fw-card.c 14.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*						-*- c-basic-offset: 8 -*-
 *
 * fw-card.c - card level functions
 *
 * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

#include <linux/module.h>
#include <linux/errno.h>
#include <linux/device.h>
#include "fw-transaction.h"
#include "fw-topology.h"
27
#include "fw-device.h"
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

/* The lib/crc16.c implementation uses the standard (0x8005)
 * polynomial, but we need the ITU-T (or CCITT) polynomial (0x1021).
 * The implementation below works on an array of host-endian u32
 * words, assuming they'll be transmited msb first. */
static u16
crc16_itu_t(const u32 *buffer, size_t length)
{
	int shift, i;
	u32 data;
	u16 sum, crc = 0;

	for (i = 0; i < length; i++) {
		data = *buffer++;
		for (shift = 28; shift >= 0; shift -= 4 ) {
			sum = ((crc >> 12) ^ (data >> shift)) & 0xf;
			crc = (crc << 4) ^ (sum << 12) ^ (sum << 5) ^ (sum);
		}
		crc &= 0xffff;
	}

	return crc;
}

static LIST_HEAD(card_list);

static LIST_HEAD(descriptor_list);
static int descriptor_count;

#define bib_crc(v)		((v) <<  0)
#define bib_crc_length(v)	((v) << 16)
#define bib_info_length(v)	((v) << 24)

#define bib_link_speed(v)	((v) <<  0)
#define bib_generation(v)	((v) <<  4)
#define bib_max_rom(v)		((v) <<  8)
#define bib_max_receive(v)	((v) << 12)
#define bib_cyc_clk_acc(v)	((v) << 16)
#define bib_pmc			((1) << 27)
#define bib_bmc			((1) << 28)
#define bib_isc			((1) << 29)
#define bib_cmc			((1) << 30)
#define bib_imc			((1) << 31)

static u32 *
generate_config_rom (struct fw_card *card, size_t *config_rom_length)
{
	struct fw_descriptor *desc;
	static u32 config_rom[256];
	int i, j, length;

79 80 81 82 83 84
	/* Initialize contents of config rom buffer.  On the OHCI
	 * controller, block reads to the config rom accesses the host
	 * memory, but quadlet read access the hardware bus info block
	 * registers.  That's just crack, but it means we should make
	 * sure the contents of bus info block in host memory mathces
	 * the version stored in the OHCI registers. */
85 86 87 88 89 90 91 92 93 94

	memset(config_rom, 0, sizeof config_rom);
	config_rom[0] = bib_crc_length(4) | bib_info_length(4) | bib_crc(0);
	config_rom[1] = 0x31333934;

	config_rom[2] =
		bib_link_speed(card->link_speed) |
		bib_generation(card->config_rom_generation++ % 14 + 2) |
		bib_max_rom(2) |
		bib_max_receive(card->max_receive) |
95
		bib_bmc | bib_isc | bib_cmc | bib_imc;
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
	config_rom[3] = card->guid >> 32;
	config_rom[4] = card->guid;

	/* Generate root directory. */
	i = 5;
	config_rom[i++] = 0;
	config_rom[i++] = 0x0c0083c0; /* node capabilities */
	config_rom[i++] = 0x03d00d1e; /* vendor id */
	j = i + descriptor_count;

	/* Generate root directory entries for descriptors. */
	list_for_each_entry (desc, &descriptor_list, link) {
		config_rom[i] = desc->key | (j - i);
		i++;
		j += desc->length;
	}

	/* Update root directory length. */
	config_rom[5] = (i - 5 - 1) << 16;

	/* End of root directory, now copy in descriptors. */
	list_for_each_entry (desc, &descriptor_list, link) {
		memcpy(&config_rom[i], desc->data, desc->length * 4);
		i += desc->length;
	}

	/* Calculate CRCs for all blocks in the config rom.  This
	 * assumes that CRC length and info length are identical for
	 * the bus info block, which is always the case for this
	 * implementation. */
	for (i = 0; i < j; i += length + 1) {
		length = (config_rom[i] >> 16) & 0xff;
		config_rom[i] |= crc16_itu_t(&config_rom[i + 1], length);
	}

