ struct shared_info dummy_shared_info;

/*
 * Point at some empty memory to start with. We map the real shared_info
 * page as soon as fixmap is up and running.
 */
struct shared_info *HYPERVISOR_shared_info = (void *)&dummy_shared_info;

/*
 * Flag to determine whether vcpu info placement is available on all
 * VCPUs.  We assume it is to start with, and then set it to zero on
 * the first failure.  This is because it can succeed on some VCPUs
 * and not others, since it can involve hypervisor memory allocation,
 * or because the guest failed to guarantee all the appropriate
 * constraints on all VCPUs (ie buffer can't cross a page boundary).
 *
 * Note that any particular CPU may be using a placed vcpu structure,
 * but we can only optimise if the all are.
 *
 * 0: not available, 1: available
 */
98
static int have_vcpu_info_placement = 1;
99 100

static void __init xen_vcpu_setup(int cpu)
101
{
102 103 104 105
	struct vcpu_register_vcpu_info info;
	int err;
	struct vcpu_info *vcpup;

106
	BUG_ON(HYPERVISOR_shared_info == &dummy_shared_info);
107
	per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
108 109 110 111 112 113 114 115 116

	if (!have_vcpu_info_placement)
		return;		/* already tested, not available */

	vcpup = &per_cpu(xen_vcpu_info, cpu);

	info.mfn = virt_to_mfn(vcpup);
	info.offset = offset_in_page(vcpup);

117
	printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
118 119 120 121 122 123 124 125 126 127 128 129 130 131
	       cpu, vcpup, info.mfn, info.offset);

	/* Check to see if the hypervisor will put the vcpu_info
	   structure where we want it, which allows direct access via
	   a percpu-variable. */
	err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);

	if (err) {
		printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
		have_vcpu_info_placement = 0;
	} else {
		/* This cpu is using the registered vcpu info, even if
		   later ones fail to. */
		per_cpu(xen_vcpu, cpu) = vcpup;
132

133 134 135
		printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
		       cpu, vcpup);
	}
136 137 138 139 140
}

static void __init xen_banner(void)
{
	printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
141
	       pv_info.name);
142 143 144
	printk(KERN_INFO "Hypervisor signature: %s\n", xen_start_info->magic);
}

145 146
static void xen_cpuid(unsigned int *ax, unsigned int *bx,
		      unsigned int *cx, unsigned int *dx)
147 148 149 150 151 152 153
{
	unsigned maskedx = ~0;

	/*
	 * Mask out inconvenient features, to try and disable as many
	 * unsupported kernel subsystems as possible.
	 */
154
	if (*ax == 1)
155 156
		maskedx = ~((1 << X86_FEATURE_APIC) |  /* disable APIC */
			    (1 << X86_FEATURE_ACPI) |  /* disable ACPI */
157
			    (1 << X86_FEATURE_SEP)  |  /* disable SEP */
158 159 160
			    (1 << X86_FEATURE_ACC));   /* thermal monitoring */

	asm(XEN_EMULATE_PREFIX "cpuid"
161 162 163 164 165 166
		: "=a" (*ax),
		  "=b" (*bx),
		  "=c" (*cx),
		  "=d" (*dx)
		: "0" (*ax), "2" (*cx));
	*dx &= maskedx;
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
}

static void xen_set_debugreg(int reg, unsigned long val)
{
	HYPERVISOR_set_debugreg(reg, val);
}

static unsigned long xen_get_debugreg(int reg)
{
	return HYPERVISOR_get_debugreg(reg);
}

static unsigned long xen_save_fl(void)
{
	struct vcpu_info *vcpu;
	unsigned long flags;

	vcpu = x86_read_percpu(xen_vcpu);
185

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
	/* flag has opposite sense of mask */
	flags = !vcpu->evtchn_upcall_mask;

	/* convert to IF type flag
	   -0 -> 0x00000000
	   -1 -> 0xffffffff
	*/
	return (-flags) & X86_EFLAGS_IF;
}

static void xen_restore_fl(unsigned long flags)
{
	struct vcpu_info *vcpu;

	/* convert from IF type flag */
	flags = !(flags & X86_EFLAGS_IF);
202 203 204 205 206

	/* There's a one instruction preempt window here.  We need to
	   make sure we're don't switch CPUs between getting the vcpu
	   pointer and updating the mask. */
	preempt_disable();
207 208
	vcpu = x86_read_percpu(xen_vcpu);
	vcpu->evtchn_upcall_mask = flags;
209
	preempt_enable_no_resched();
210

211 212
	/* Doesn't matter if we get preempted here, because any
	   pending event will get dealt with anyway. */
213

