fw-card.c 13.9 KB
Newer Older
1 2
/*
 * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

#include <linux/module.h>
#include <linux/errno.h>
21
#include <linux/delay.h>
22
#include <linux/device.h>
23
#include <linux/mutex.h>
24
#include <linux/crc-itu-t.h>
25 26
#include "fw-transaction.h"
#include "fw-topology.h"
27
#include "fw-device.h"
28

29
int fw_compute_block_crc(u32 *block)
30
{
31 32 33 34 35 36 37
	__be32 be32_block[256];
	int i, length;

	length = (*block >> 16) & 0xff;
	for (i = 0; i < length; i++)
		be32_block[i] = cpu_to_be32(block[i + 1]);
	*block |= crc_itu_t(0, (u8 *) be32_block, length * 4);
38

39
	return length;
40 41
}

42
static DEFINE_MUTEX(card_mutex);
43 44 45 46 47
static LIST_HEAD(card_list);

static LIST_HEAD(descriptor_list);
static int descriptor_count;

48 49 50 51 52 53 54 55 56 57 58 59 60 61
#define BIB_CRC(v)		((v) <<  0)
#define BIB_CRC_LENGTH(v)	((v) << 16)
#define BIB_INFO_LENGTH(v)	((v) << 24)

#define BIB_LINK_SPEED(v)	((v) <<  0)
#define BIB_GENERATION(v)	((v) <<  4)
#define BIB_MAX_ROM(v)		((v) <<  8)
#define BIB_MAX_RECEIVE(v)	((v) << 12)
#define BIB_CYC_CLK_ACC(v)	((v) << 16)
#define BIB_PMC			((1) << 27)
#define BIB_BMC			((1) << 28)
#define BIB_ISC			((1) << 29)
#define BIB_CMC			((1) << 30)
#define BIB_IMC			((1) << 31)
62 63

static u32 *
64
generate_config_rom(struct fw_card *card, size_t *config_rom_length)
65 66 67 68 69
{
	struct fw_descriptor *desc;
	static u32 config_rom[256];
	int i, j, length;

70 71
	/*
	 * Initialize contents of config rom buffer.  On the OHCI
72 73 74 75
	 * controller, block reads to the config rom accesses the host
	 * memory, but quadlet read access the hardware bus info block
	 * registers.  That's just crack, but it means we should make
	 * sure the contents of bus info block in host memory mathces
76 77
	 * the version stored in the OHCI registers.
	 */
78

79
	memset(config_rom, 0, sizeof(config_rom));
80
	config_rom[0] = BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0);
81 82 83
	config_rom[1] = 0x31333934;

	config_rom[2] =
84 85 86 87 88
		BIB_LINK_SPEED(card->link_speed) |
		BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
		BIB_MAX_ROM(2) |
		BIB_MAX_RECEIVE(card->max_receive) |
		BIB_BMC | BIB_ISC | BIB_CMC | BIB_IMC;
89 90 91 92 93 94 95 96 97 98 99
	config_rom[3] = card->guid >> 32;
	config_rom[4] = card->guid;

	/* Generate root directory. */
	i = 5;
	config_rom[i++] = 0;
	config_rom[i++] = 0x0c0083c0; /* node capabilities */
	j = i + descriptor_count;

	/* Generate root directory entries for descriptors. */
	list_for_each_entry (desc, &descriptor_list, link) {
100 101
		if (desc->immediate > 0)
			config_rom[i++] = desc->immediate;
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
		config_rom[i] = desc->key | (j - i);
		i++;
		j += desc->length;
	}

	/* Update root directory length. */
	config_rom[5] = (i - 5 - 1) << 16;

	/* End of root directory, now copy in descriptors. */
	list_for_each_entry (desc, &descriptor_list, link) {
		memcpy(&config_rom[i], desc->data, desc->length * 4);
		i += desc->length;
	}

	/* Calculate CRCs for all blocks in the config rom.  This
	 * assumes that CRC length and info length are identical for
	 * the bus info block, which is always the case for this
	 * implementation. */
120 121
	for (i = 0; i < j; i += length + 1)
		length = fw_compute_block_crc(config_rom + i);
122 123 124 125 126 127 128

	*config_rom_length = j;

	return config_rom;
}

static void
129
update_config_roms(void)
130 131 132 133 134 135 136 137 138 139 140 141
{
	struct fw_card *card;
	u32 *config_rom;
	size_t length;

	list_for_each_entry (card, &card_list, link) {
		config_rom = generate_config_rom(card, &length);
		card->driver->set_config_rom(card, config_rom, length);
	}
}

int
142
fw_core_add_descriptor(struct fw_descriptor *desc)
143 144 145
{
	size_t i;