	*config_rom_length = j;

	return config_rom;
}

static void
update_config_roms (void)
{
	struct fw_card *card;
	u32 *config_rom;
	size_t length;

	list_for_each_entry (card, &card_list, link) {
		config_rom = generate_config_rom(card, &length);
		card->driver->set_config_rom(card, config_rom, length);
	}
}

int
fw_core_add_descriptor (struct fw_descriptor *desc)
{
	size_t i;

	/* Check descriptor is valid; the length of all blocks in the
	 * descriptor has to add up to exactly the length of the
	 * block. */
	i = 0;
	while (i < desc->length)
		i += (desc->data[i] >> 16) + 1;

	if (i != desc->length)
		return -1;

	down_write(&fw_bus_type.subsys.rwsem);

	list_add_tail (&desc->link, &descriptor_list);
	descriptor_count++;
	update_config_roms();

	up_write(&fw_bus_type.subsys.rwsem);

	return 0;
}
EXPORT_SYMBOL(fw_core_add_descriptor);

void
fw_core_remove_descriptor (struct fw_descriptor *desc)
{
	down_write(&fw_bus_type.subsys.rwsem);

	list_del(&desc->link);
	descriptor_count--;
	update_config_roms();

	up_write(&fw_bus_type.subsys.rwsem);
}
EXPORT_SYMBOL(fw_core_remove_descriptor);

189 190 191 192
static const char gap_count_table[] = {
	63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
};

193 194 195 196 197 198 199 200 201 202 203
struct bm_data {
	struct fw_transaction t;
	struct {
		__be32 arg;
		__be32 data;
	} lock;
	u32 old;
	int rcode;
	struct completion done;
};

204
static void
205 206 207 208 209 210 211 212 213 214 215 216 217
complete_bm_lock(struct fw_card *card, int rcode,
		 void *payload, size_t length, void *data)
{
	struct bm_data *bmd = data;

	if (rcode == RCODE_COMPLETE)
		bmd->old = be32_to_cpu(*(__be32 *) payload);
	bmd->rcode = rcode;
	complete(&bmd->done);
}

static void
fw_card_bm_work(struct work_struct *work)
218
{
219
	struct fw_card *card = container_of(work, struct fw_card, work.work);
220
	struct fw_device *root;
221
	struct bm_data bmd;
222
	unsigned long flags;
223 224
	int root_id, new_root_id, irm_id, gap_count, generation, grace;
	int do_reset = 0;
225 226 227 228 229

	spin_lock_irqsave(&card->lock, flags);

	generation = card->generation;
	root = card->root_node->data;
230
	root_id = card->root_node->node_id;
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
	grace = time_after(jiffies, card->reset_jiffies + DIV_ROUND_UP(HZ, 10));

	if (card->bm_generation + 1 == generation ||
	    (card->bm_generation != generation && grace)) {
		/* This first step is to figure out who is IRM and
		 * then try to become bus manager.  If the IRM is not
		 * well defined (e.g. does not have an active link
		 * layer or does not responds to our lock request, we
		 * will have to do a little vigilante bus management.
		 * In that case, we do a goto into the gap count logic
		 * so that when we do the reset, we still optimize the
		 * gap count.  That could well save a reset in the
		 * next generation. */

		irm_id = card->irm_node->node_id;
		if (!card->irm_node->link_on) {
			new_root_id = card->local_node->node_id;
			fw_notify("IRM has link off, making local node (%02x) root.\n",
				  new_root_id);
			goto pick_me;
		}

		bmd.lock.arg = cpu_to_be32(0x3f);
		bmd.lock.data = cpu_to_be32(card->local_node->node_id);

		spin_unlock_irqrestore(&card->lock, flags);

		init_completion(&bmd.done);
		fw_send_request(card, &bmd.t, TCODE_LOCK_COMPARE_SWAP,
				irm_id, generation,
				SCODE_100, CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
				&bmd.lock, sizeof bmd.lock,
				complete_bm_lock, &bmd);
		wait_for_completion(&bmd.done);

		if (bmd.rcode == RCODE_GENERATION) {
			/* Another bus reset happened. Just return,
			 * the BM work has been rescheduled. */
			return;
		}

		if (bmd.rcode == RCODE_COMPLETE && bmd.old != 0x3f)
			/* Somebody else is BM, let them do the work. */
			return;