214 215 216
	if (flags == 0) {
		preempt_check_resched();
		barrier(); /* unmask then check (avoid races) */
217 218
		if (unlikely(vcpu->evtchn_upcall_pending))
			force_evtchn_callback();
219
	}
220 221 222 223
}

static void xen_irq_disable(void)
{
224 225 226
	/* There's a one instruction preempt window here.  We need to
	   make sure we're don't switch CPUs between getting the vcpu
	   pointer and updating the mask. */
227
	preempt_disable();
228
	x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1;
229 230 231 232 233 234 235
	preempt_enable_no_resched();
}

static void xen_irq_enable(void)
{
	struct vcpu_info *vcpu;

236 237 238
	/* There's a one instruction preempt window here.  We need to
	   make sure we're don't switch CPUs between getting the vcpu
	   pointer and updating the mask. */
239 240 241
	preempt_disable();
	vcpu = x86_read_percpu(xen_vcpu);
	vcpu->evtchn_upcall_mask = 0;
242
	preempt_enable_no_resched();
243

244 245
	/* Doesn't matter if we get preempted here, because any
	   pending event will get dealt with anyway. */
246

247
	barrier(); /* unmask then check (avoid races) */
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
	if (unlikely(vcpu->evtchn_upcall_pending))
		force_evtchn_callback();
}

static void xen_safe_halt(void)
{
	/* Blocking includes an implicit local_irq_enable(). */
	if (HYPERVISOR_sched_op(SCHEDOP_block, 0) != 0)
		BUG();
}

static void xen_halt(void)
{
	if (irqs_disabled())
		HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
	else
		xen_safe_halt();
}

267
static void xen_leave_lazy(void)
268
{
269
	paravirt_leave_lazy(paravirt_get_lazy_mode());
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
	xen_mc_flush();
}

static unsigned long xen_store_tr(void)
{
	return 0;
}

static void xen_set_ldt(const void *addr, unsigned entries)
{
	struct mmuext_op *op;
	struct multicall_space mcs = xen_mc_entry(sizeof(*op));

	op = mcs.args;
	op->cmd = MMUEXT_SET_LDT;
285
	op->arg1.linear_addr = (unsigned long)addr;
286 287 288 289 290 291 292
	op->arg2.nr_ents = entries;

	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_CPU);
}

293
static void xen_load_gdt(const struct desc_ptr *dtr)
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
{
	unsigned long *frames;
	unsigned long va = dtr->address;
	unsigned int size = dtr->size + 1;
	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
	int f;
	struct multicall_space mcs;

	/* A GDT can be up to 64k in size, which corresponds to 8192
	   8-byte entries, or 16 4k pages.. */

	BUG_ON(size > 65536);
	BUG_ON(va & ~PAGE_MASK);

	mcs = xen_mc_entry(sizeof(*frames) * pages);
	frames = mcs.args;

	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
		frames[f] = virt_to_mfn(va);
		make_lowmem_page_readonly((void *)va);
	}

	MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));

	xen_mc_issue(PARAVIRT_LAZY_CPU);
}

static void load_TLS_descriptor(struct thread_struct *t,
				unsigned int cpu, unsigned int i)
{
	struct desc_struct *gdt = get_cpu_gdt_table(cpu);
	xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
	struct multicall_space mc = __xen_mc_entry(0);

	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
}

static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
{
	xen_mc_batch();

	load_TLS_descriptor(t, cpu, 0);
	load_TLS_descriptor(t, cpu, 1);
	load_TLS_descriptor(t, cpu, 2);

	xen_mc_issue(PARAVIRT_LAZY_CPU);
340 341 342 343 344 345 346 347 348 349

	/*
	 * XXX sleazy hack: If we're being called in a lazy-cpu zone,
	 * it means we're in a context switch, and %gs has just been
	 * saved.  This means we can zero it out to prevent faults on
	 * exit from the hypervisor if the next process has no %gs.
	 * Either way, it has been saved, and the new value will get
	 * loaded properly.  This will go away as soon as Xen has been
	 * modified to not save/restore %gs for normal hypercalls.
	 */
350
	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU)
351
		loadsegment(gs, 0);
352 353 354
}

static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
355
				const void *ptr)
356 357 358
{
	unsigned long lp = (unsigned long)&dt[entrynum];
	xmaddr_t mach_lp = virt_to_machine(lp);
359
	u64 entry = *(u64 *)ptr;
360

361 362
	preempt_disable();

363 364 365
	xen_mc_flush();
	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
		BUG();
366 367

	preempt_enable();
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
}

static int cvt_gate_to_trap(int vector, u32 low, u32 high,
			    struct trap_info *info)
{
	u8 type, dpl;

	type = (high >> 8) & 0x1f;
	dpl = (high >> 13) & 3;

	if (type != 0xf && type != 0xe)
		return 0;

	info->vector = vector;
	info->address = (high & 0xffff0000) | (low & 0x0000ffff);
	info->cs = low >> 16;
	info->flags = dpl;
	/* interrupt gates clear IF */
	if (type == 0xe)
		info->flags |= 4;

	return 1;
}

/* Locations of each CPU's IDT */
393
static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
394 395 396

