nv50_display.c 61.4 KB
Newer Older
1
	/*
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 * Copyright 2011 Red Hat Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: Ben Skeggs
 */

25
#include <linux/dma-mapping.h>
26

27 28
#include <drm/drmP.h>
#include <drm/drm_crtc_helper.h>
29

30 31 32
#include "nouveau_drm.h"
#include "nouveau_dma.h"
#include "nouveau_gem.h"
33 34 35
#include "nouveau_connector.h"
#include "nouveau_encoder.h"
#include "nouveau_crtc.h"
36
#include "nouveau_fence.h"
37
#include "nv50_display.h"
38

39
#include <core/client.h>
40
#include <core/gpuobj.h>
41
#include <core/class.h>
42 43 44 45

#include <subdev/timer.h>
#include <subdev/bar.h>
#include <subdev/fb.h>
46
#include <subdev/i2c.h>
47

48 49
#define EVO_DMA_NR 9

50
#define EVO_MASTER  (0x00)
51
#define EVO_FLIP(c) (0x01 + (c))
52 53
#define EVO_OVLY(c) (0x05 + (c))
#define EVO_OIMM(c) (0x09 + (c))
54 55
#define EVO_CURS(c) (0x0d + (c))

56 57 58 59 60 61
/* offsets in shared sync bo of various structures */
#define EVO_SYNC(c, o) ((c) * 0x0100 + (o))
#define EVO_MAST_NTFY     EVO_SYNC(  0, 0x00)
#define EVO_FLIP_SEM0(c)  EVO_SYNC((c), 0x00)
#define EVO_FLIP_SEM1(c)  EVO_SYNC((c), 0x10)

62 63 64 65 66 67 68 69 70 71
#define EVO_CORE_HANDLE      (0xd1500000)
#define EVO_CHAN_HANDLE(t,i) (0xd15c0000 | (((t) & 0x00ff) << 8) | (i))
#define EVO_CHAN_OCLASS(t,c) ((nv_hclass(c) & 0xff00) | ((t) & 0x00ff))
#define EVO_PUSH_HANDLE(t,i) (0xd15b0000 | (i) |                               \
			      (((NV50_DISP_##t##_CLASS) & 0x00ff) << 8))

/******************************************************************************
 * EVO channel
 *****************************************************************************/

72
struct nv50_chan {
73 74 75 76 77
	struct nouveau_object *user;
	u32 handle;
};

static int
78 79
nv50_chan_create(struct nouveau_object *core, u32 bclass, u8 head,
		 void *data, u32 size, struct nv50_chan *chan)
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
{
	struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS);
	const u32 oclass = EVO_CHAN_OCLASS(bclass, core);
	const u32 handle = EVO_CHAN_HANDLE(bclass, head);
	int ret;

	ret = nouveau_object_new(client, EVO_CORE_HANDLE, handle,
				 oclass, data, size, &chan->user);
	if (ret)
		return ret;

	chan->handle = handle;
	return 0;
}

static void
96
nv50_chan_destroy(struct nouveau_object *core, struct nv50_chan *chan)
97 98 99 100 101 102 103 104 105 106
{
	struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS);
	if (chan->handle)
		nouveau_object_del(client, EVO_CORE_HANDLE, chan->handle);
}

/******************************************************************************
 * PIO EVO channel
 *****************************************************************************/

107 108
struct nv50_pioc {
	struct nv50_chan base;
109 110 111
};

static void
112
nv50_pioc_destroy(struct nouveau_object *core, struct nv50_pioc *pioc)
113
{
114
	nv50_chan_destroy(core, &pioc->base);
115 116 117
}

static int
118 119
nv50_pioc_create(struct nouveau_object *core, u32 bclass, u8 head,
		 void *data, u32 size, struct nv50_pioc *pioc)
120
{
121
	return nv50_chan_create(core, bclass, head, data, size, &pioc->base);
122 123 124 125 126 127
}

/******************************************************************************
 * DMA EVO channel
 *****************************************************************************/