146 147
	/*
	 * Check descriptor is valid; the length of all blocks in the
148
	 * descriptor has to add up to exactly the length of the
149 150
	 * block.
	 */
151 152 153 154 155
	i = 0;
	while (i < desc->length)
		i += (desc->data[i] >> 16) + 1;

	if (i != desc->length)
156
		return -EINVAL;
157

158
	mutex_lock(&card_mutex);
159

160
	list_add_tail(&desc->link, &descriptor_list);
161
	descriptor_count++;
162 163
	if (desc->immediate > 0)
		descriptor_count++;
164 165
	update_config_roms();

166
	mutex_unlock(&card_mutex);
167 168 169 170 171

	return 0;
}

void
172
fw_core_remove_descriptor(struct fw_descriptor *desc)
173
{
174
	mutex_lock(&card_mutex);
175 176 177

	list_del(&desc->link);
	descriptor_count--;
178 179
	if (desc->immediate > 0)
		descriptor_count--;
180 181
	update_config_roms();

182
	mutex_unlock(&card_mutex);
183 184
}

185 186 187 188
static const char gap_count_table[] = {
	63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
};

189 190 191 192 193 194 195 196 197 198 199
struct bm_data {
	struct fw_transaction t;
	struct {
		__be32 arg;
		__be32 data;
	} lock;
	u32 old;
	int rcode;
	struct completion done;
};

200
static void
201 202 203 204 205 206 207 208 209 210 211 212 213
complete_bm_lock(struct fw_card *card, int rcode,
		 void *payload, size_t length, void *data)
{
	struct bm_data *bmd = data;

	if (rcode == RCODE_COMPLETE)
		bmd->old = be32_to_cpu(*(__be32 *) payload);
	bmd->rcode = rcode;
	complete(&bmd->done);
}

static void
fw_card_bm_work(struct work_struct *work)
214
{
215
	struct fw_card *card = container_of(work, struct fw_card, work.work);
216 217
	struct fw_device *root_device;
	struct fw_node *root_node, *local_node;
218
	struct bm_data bmd;
219
	unsigned long flags;
220
	int root_id, new_root_id, irm_id, gap_count, generation, grace;
221
	bool do_reset = false;
222 223

	spin_lock_irqsave(&card->lock, flags);
224 225 226 227 228 229 230 231 232
	local_node = card->local_node;
	root_node  = card->root_node;

	if (local_node == NULL) {
		spin_unlock_irqrestore(&card->lock, flags);
		return;
	}
	fw_node_get(local_node);
	fw_node_get(root_node);
233 234

	generation = card->generation;
235 236 237 238
	root_device = root_node->data;
	if (root_device)
		fw_device_get(root_device);
	root_id = root_node->node_id;
239 240 241 242
	grace = time_after(jiffies, card->reset_jiffies + DIV_ROUND_UP(HZ, 10));

	if (card->bm_generation + 1 == generation ||
	    (card->bm_generation != generation && grace)) {
243 244
		/*
		 * This first step is to figure out who is IRM and
245 246 247 248 249 250 251
		 * then try to become bus manager.  If the IRM is not
		 * well defined (e.g. does not have an active link
		 * layer or does not responds to our lock request, we
		 * will have to do a little vigilante bus management.
		 * In that case, we do a goto into the gap count logic
		 * so that when we do the reset, we still optimize the
		 * gap count.  That could well save a reset in the
252 253
		 * next generation.
		 */
254 255 256

		irm_id = card->irm_node->node_id;
		if (!card->irm_node->link_on) {
257
			new_root_id = local_node->node_id;
258 259 260 261 262 263
			fw_notify("IRM has link off, making local node (%02x) root.\n",
				  new_root_id);
			goto pick_me;
		}

		bmd.lock.arg = cpu_to_be32(0x3f);
264
		bmd.lock.data = cpu_to_be32(local_node->node_id);
265 266 267 268 269 270 271

		spin_unlock_irqrestore(&card->lock, flags);

		init_completion(&bmd.done);
		fw_send_request(card, &bmd.t, TCODE_LOCK_COMPARE_SWAP,
				irm_id, generation,
				SCODE_100, CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
272
				&bmd.lock, sizeof(bmd.lock),
273 274 275 276
				complete_bm_lock, &bmd);
		wait_for_completion(&bmd.done);