/* Set an IDT entry.  If the entry is part of the current IDT, then
   also update Xen. */
397
static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
398 399
{
	unsigned long p = (unsigned long)&dt[entrynum];
400 401 402 403 404 405
	unsigned long start, end;

	preempt_disable();

	start = __get_cpu_var(idt_desc).address;
	end = start + __get_cpu_var(idt_desc).size + 1;
406 407 408

	xen_mc_flush();

409
	native_write_idt_entry(dt, entrynum, g);
410 411 412

	if (p >= start && (p + 8) <= end) {
		struct trap_info info[2];
413
		u32 *desc = (u32 *)g;
414 415 416

		info[1].address = 0;

417
		if (cvt_gate_to_trap(entrynum, desc[0], desc[1], &info[0]))
418 419 420
			if (HYPERVISOR_set_trap_table(info))
				BUG();
	}
421 422

	preempt_enable();
423 424
}

425
static void xen_convert_trap_info(const struct desc_ptr *desc,
J
Jeremy Fitzhardinge 已提交
426
				  struct trap_info *traps)
427 428 429 430 431 432 433 434 435 436 437 438 439
{
	unsigned in, out, count;

	count = (desc->size+1) / 8;
	BUG_ON(count > 256);

	for (in = out = 0; in < count; in++) {
		const u32 *entry = (u32 *)(desc->address + in * 8);

		if (cvt_gate_to_trap(in, entry[0], entry[1], &traps[out]))
			out++;
	}
	traps[out].address = 0;
J
Jeremy Fitzhardinge 已提交
440 441 442 443
}

void xen_copy_trap_info(struct trap_info *traps)
{
444
	const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
J
Jeremy Fitzhardinge 已提交
445 446 447 448 449 450 451

	xen_convert_trap_info(desc, traps);
}

/* Load a new IDT into Xen.  In principle this can be per-CPU, so we
   hold a spinlock to protect the static traps[] array (static because
   it avoids allocation, and saves stack space). */
452
static void xen_load_idt(const struct desc_ptr *desc)
J
Jeremy Fitzhardinge 已提交
453 454 455 456 457 458
{
	static DEFINE_SPINLOCK(lock);
	static struct trap_info traps[257];

	spin_lock(&lock);

459 460
	__get_cpu_var(idt_desc) = *desc;

J
Jeremy Fitzhardinge 已提交
461
	xen_convert_trap_info(desc, traps);
462 463 464 465 466 467 468 469 470 471 472

	xen_mc_flush();
	if (HYPERVISOR_set_trap_table(traps))
		BUG();

	spin_unlock(&lock);
}

/* Write a GDT descriptor entry.  Ignore LDT descriptors, since
   they're handled differently. */
static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
473
				const void *desc, int type)
474
{
475 476
	preempt_disable();

477 478 479
	switch (type) {
	case DESC_LDT:
	case DESC_TSS:
480 481 482 483 484 485 486
		/* ignore */
		break;

	default: {
		xmaddr_t maddr = virt_to_machine(&dt[entry]);

		xen_mc_flush();
487
		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
488 489 490 491
			BUG();
	}

	}
492 493

	preempt_enable();
494 495
}

496
static void xen_load_sp0(struct tss_struct *tss,
497
			  struct thread_struct *thread)
498 499
{
	struct multicall_space mcs = xen_mc_entry(0);
500
	MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
	xen_mc_issue(PARAVIRT_LAZY_CPU);
}

static void xen_set_iopl_mask(unsigned mask)
{
	struct physdev_set_iopl set_iopl;

	/* Force the change at ring 0. */
	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
}

static void xen_io_delay(void)
{
}

#ifdef CONFIG_X86_LOCAL_APIC
518
static u32 xen_apic_read(unsigned long reg)
519 520 521
{
	return 0;
}
J
Jeremy Fitzhardinge 已提交
522

523
static void xen_apic_write(unsigned long reg, u32 val)
J
Jeremy Fitzhardinge 已提交
524 525 526 527
{
	/* Warn to see if there's any stray references */
	WARN_ON(1);
}
528 529 530 531
#endif

static void xen_flush_tlb(void)
{
J
Jeremy Fitzhardinge 已提交
532 533
	struct mmuext_op *op;
	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
534

J
Jeremy Fitzhardinge 已提交
535 536 537 538 539
	op = mcs.args;
	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_MMU);
540 541 542 543
}

static void xen_flush_tlb_single(unsigned long addr)
{
J
Jeremy Fitzhardinge 已提交
544 545
	struct mmuext_op *op;
	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
546