128 129
struct nv50_dmac {
	struct nv50_chan base;
130 131
	dma_addr_t handle;
	u32 *ptr;
132 133 134 135 136

	/* Protects against concurrent pushbuf access to this channel, lock is
	 * grabbed by evo_wait (if the pushbuf reservation is successful) and
	 * dropped again by evo_kick. */
	struct mutex lock;
137 138 139
};

static void
140
nv50_dmac_destroy(struct nouveau_object *core, struct nv50_dmac *dmac)
141 142 143 144 145 146
{
	if (dmac->ptr) {
		struct pci_dev *pdev = nv_device(core)->pdev;
		pci_free_consistent(pdev, PAGE_SIZE, dmac->ptr, dmac->handle);
	}

147
	nv50_chan_destroy(core, &dmac->base);
148 149 150
}

static int
151
nv50_dmac_create_fbdma(struct nouveau_object *core, u32 parent)
152 153 154 155
{
	struct nouveau_fb *pfb = nouveau_fb(core);
	struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS);
	struct nouveau_object *object;
156 157 158 159 160 161 162 163 164 165 166 167
	int ret = nouveau_object_new(client, parent, NvEvoVRAM_LP,
				     NV_DMA_IN_MEMORY_CLASS,
				     &(struct nv_dma_class) {
					.flags = NV_DMA_TARGET_VRAM |
						 NV_DMA_ACCESS_RDWR,
					.start = 0,
					.limit = pfb->ram.size - 1,
					.conf0 = NV50_DMA_CONF0_ENABLE |
					         NV50_DMA_CONF0_PART_256,
				     }, sizeof(struct nv_dma_class), &object);
	if (ret)
		return ret;
168

169 170
	ret = nouveau_object_new(client, parent, NvEvoFB16,
				 NV_DMA_IN_MEMORY_CLASS,
171
				 &(struct nv_dma_class) {
172 173 174 175 176 177
					.flags = NV_DMA_TARGET_VRAM |
						 NV_DMA_ACCESS_RDWR,
					.start = 0,
					.limit = pfb->ram.size - 1,
					.conf0 = NV50_DMA_CONF0_ENABLE | 0x70 |
					         NV50_DMA_CONF0_PART_256,
178 179 180 181
				 }, sizeof(struct nv_dma_class), &object);
	if (ret)
		return ret;

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
	ret = nouveau_object_new(client, parent, NvEvoFB32,
				 NV_DMA_IN_MEMORY_CLASS,
				 &(struct nv_dma_class) {
					.flags = NV_DMA_TARGET_VRAM |
						 NV_DMA_ACCESS_RDWR,
					.start = 0,
					.limit = pfb->ram.size - 1,
					.conf0 = NV50_DMA_CONF0_ENABLE | 0x7a |
					         NV50_DMA_CONF0_PART_256,
				 }, sizeof(struct nv_dma_class), &object);
	return ret;
}

static int
nvc0_dmac_create_fbdma(struct nouveau_object *core, u32 parent)
{
	struct nouveau_fb *pfb = nouveau_fb(core);
	struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS);
	struct nouveau_object *object;
	int ret = nouveau_object_new(client, parent, NvEvoVRAM_LP,
				     NV_DMA_IN_MEMORY_CLASS,
				     &(struct nv_dma_class) {
					.flags = NV_DMA_TARGET_VRAM |
						 NV_DMA_ACCESS_RDWR,
					.start = 0,
					.limit = pfb->ram.size - 1,
					.conf0 = NVC0_DMA_CONF0_ENABLE,
				     }, sizeof(struct nv_dma_class), &object);
210 211 212
	if (ret)
		return ret;

213
	ret = nouveau_object_new(client, parent, NvEvoFB16,
214 215 216 217
				 NV_DMA_IN_MEMORY_CLASS,
				 &(struct nv_dma_class) {
					.flags = NV_DMA_TARGET_VRAM |
						 NV_DMA_ACCESS_RDWR,
218 219 220
					.start = 0,
					.limit = pfb->ram.size - 1,
					.conf0 = NVC0_DMA_CONF0_ENABLE | 0xfe,
221 222
				 }, sizeof(struct nv_dma_class), &object);
	if (ret)
223
		return ret;
224