		spin_lock_irqsave(&card->lock, flags);
		if (bmd.rcode != RCODE_COMPLETE) {
			/* The lock request failed, maybe the IRM
			 * isn't really IRM capable after all. Let's
			 * do a bus reset and pick the local node as
			 * root, and thus, IRM. */
			new_root_id = card->local_node->node_id;
			fw_notify("BM lock failed, making local node (%02x) root.\n",
				  new_root_id);
			goto pick_me;
		}
	} else if (card->bm_generation != generation) {
		/* OK, we weren't BM in the last generation, and it's
		 * less than 100ms since last bus reset. Reschedule
		 * this task 100ms from now. */
		spin_unlock_irqrestore(&card->lock, flags);
		schedule_delayed_work(&card->work, DIV_ROUND_UP(HZ, 10));
		return;
	}

	/* We're bus manager for this generation, so next step is to
	 * make sure we have an active cycle master and do gap count
	 * optimization. */
	card->bm_generation = generation;
300

301
	if (root == NULL) {
302 303
		/* Either link_on is false, or we failed to read the
		 * config rom.  In either case, pick another root. */
304
		new_root_id = card->local_node->node_id;
305
	} else if (atomic_read(&root->state) != FW_DEVICE_RUNNING) {
306 307
		/* If we haven't probed this device yet, bail out now
		 * and let's try again once that's done. */
308 309
		spin_unlock_irqrestore(&card->lock, flags);
		return;
310
	} else if (root->config_rom[2] & bib_cmc) {
311 312 313 314
		/* FIXME: I suppose we should set the cmstr bit in the
		 * STATE_CLEAR register of this node, as described in
		 * 1394-1995, 8.4.2.6.  Also, send out a force root
		 * packet for this node. */
315
		new_root_id = root_id;
316
	} else {
317 318 319
		/* Current root has an active link layer and we
		 * successfully read the config rom, but it's not
		 * cycle master capable. */
320
		new_root_id = card->local_node->node_id;
321 322
	}

323
 pick_me:
324 325 326 327 328 329 330 331 332 333
	/* Now figure out what gap count to set. */
	if (card->topology_type == FW_TOPOLOGY_A &&
	    card->root_node->max_hops < ARRAY_SIZE(gap_count_table))
		gap_count = gap_count_table[card->root_node->max_hops];
	else
		gap_count = 63;

	/* Finally, figure out if we should do a reset or not.  If we've
	 * done less that 5 resets with the same physical topology and we
	 * have either a new root or a new gap count setting, let's do it. */
334

335 336
	if (card->bm_retries++ < 5 &&
	    (card->gap_count != gap_count || new_root_id != root_id))
337
		do_reset = 1;
338 339 340

	spin_unlock_irqrestore(&card->lock, flags);

341 342
	if (do_reset) {
		fw_notify("phy config: card %d, new root=%x, gap_count=%d\n",
343 344
			  card->index, new_root_id, gap_count);
		fw_send_phy_config(card, new_root_id, generation, gap_count);
345 346 347 348
		fw_core_initiate_bus_reset(card, 1);
	}
}

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
static void
release_card(struct device *device)
{
	struct fw_card *card =
		container_of(device, struct fw_card, card_device);

	kfree(card);
}

static void
flush_timer_callback(unsigned long data)
{
	struct fw_card *card = (struct fw_card *)data;

	fw_flush_transactions(card);
}

void
367
fw_card_initialize(struct fw_card *card, const struct fw_card_driver *driver,
368 369 370 371 372
		   struct device *device)
{
	static int index;

	card->index = index++;
373
	card->driver = driver;
374
	card->device = device;
375 376
	card->current_tlabel = 0;
	card->tlabel_mask = 0;
377 378
	card->color = 0;

379
	INIT_LIST_HEAD(&card->transaction_list);
380 381 382 383 384 385
	spin_lock_init(&card->lock);
	setup_timer(&card->flush_timer,
		    flush_timer_callback, (unsigned long)card);

	card->local_node = NULL;

386
	INIT_DELAYED_WORK(&card->work, fw_card_bm_work);
387

388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
	card->card_device.bus     = &fw_bus_type;
	card->card_device.release = release_card;
	card->card_device.parent  = card->device;
	snprintf(card->card_device.bus_id, sizeof card->card_device.bus_id,
		 "fwcard%d", card->index);

	device_initialize(&card->card_device);
}
EXPORT_SYMBOL(fw_card_initialize);

int
fw_card_add(struct fw_card *card,
	    u32 max_receive, u32 link_speed, u64 guid)
{
	int retval;
	u32 *config_rom;
	size_t length;

	card->max_receive = max_receive;
	card->link_speed = link_speed;
	card->guid = guid;