J
Jeremy Fitzhardinge 已提交
547 548 549 550 551 552
	op = mcs.args;
	op->cmd = MMUEXT_INVLPG_LOCAL;
	op->arg1.linear_addr = addr & PAGE_MASK;
	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_MMU);
553 554
}

J
Jeremy Fitzhardinge 已提交
555 556 557
static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
				 unsigned long va)
{
J
Jeremy Fitzhardinge 已提交
558 559 560 561
	struct {
		struct mmuext_op op;
		cpumask_t mask;
	} *args;
J
Jeremy Fitzhardinge 已提交
562
	cpumask_t cpumask = *cpus;
J
Jeremy Fitzhardinge 已提交
563
	struct multicall_space mcs;
J
Jeremy Fitzhardinge 已提交
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579

	/*
	 * A couple of (to be removed) sanity checks:
	 *
	 * - current CPU must not be in mask
	 * - mask must exist :)
	 */
	BUG_ON(cpus_empty(cpumask));
	BUG_ON(cpu_isset(smp_processor_id(), cpumask));
	BUG_ON(!mm);

	/* If a CPU which we ran on has gone down, OK. */
	cpus_and(cpumask, cpumask, cpu_online_map);
	if (cpus_empty(cpumask))
		return;

J
Jeremy Fitzhardinge 已提交
580 581 582 583 584
	mcs = xen_mc_entry(sizeof(*args));
	args = mcs.args;
	args->mask = cpumask;
	args->op.arg2.vcpumask = &args->mask;

J
Jeremy Fitzhardinge 已提交
585
	if (va == TLB_FLUSH_ALL) {
J
Jeremy Fitzhardinge 已提交
586
		args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
J
Jeremy Fitzhardinge 已提交
587
	} else {
J
Jeremy Fitzhardinge 已提交
588 589
		args->op.cmd = MMUEXT_INVLPG_MULTI;
		args->op.arg1.linear_addr = va;
J
Jeremy Fitzhardinge 已提交
590 591
	}

J
Jeremy Fitzhardinge 已提交
592 593 594
	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_MMU);
J
Jeremy Fitzhardinge 已提交
595 596
}

597 598 599 600 601
static void xen_write_cr2(unsigned long cr2)
{
	x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
}

602 603 604 605 606
static unsigned long xen_read_cr2(void)
{
	return x86_read_percpu(xen_vcpu)->arch.cr2;
}

607 608 609 610 611
static unsigned long xen_read_cr2_direct(void)
{
	return x86_read_percpu(xen_vcpu_info.arch.cr2);
}

612 613
static void xen_write_cr4(unsigned long cr4)
{
614 615
	/* Just ignore cr4 changes; Xen doesn't allow us to do
	   anything anyway. */
616 617 618 619 620 621 622
}

static unsigned long xen_read_cr3(void)
{
	return x86_read_percpu(xen_cr3);
}

623 624 625 626 627
static void set_current_cr3(void *v)
{
	x86_write_percpu(xen_current_cr3, (unsigned long)v);
}

628 629
static void xen_write_cr3(unsigned long cr3)
{
630 631 632 633
	struct mmuext_op *op;
	struct multicall_space mcs;
	unsigned long mfn = pfn_to_mfn(PFN_DOWN(cr3));

634 635
	BUG_ON(preemptible());

636
	mcs = xen_mc_entry(sizeof(*op));  /* disables interrupts */
637

638 639
	/* Update while interrupts are disabled, so its atomic with
	   respect to ipis */
640 641
	x86_write_percpu(xen_cr3, cr3);

642 643 644
	op = mcs.args;
	op->cmd = MMUEXT_NEW_BASEPTR;
	op->arg1.mfn = mfn;
645

646
	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
647

648 649 650
	/* Update xen_update_cr3 once the batch has actually
	   been submitted. */
	xen_mc_callback(set_current_cr3, (void *)cr3);
651

652
	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
653 654
}

655 656
/* Early in boot, while setting up the initial pagetable, assume
   everything is pinned. */
657
static __init void xen_alloc_pt_init(struct mm_struct *mm, u32 pfn)
658
{
659
	BUG_ON(mem_map);	/* should only be used early */
660 661 662
	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
}

663 664 665 666 667 668 669
/* Early release_pt assumes that all pts are pinned, since there's
   only init_mm and anything attached to that is pinned. */
static void xen_release_pt_init(u32 pfn)
{
	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
}

670 671 672 673 674 675 676 677 678
static void pin_pagetable_pfn(unsigned level, unsigned long pfn)
{
	struct mmuext_op op;
	op.cmd = level;
	op.arg1.mfn = pfn_to_mfn(pfn);
	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
		BUG();
}

679 680
/* This needs to make sure the new pte page is pinned iff its being
   attached to a pinned pagetable. */
681
static void xen_alloc_ptpage(struct mm_struct *mm, u32 pfn, unsigned level)
682
{
683
	struct page *page = pfn_to_page(pfn);
684