225
	ret = nouveau_object_new(client, parent, NvEvoFB32,
226 227 228 229 230 231
				 NV_DMA_IN_MEMORY_CLASS,
				 &(struct nv_dma_class) {
					.flags = NV_DMA_TARGET_VRAM |
						 NV_DMA_ACCESS_RDWR,
					.start = 0,
					.limit = pfb->ram.size - 1,
232
					.conf0 = NVC0_DMA_CONF0_ENABLE | 0xfe,
233
				 }, sizeof(struct nv_dma_class), &object);
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
	return ret;
}

static int
nvd0_dmac_create_fbdma(struct nouveau_object *core, u32 parent)
{
	struct nouveau_fb *pfb = nouveau_fb(core);
	struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS);
	struct nouveau_object *object;
	int ret = nouveau_object_new(client, parent, NvEvoVRAM_LP,
				     NV_DMA_IN_MEMORY_CLASS,
				     &(struct nv_dma_class) {
					.flags = NV_DMA_TARGET_VRAM |
						 NV_DMA_ACCESS_RDWR,
					.start = 0,
					.limit = pfb->ram.size - 1,
					.conf0 = NVD0_DMA_CONF0_ENABLE |
						 NVD0_DMA_CONF0_PAGE_LP,
				     }, sizeof(struct nv_dma_class), &object);
253
	if (ret)
254
		return ret;
255

256
	ret = nouveau_object_new(client, parent, NvEvoFB32,
257 258 259 260 261 262
				 NV_DMA_IN_MEMORY_CLASS,
				 &(struct nv_dma_class) {
					.flags = NV_DMA_TARGET_VRAM |
						 NV_DMA_ACCESS_RDWR,
					.start = 0,
					.limit = pfb->ram.size - 1,
263
					.conf0 = NVD0_DMA_CONF0_ENABLE | 0xfe |
264 265
						 NVD0_DMA_CONF0_PAGE_LP,
				 }, sizeof(struct nv_dma_class), &object);
266 267 268 269
	return ret;
}

static int
270
nv50_dmac_create(struct nouveau_object *core, u32 bclass, u8 head,
271
		 void *data, u32 size, u64 syncbuf,
272
		 struct nv50_dmac *dmac)
273 274 275 276 277 278 279
{
	struct nouveau_fb *pfb = nouveau_fb(core);
	struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS);
	struct nouveau_object *object;
	u32 pushbuf = *(u32 *)data;
	int ret;

280 281
	mutex_init(&dmac->lock);

282 283 284 285 286 287 288 289 290 291 292 293 294
	dmac->ptr = pci_alloc_consistent(nv_device(core)->pdev, PAGE_SIZE,
					&dmac->handle);
	if (!dmac->ptr)
		return -ENOMEM;

	ret = nouveau_object_new(client, NVDRM_DEVICE, pushbuf,
				 NV_DMA_FROM_MEMORY_CLASS,
				 &(struct nv_dma_class) {
					.flags = NV_DMA_TARGET_PCI_US |
						 NV_DMA_ACCESS_RD,
					.start = dmac->handle + 0x0000,
					.limit = dmac->handle + 0x0fff,
				 }, sizeof(struct nv_dma_class), &object);
295
	if (ret)
296
		return ret;
297

298
	ret = nv50_chan_create(core, bclass, head, data, size, &dmac->base);
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
	if (ret)
		return ret;

	ret = nouveau_object_new(client, dmac->base.handle, NvEvoSync,
				 NV_DMA_IN_MEMORY_CLASS,
				 &(struct nv_dma_class) {
					.flags = NV_DMA_TARGET_VRAM |
						 NV_DMA_ACCESS_RDWR,
					.start = syncbuf + 0x0000,
					.limit = syncbuf + 0x0fff,
				 }, sizeof(struct nv_dma_class), &object);
	if (ret)
		return ret;