		if (bmd.rcode == RCODE_GENERATION) {
277 278 279 280
			/*
			 * Another bus reset happened. Just return,
			 * the BM work has been rescheduled.
			 */
281
			goto out;
282 283 284 285
		}

		if (bmd.rcode == RCODE_COMPLETE && bmd.old != 0x3f)
			/* Somebody else is BM, let them do the work. */
286
			goto out;
287 288 289

		spin_lock_irqsave(&card->lock, flags);
		if (bmd.rcode != RCODE_COMPLETE) {
290 291
			/*
			 * The lock request failed, maybe the IRM
292 293
			 * isn't really IRM capable after all. Let's
			 * do a bus reset and pick the local node as
294 295
			 * root, and thus, IRM.
			 */
296
			new_root_id = local_node->node_id;
297 298 299 300 301
			fw_notify("BM lock failed, making local node (%02x) root.\n",
				  new_root_id);
			goto pick_me;
		}
	} else if (card->bm_generation != generation) {
302 303
		/*
		 * OK, we weren't BM in the last generation, and it's
304
		 * less than 100ms since last bus reset. Reschedule
305 306
		 * this task 100ms from now.
		 */
307 308
		spin_unlock_irqrestore(&card->lock, flags);
		schedule_delayed_work(&card->work, DIV_ROUND_UP(HZ, 10));
309
		goto out;
310 311
	}

312 313
	/*
	 * We're bus manager for this generation, so next step is to
314
	 * make sure we have an active cycle master and do gap count
315 316
	 * optimization.
	 */
317
	card->bm_generation = generation;
318

319
	if (root_device == NULL) {
320 321 322 323
		/*
		 * Either link_on is false, or we failed to read the
		 * config rom.  In either case, pick another root.
		 */
324 325
		new_root_id = local_node->node_id;
	} else if (atomic_read(&root_device->state) != FW_DEVICE_RUNNING) {
326 327 328 329
		/*
		 * If we haven't probed this device yet, bail out now
		 * and let's try again once that's done.
		 */
330
		spin_unlock_irqrestore(&card->lock, flags);
331
		goto out;
332
	} else if (root_device->cmc) {
333 334
		/*
		 * FIXME: I suppose we should set the cmstr bit in the
335 336
		 * STATE_CLEAR register of this node, as described in
		 * 1394-1995, 8.4.2.6.  Also, send out a force root
337 338
		 * packet for this node.
		 */
339
		new_root_id = root_id;
340
	} else {
341 342
		/*
		 * Current root has an active link layer and we
343
		 * successfully read the config rom, but it's not
344 345
		 * cycle master capable.
		 */
346
		new_root_id = local_node->node_id;
347 348
	}

349
 pick_me:
350 351 352 353 354
	/*
	 * Pick a gap count from 1394a table E-1.  The table doesn't cover
	 * the typically much larger 1394b beta repeater delays though.
	 */
	if (!card->beta_repeaters_present &&
355 356
	    root_node->max_hops < ARRAY_SIZE(gap_count_table))
		gap_count = gap_count_table[root_node->max_hops];
357 358 359
	else
		gap_count = 63;

360
	/*
361 362
	 * Finally, figure out if we should do a reset or not.  If we have
	 * done less than 5 resets with the same physical topology and we
363 364
	 * have either a new root or a new gap count setting, let's do it.
	 */
365

366 367
	if (card->bm_retries++ < 5 &&
	    (card->gap_count != gap_count || new_root_id != root_id))
368
		do_reset = true;
369 370 371

	spin_unlock_irqrestore(&card->lock, flags);

372 373
	if (do_reset) {
		fw_notify("phy config: card %d, new root=%x, gap_count=%d\n",
374 375
			  card->index, new_root_id, gap_count);
		fw_send_phy_config(card, new_root_id, generation, gap_count);
376 377
		fw_core_initiate_bus_reset(card, 1);
	}
378 379 380 381 382
 out:
	if (root_device)
		fw_device_put(root_device);
	fw_node_put(root_node);
	fw_node_put(local_node);
383 384
}

385 386 387 388 389 390 391 392 393
static void
flush_timer_callback(unsigned long data)
{
	struct fw_card *card = (struct fw_card *)data;

	fw_flush_transactions(card);
}

void
394
fw_card_initialize(struct fw_card *card, const struct fw_card_driver *driver,
395 396
		   struct device *device)
{
397
	static atomic_t index = ATOMIC_INIT(-1);
398