685 686 687
	if (PagePinned(virt_to_page(mm->pgd))) {
		SetPagePinned(page);

688
		if (!PageHighMem(page)) {
689
			make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
690
			pin_pagetable_pfn(level, pfn);
691
		} else
692 693 694 695
			/* make sure there are no stray mappings of
			   this page */
			kmap_flush_unused();
	}
696 697
}

698 699 700 701 702 703 704 705 706 707
static void xen_alloc_pt(struct mm_struct *mm, u32 pfn)
{
	xen_alloc_ptpage(mm, pfn, MMUEXT_PIN_L1_TABLE);
}

static void xen_alloc_pd(struct mm_struct *mm, u32 pfn)
{
	xen_alloc_ptpage(mm, pfn, MMUEXT_PIN_L2_TABLE);
}

708
/* This should never happen until we're OK to use struct page */
709 710
static void xen_release_pt(u32 pfn)
{
711 712 713
	struct page *page = pfn_to_page(pfn);

	if (PagePinned(page)) {
714 715
		if (!PageHighMem(page)) {
			pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
716
			make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
717
		}
718
	}
719 720
}

721 722
#ifdef CONFIG_HIGHPTE
static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
723
{
724 725 726 727 728 729 730 731 732 733 734
	pgprot_t prot = PAGE_KERNEL;

	if (PagePinned(page))
		prot = PAGE_KERNEL_RO;

	if (0 && PageHighMem(page))
		printk("mapping highpte %lx type %d prot %s\n",
		       page_to_pfn(page), type,
		       (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");

	return kmap_atomic_prot(page, type, prot);
735
}
736
#endif
737

738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
{
	/* If there's an existing pte, then don't allow _PAGE_RW to be set */
	if (pte_val_ma(*ptep) & _PAGE_PRESENT)
		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
			       pte_val_ma(pte));

	return pte;
}

/* Init-time set_pte while constructing initial pagetables, which
   doesn't allow RO pagetable pages to be remapped RW */
static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
{
	pte = mask_rw_pte(ptep, pte);

	xen_set_pte(ptep, pte);
}

757 758 759 760
static __init void xen_pagetable_setup_start(pgd_t *base)
{
	pgd_t *xen_pgd = (pgd_t *)xen_start_info->pt_base;

761
	/* special set_pte for pagetable initialization */
762
	pv_mmu_ops.set_pte = xen_set_pte_init;
763

764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
	init_mm.pgd = base;
	/*
	 * copy top-level of Xen-supplied pagetable into place.	 For
	 * !PAE we can use this as-is, but for PAE it is a stand-in
	 * while we copy the pmd pages.
	 */
	memcpy(base, xen_pgd, PTRS_PER_PGD * sizeof(pgd_t));

	if (PTRS_PER_PMD > 1) {
		int i;
		/*
		 * For PAE, need to allocate new pmds, rather than
		 * share Xen's, since Xen doesn't like pmd's being
		 * shared between address spaces.
		 */
		for (i = 0; i < PTRS_PER_PGD; i++) {
			if (pgd_val_ma(xen_pgd[i]) & _PAGE_PRESENT) {
				pmd_t *pmd = (pmd_t *)alloc_bootmem_low_pages(PAGE_SIZE);

				memcpy(pmd, (void *)pgd_page_vaddr(xen_pgd[i]),
				       PAGE_SIZE);

786
				make_lowmem_page_readonly(pmd);
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802

				set_pgd(&base[i], __pgd(1 + __pa(pmd)));
			} else
				pgd_clear(&base[i]);
		}
	}

	/* make sure zero_page is mapped RO so we can use it in pagetables */
	make_lowmem_page_readonly(empty_zero_page);
	make_lowmem_page_readonly(base);
	/*
	 * Switch to new pagetable.  This is done before
	 * pagetable_init has done anything so that the new pages
	 * added to the table can be prepared properly for Xen.
	 */
	xen_write_cr3(__pa(base));
803 804 805 806

	/* Unpin initial Xen pagetable */
	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
			  PFN_DOWN(__pa(xen_start_info->pt_base)));
807 808
}

809
static __init void setup_shared_info(void)
810 811
{
	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
812 813
		unsigned long addr = fix_to_virt(FIX_PARAVIRT_BOOTMAP);

814 815 816 817 818
		/*
		 * Create a mapping for the shared info page.
		 * Should be set_fixmap(), but shared_info is a machine
		 * address with no corresponding pseudo-phys address.
		 */
819
		set_pte_mfn(addr,
820 821 822
			    PFN_DOWN(xen_start_info->shared_info),
			    PAGE_KERNEL);

823
		HYPERVISOR_shared_info = (struct shared_info *)addr;
824 825 826 827
	} else
		HYPERVISOR_shared_info =
			(struct shared_info *)__va(xen_start_info->shared_info);