	/* FIXME: add #define's for phy registers. */
	/* Activate link_on bit and contender bit in our self ID packets.*/
	if (card->driver->update_phy_reg(card, 4, 0, 0x80 | 0x40) < 0)
		return -EIO;

	retval = device_add(&card->card_device);
	if (retval < 0) {
417
		fw_error("Failed to register card device.");
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
		return retval;
	}

	/* The subsystem grabs a reference when the card is added and
	 * drops it when the driver calls fw_core_remove_card. */
	fw_card_get(card);

	down_write(&fw_bus_type.subsys.rwsem);
	config_rom = generate_config_rom (card, &length);
	list_add_tail(&card->link, &card_list);
	up_write(&fw_bus_type.subsys.rwsem);

	return card->driver->enable(card, config_rom, length);
}
EXPORT_SYMBOL(fw_card_add);


/* The next few functions implements a dummy driver that use once a
 * card driver shuts down an fw_card.  This allows the driver to
 * cleanly unload, as all IO to the card will be handled by the dummy
 * driver instead of calling into the (possibly) unloaded module.  The
 * dummy driver just fails all IO. */

static int
dummy_enable(struct fw_card *card, u32 *config_rom, size_t length)
{
	BUG();
	return -1;
}

static int
dummy_update_phy_reg(struct fw_card *card, int address,
		     int clear_bits, int set_bits)
{
	return -ENODEV;
}

static int
dummy_set_config_rom(struct fw_card *card,
		     u32 *config_rom, size_t length)
{
	/* We take the card out of card_list before setting the dummy
	 * driver, so this should never get called. */
	BUG();
	return -1;
}

static void
dummy_send_request(struct fw_card *card, struct fw_packet *packet)
{
468
	packet->callback(packet, card, -ENODEV);
469 470 471 472 473
}

static void
dummy_send_response(struct fw_card *card, struct fw_packet *packet)
{
474
	packet->callback(packet, card, -ENODEV);
475 476 477 478 479 480 481 482 483 484
}

static int
dummy_enable_phys_dma(struct fw_card *card,
		      int node_id, int generation)
{
	return -ENODEV;
}

static struct fw_card_driver dummy_driver = {
485
	.name            = "dummy",
486 487 488
	.enable          = dummy_enable,
	.update_phy_reg  = dummy_update_phy_reg,
	.set_config_rom  = dummy_set_config_rom,
489 490
	.send_request    = dummy_send_request,
	.send_response   = dummy_send_response,
491
	.enable_phys_dma = dummy_enable_phys_dma,
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
};

void
fw_core_remove_card(struct fw_card *card)
{
	card->driver->update_phy_reg(card, 4, 0x80 | 0x40, 0);
	fw_core_initiate_bus_reset(card, 1);

	down_write(&fw_bus_type.subsys.rwsem);
	list_del(&card->link);
	up_write(&fw_bus_type.subsys.rwsem);

	/* Set up the dummy driver. */
	card->driver = &dummy_driver;

	fw_flush_transactions(card);

	fw_destroy_nodes(card);

	/* This also drops the subsystem reference. */
	device_unregister(&card->card_device);
}
EXPORT_SYMBOL(fw_core_remove_card);

struct fw_card *
fw_card_get(struct fw_card *card)
{
	get_device(&card->card_device);

	return card;
}
EXPORT_SYMBOL(fw_card_get);

/* An assumption for fw_card_put() is that the card driver allocates
 * the fw_card struct with kalloc and that it has been shut down
 * before the last ref is dropped. */
void
fw_card_put(struct fw_card *card)
{
	put_device(&card->card_device);
}
EXPORT_SYMBOL(fw_card_put);

int
fw_core_initiate_bus_reset(struct fw_card *card, int short_reset)
{
538
	return card->driver->update_phy_reg(card, short_reset ? 5 : 1, 0, 0x40);
539 540
}
EXPORT_SYMBOL(fw_core_initiate_bus_reset);