399
	atomic_set(&card->device_count, 0);
400
	card->index = atomic_inc_return(&index);
401
	card->driver = driver;
402
	card->device = device;
403 404
	card->current_tlabel = 0;
	card->tlabel_mask = 0;
405 406
	card->color = 0;

407
	INIT_LIST_HEAD(&card->transaction_list);
408 409 410 411 412 413
	spin_lock_init(&card->lock);
	setup_timer(&card->flush_timer,
		    flush_timer_callback, (unsigned long)card);

	card->local_node = NULL;

414
	INIT_DELAYED_WORK(&card->work, fw_card_bm_work);
415 416 417 418 419 420 421 422 423 424 425 426 427 428
}
EXPORT_SYMBOL(fw_card_initialize);

int
fw_card_add(struct fw_card *card,
	    u32 max_receive, u32 link_speed, u64 guid)
{
	u32 *config_rom;
	size_t length;

	card->max_receive = max_receive;
	card->link_speed = link_speed;
	card->guid = guid;

429
	mutex_lock(&card_mutex);
430
	config_rom = generate_config_rom(card, &length);
431
	list_add_tail(&card->link, &card_list);
432
	mutex_unlock(&card_mutex);
433 434 435 436 437 438

	return card->driver->enable(card, config_rom, length);
}
EXPORT_SYMBOL(fw_card_add);


439 440
/*
 * The next few functions implements a dummy driver that use once a
441 442 443
 * card driver shuts down an fw_card.  This allows the driver to
 * cleanly unload, as all IO to the card will be handled by the dummy
 * driver instead of calling into the (possibly) unloaded module.  The
444 445
 * dummy driver just fails all IO.
 */
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464

static int
dummy_enable(struct fw_card *card, u32 *config_rom, size_t length)
{
	BUG();
	return -1;
}

static int
dummy_update_phy_reg(struct fw_card *card, int address,
		     int clear_bits, int set_bits)
{
	return -ENODEV;
}

static int
dummy_set_config_rom(struct fw_card *card,
		     u32 *config_rom, size_t length)
{
465 466 467 468
	/*
	 * We take the card out of card_list before setting the dummy
	 * driver, so this should never get called.
	 */
469 470 471 472 473 474 475
	BUG();
	return -1;
}

static void
dummy_send_request(struct fw_card *card, struct fw_packet *packet)
{
476
	packet->callback(packet, card, -ENODEV);
477 478 479 480 481
}

static void
dummy_send_response(struct fw_card *card, struct fw_packet *packet)
{
482
	packet->callback(packet, card, -ENODEV);
483 484
}

485 486 487 488 489 490
static int
dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	return -ENOENT;
}

491 492 493 494 495 496 497 498
static int
dummy_enable_phys_dma(struct fw_card *card,
		      int node_id, int generation)
{
	return -ENODEV;
}

static struct fw_card_driver dummy_driver = {
499
	.name            = "dummy",
500 501 502
	.enable          = dummy_enable,
	.update_phy_reg  = dummy_update_phy_reg,
	.set_config_rom  = dummy_set_config_rom,
503
	.send_request    = dummy_send_request,
504
	.cancel_packet   = dummy_cancel_packet,
505
	.send_response   = dummy_send_response,
506
	.enable_phys_dma = dummy_enable_phys_dma,
507 508 509 510 511
};

void
fw_core_remove_card(struct fw_card *card)
{
512 513
	card->driver->update_phy_reg(card, 4,
				     PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
514 515
	fw_core_initiate_bus_reset(card, 1);

516
	mutex_lock(&card_mutex);
517
	list_del(&card->link);
518
	mutex_unlock(&card_mutex);
519 520 521 522 523

	/* Set up the dummy driver. */
	card->driver = &dummy_driver;

	fw_destroy_nodes(card);
524 525 526 527 528 529
	/*
	 * Wait for all device workqueue jobs to finish.  Otherwise the
	 * firewire-core module could be unloaded before the jobs ran.
	 */
	while (atomic_read(&card->device_count) > 0)
		msleep(100);
530

531
	cancel_delayed_work_sync(&card->work);
532 533
	fw_flush_transactions(card);
	del_timer_sync(&card->flush_timer);
534 535 536 537 538 539
}
EXPORT_SYMBOL(fw_core_remove_card);

int
fw_core_initiate_bus_reset(struct fw_card *card, int short_reset)
{
540 541 542 543
	int reg = short_reset ? 5 : 1;
	int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;

	return card->driver->update_phy_reg(card, reg, 0, bit);
544 545
}
EXPORT_SYMBOL(fw_core_initiate_bus_reset);