828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
#ifndef CONFIG_SMP
	/* In UP this is as good a place as any to set up shared info */
	xen_setup_vcpu_info_placement();
#endif
}

static __init void xen_pagetable_setup_done(pgd_t *base)
{
	/* This will work as long as patching hasn't happened yet
	   (which it hasn't) */
	pv_mmu_ops.alloc_pt = xen_alloc_pt;
	pv_mmu_ops.alloc_pd = xen_alloc_pd;
	pv_mmu_ops.release_pt = xen_release_pt;
	pv_mmu_ops.release_pd = xen_release_pt;
	pv_mmu_ops.set_pte = xen_set_pte;

	setup_shared_info();

846 847 848
	/* Actually pin the pagetable down, but we can't set PG_pinned
	   yet because the page structures don't exist yet. */
	{
849 850
		unsigned level;

851
#ifdef CONFIG_X86_PAE
852
		level = MMUEXT_PIN_L3_TABLE;
853
#else
854
		level = MMUEXT_PIN_L2_TABLE;
855
#endif
856 857

		pin_pagetable_pfn(level, PFN_DOWN(__pa(base)));
858
	}
859
}
860

861 862 863 864 865 866 867 868 869 870 871 872 873
/* This is called once we have the cpu_possible_map */
void __init xen_setup_vcpu_info_placement(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		xen_vcpu_setup(cpu);

	/* xen_vcpu_setup managed to place the vcpu_info within the
	   percpu area for all cpus, so make use of it */
	if (have_vcpu_info_placement) {
		printk(KERN_INFO "Xen: using vcpu_info placement\n");

874 875 876 877 878 879
		pv_irq_ops.save_fl = xen_save_fl_direct;
		pv_irq_ops.restore_fl = xen_restore_fl_direct;
		pv_irq_ops.irq_disable = xen_irq_disable_direct;
		pv_irq_ops.irq_enable = xen_irq_enable_direct;
		pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
		pv_cpu_ops.iret = xen_iret_direct;
880
	}
881 882
}

883 884
static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
			  unsigned long addr, unsigned len)
885 886 887 888 889 890
{
	char *start, *end, *reloc;
	unsigned ret;

	start = end = reloc = NULL;

891 892
#define SITE(op, x)							\
	case PARAVIRT_PATCH(op.x):					\
893 894 895 896 897 898 899 900
	if (have_vcpu_info_placement) {					\
		start = (char *)xen_##x##_direct;			\
		end = xen_##x##_direct_end;				\
		reloc = xen_##x##_direct_reloc;				\
	}								\
	goto patch_site

	switch (type) {
901 902 903 904
		SITE(pv_irq_ops, irq_enable);
		SITE(pv_irq_ops, irq_disable);
		SITE(pv_irq_ops, save_fl);
		SITE(pv_irq_ops, restore_fl);
905 906 907 908 909 910
#undef SITE

	patch_site:
		if (start == NULL || (end-start) > len)
			goto default_patch;

911
		ret = paravirt_patch_insns(insnbuf, len, start, end);
912 913 914 915 916 917 918

		/* Note: because reloc is assigned from something that
		   appears to be an array, gcc assumes it's non-null,
		   but doesn't know its relationship with start and
		   end. */
		if (reloc > start && reloc < end) {
			int reloc_off = reloc - start;
919 920
			long *relocp = (long *)(insnbuf + reloc_off);
			long delta = start - (char *)addr;
921 922 923 924 925 926 927

			*relocp += delta;
		}
		break;

	default_patch:
	default:
928 929
		ret = paravirt_patch_default(type, clobbers, insnbuf,
					     addr, len);
930 931 932 933 934 935
		break;
	}

	return ret;
}

936
static const struct pv_info xen_info __initdata = {
937 938 939 940
	.paravirt_enabled = 1,
	.shared_kernel_pmd = 0,

	.name = "Xen",
941
};
942

943
static const struct pv_init_ops xen_init_ops __initdata = {
944
	.patch = xen_patch,
945

946
	.banner = xen_banner,
947 948
	.memory_setup = xen_memory_setup,
	.arch_setup = xen_arch_setup,
949
	.post_allocator_init = xen_mark_init_mm_pinned,
950
};
951

952
static const struct pv_time_ops xen_time_ops __initdata = {
J
Jeremy Fitzhardinge 已提交
953
	.time_init = xen_time_init,
954

J
Jeremy Fitzhardinge 已提交
955 956 957
	.set_wallclock = xen_set_wallclock,
	.get_wallclock = xen_get_wallclock,
	.get_cpu_khz = xen_cpu_khz,
J
Jeremy Fitzhardinge 已提交
958
	.sched_clock = xen_sched_clock,
959
};
J
Jeremy Fitzhardinge 已提交
960

961
static const struct pv_cpu_ops xen_cpu_ops __initdata = {
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
	.cpuid = xen_cpuid,

	.set_debugreg = xen_set_debugreg,
	.get_debugreg = xen_get_debugreg,

	.clts = native_clts,

	.read_cr0 = native_read_cr0,
	.write_cr0 = native_write_cr0,

	.read_cr4 = native_read_cr4,
	.read_cr4_safe = native_read_cr4_safe,
	.write_cr4 = xen_write_cr4,

	.wbinvd = native_wbinvd,

	.read_msr = native_read_msr_safe,
	.write_msr = native_write_msr_safe,
	.read_tsc = native_read_tsc,
	.read_pmc = native_read_pmc,

	.iret = (void *)&hypercall_page[__HYPERVISOR_iret],
984
	.irq_enable_syscall_ret = NULL,  /* never called */
985 986 987 988 989 990 991 992 993 994 995 996 997 998

	.load_tr_desc = paravirt_nop,
	.set_ldt = xen_set_ldt,
	.load_gdt = xen_load_gdt,
	.load_idt = xen_load_idt,
	.load_tls = xen_load_tls,

	.store_gdt = native_store_gdt,
	.store_idt = native_store_idt,
	.store_tr = xen_store_tr,

	.write_ldt_entry = xen_write_ldt_entry,
	.write_gdt_entry = xen_write_gdt_entry,
	.write_idt_entry = xen_write_idt_entry,
999
	.load_sp0 = xen_load_sp0,
1000 1001 1002 1003

	.set_iopl_mask = xen_set_iopl_mask,
	.io_delay = xen_io_delay,

1004 1005 1006 1007
	.lazy_mode = {
		.enter = paravirt_enter_lazy_cpu,
		.leave = xen_leave_lazy,
	},
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
};

static const struct pv_irq_ops xen_irq_ops __initdata = {
	.init_IRQ = xen_init_IRQ,
	.save_fl = xen_save_fl,
	.restore_fl = xen_restore_fl,
	.irq_disable = xen_irq_disable,
	.irq_enable = xen_irq_enable,
	.safe_halt = xen_safe_halt,
	.halt = xen_halt,
};
1019

1020
static const struct pv_apic_ops xen_apic_ops __initdata = {
1021
#ifdef CONFIG_X86_LOCAL_APIC
J
Jeremy Fitzhardinge 已提交
1022 1023
	.apic_write = xen_apic_write,
	.apic_write_atomic = xen_apic_write,
1024 1025 1026 1027 1028
	.apic_read = xen_apic_read,
	.setup_boot_clock = paravirt_nop,
	.setup_secondary_clock = paravirt_nop,
	.startup_ipi_hook = paravirt_nop,
#endif
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
};

static const struct pv_mmu_ops xen_mmu_ops __initdata = {
	.pagetable_setup_start = xen_pagetable_setup_start,
	.pagetable_setup_done = xen_pagetable_setup_done,

	.read_cr2 = xen_read_cr2,
	.write_cr2 = xen_write_cr2,

	.read_cr3 = xen_read_cr3,
	.write_cr3 = xen_write_cr3,
1040 1041 1042 1043

	.flush_tlb_user = xen_flush_tlb,
	.flush_tlb_kernel = xen_flush_tlb,
	.flush_tlb_single = xen_flush_tlb_single,
J
Jeremy Fitzhardinge 已提交
1044
	.flush_tlb_others = xen_flush_tlb_others,
1045 1046 1047 1048

	.pte_update = paravirt_nop,
	.pte_update_defer = paravirt_nop,

1049
	.alloc_pt = xen_alloc_pt_init,
1050 1051
	.release_pt = xen_release_pt_init,
	.alloc_pd = xen_alloc_pt_init,
1052
	.alloc_pd_clone = paravirt_nop,
1053
	.release_pd = xen_release_pt_init,
1054 1055 1056 1057

#ifdef CONFIG_HIGHPTE
	.kmap_atomic_pte = xen_kmap_atomic_pte,
#endif
1058

1059
	.set_pte = NULL,	/* see xen_pagetable_setup_* */
J
Jeremy Fitzhardinge 已提交
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
	.set_pte_at = xen_set_pte_at,
	.set_pmd = xen_set_pmd,

	.pte_val = xen_pte_val,
	.pgd_val = xen_pgd_val,

	.make_pte = xen_make_pte,
	.make_pgd = xen_make_pgd,

#ifdef CONFIG_X86_PAE
	.set_pte_atomic = xen_set_pte_atomic,
	.set_pte_present = xen_set_pte_at,
	.set_pud = xen_set_pud,
	.pte_clear = xen_pte_clear,
	.pmd_clear = xen_pmd_clear,

	.make_pmd = xen_make_pmd,
	.pmd_val = xen_pmd_val,
#endif	/* PAE */

	.activate_mm = xen_activate_mm,
	.dup_mmap = xen_dup_mmap,
	.exit_mmap = xen_exit_mmap,

1084 1085 1086 1087
	.lazy_mode = {
		.enter = paravirt_enter_lazy_mmu,
		.leave = xen_leave_lazy,
	},
1088 1089
};

J
Jeremy Fitzhardinge 已提交
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
#ifdef CONFIG_SMP
static const struct smp_ops xen_smp_ops __initdata = {
	.smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu,
	.smp_prepare_cpus = xen_smp_prepare_cpus,
	.cpu_up = xen_cpu_up,
	.smp_cpus_done = xen_smp_cpus_done,

	.smp_send_stop = xen_smp_send_stop,
	.smp_send_reschedule = xen_smp_send_reschedule,
	.smp_call_function_mask = xen_smp_call_function_mask,
};
#endif	/* CONFIG_SMP */

J
Jeremy Fitzhardinge 已提交
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
static void xen_reboot(int reason)
{
#ifdef CONFIG_SMP
	smp_send_stop();
#endif

	if (HYPERVISOR_sched_op(SCHEDOP_shutdown, reason))
		BUG();
}

static void xen_restart(char *msg)
{
	xen_reboot(SHUTDOWN_reboot);
}

static void xen_emergency_restart(void)
{
	xen_reboot(SHUTDOWN_reboot);
}

static void xen_machine_halt(void)
{
	xen_reboot(SHUTDOWN_poweroff);
}

static void xen_crash_shutdown(struct pt_regs *regs)
{
	xen_reboot(SHUTDOWN_crash);
}

static const struct machine_ops __initdata xen_machine_ops = {
	.restart = xen_restart,
	.halt = xen_machine_halt,
	.power_off = xen_machine_halt,
	.shutdown = xen_machine_halt,
	.crash_shutdown = xen_crash_shutdown,
	.emergency_restart = xen_emergency_restart,
};

1142

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
static void __init xen_reserve_top(void)
{
	unsigned long top = HYPERVISOR_VIRT_START;
	struct xen_platform_parameters pp;

	if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
		top = pp.virt_start;

	reserve_top_address(-top + 2 * PAGE_SIZE);
}

1154 1155 1156 1157 1158 1159 1160 1161
/* First C function to be called on Xen boot */
asmlinkage void __init xen_start_kernel(void)
{
	pgd_t *pgd;

	if (!xen_start_info)
		return;

J
Jeremy Fitzhardinge 已提交
1162
	BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
1163 1164

	/* Install Xen paravirt ops */
1165 1166 1167 1168 1169 1170 1171 1172
	pv_info = xen_info;
	pv_init_ops = xen_init_ops;
	pv_time_ops = xen_time_ops;
	pv_cpu_ops = xen_cpu_ops;
	pv_irq_ops = xen_irq_ops;
	pv_apic_ops = xen_apic_ops;
	pv_mmu_ops = xen_mmu_ops;

J
Jeremy Fitzhardinge 已提交
1173 1174
	machine_ops = xen_machine_ops;

J
Jeremy Fitzhardinge 已提交
1175 1176 1177
#ifdef CONFIG_SMP
	smp_ops = xen_smp_ops;
#endif
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193

	xen_setup_features();

	/* Get mfn list */
	if (!xen_feature(XENFEAT_auto_translated_physmap))
		phys_to_machine_mapping = (unsigned long *)xen_start_info->mfn_list;

	pgd = (pgd_t *)xen_start_info->pt_base;

	init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;

	init_mm.pgd = pgd; /* use the Xen pagetables to start */

	/* keep using Xen gdt for now; no urgent need to change it */

	x86_write_percpu(xen_cr3, __pa(pgd));
1194
	x86_write_percpu(xen_current_cr3, __pa(pgd));
1195 1196

	/* Don't do the full vcpu_info placement stuff until we have a
1197
	   possible map and a non-dummy shared_info. */
1198
	per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1199

1200
	pv_info.kernel_rpl = 1;
1201
	if (xen_feature(XENFEAT_supervisor_mode_kernel))
1202
		pv_info.kernel_rpl = 0;
1203 1204

	/* set the limit of our address space */
1205
	xen_reserve_top();
1206 1207 1208 1209 1210 1211 1212

	/* set up basic CPUID stuff */
	cpu_detect(&new_cpu_data);
	new_cpu_data.hard_math = 1;
	new_cpu_data.x86_capability[0] = cpuid_edx(1);

	/* Poke various useful things into boot_params */
1213 1214 1215 1216
	boot_params.hdr.type_of_loader = (9 << 4) | 0;
	boot_params.hdr.ramdisk_image = xen_start_info->mod_start
		? __pa(xen_start_info->mod_start) : 0;
	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1217 1218 1219 1220

	/* Start the world */
	start_kernel();
}