	ret = nouveau_object_new(client, dmac->base.handle, NvEvoVRAM,
314 315 316 317 318 319 320 321
				 NV_DMA_IN_MEMORY_CLASS,
				 &(struct nv_dma_class) {
					.flags = NV_DMA_TARGET_VRAM |
						 NV_DMA_ACCESS_RDWR,
					.start = 0,
					.limit = pfb->ram.size - 1,
				 }, sizeof(struct nv_dma_class), &object);
	if (ret)
322 323 324 325 326 327 328 329 330
		return ret;

	if (nv_device(core)->card_type < NV_C0)
		ret = nv50_dmac_create_fbdma(core, dmac->base.handle);
	else
	if (nv_device(core)->card_type < NV_D0)
		ret = nvc0_dmac_create_fbdma(core, dmac->base.handle);
	else
		ret = nvd0_dmac_create_fbdma(core, dmac->base.handle);
331 332 333
	return ret;
}

334 335
struct nv50_mast {
	struct nv50_dmac base;
336 337
};

338 339
struct nv50_curs {
	struct nv50_pioc base;
340 341
};

342 343
struct nv50_sync {
	struct nv50_dmac base;
344 345 346 347 348 349
	struct {
		u32 offset;
		u16 value;
	} sem;
};

350 351
struct nv50_ovly {
	struct nv50_dmac base;
352
};
353

354 355
struct nv50_oimm {
	struct nv50_pioc base;
356 357
};

358
struct nv50_head {
359
	struct nouveau_crtc base;
360 361 362 363
	struct nv50_curs curs;
	struct nv50_sync sync;
	struct nv50_ovly ovly;
	struct nv50_oimm oimm;
364 365
};

366 367 368 369 370 371 372
#define nv50_head(c) ((struct nv50_head *)nouveau_crtc(c))
#define nv50_curs(c) (&nv50_head(c)->curs)
#define nv50_sync(c) (&nv50_head(c)->sync)
#define nv50_ovly(c) (&nv50_head(c)->ovly)
#define nv50_oimm(c) (&nv50_head(c)->oimm)
#define nv50_chan(c) (&(c)->base.base)
#define nv50_vers(c) nv_mclass(nv50_chan(c)->user)
373

374
struct nv50_disp {
375
	struct nouveau_object *core;
376
	struct nv50_mast mast;
377 378 379 380

	u32 modeset;

	struct nouveau_bo *sync;
381 382
};

383 384
static struct nv50_disp *
nv50_disp(struct drm_device *dev)
385
{
386
	return nouveau_display(dev)->priv;
387 388
}

389
#define nv50_mast(d) (&nv50_disp(d)->mast)
390

391
static struct drm_crtc *
392
nv50_display_crtc_get(struct drm_encoder *encoder)
393 394 395 396 397 398 399
{
	return nouveau_encoder(encoder)->crtc;
}

/******************************************************************************
 * EVO channel helpers
 *****************************************************************************/
400
static u32 *
401
evo_wait(void *evoc, int nr)
402
{
403
	struct nv50_dmac *dmac = evoc;
404
	u32 put = nv_ro32(dmac->base.user, 0x0000) / 4;
405

406
	mutex_lock(&dmac->lock);
407
	if (put + nr >= (PAGE_SIZE / 4) - 8) {
408
		dmac->ptr[put] = 0x20000000;
409

410 411
		nv_wo32(dmac->base.user, 0x0000, 0x00000000);
		if (!nv_wait(dmac->base.user, 0x0004, ~0, 0x00000000)) {
412
			mutex_unlock(&dmac->lock);
413
			NV_ERROR(dmac->base.user, "channel stalled\n");
414 415 416 417 418 419
			return NULL;
		}

		put = 0;
	}

420
	return dmac->ptr + put;
421 422 423
}

static void
424
evo_kick(u32 *push, void *evoc)
425
{
426
	struct nv50_dmac *dmac = evoc;
427
	nv_wo32(dmac->base.user, 0x0000, (push - dmac->ptr) << 2);
428
	mutex_unlock(&dmac->lock);
429 430 431 432 433
}

#define evo_mthd(p,m,s) *((p)++) = (((s) << 18) | (m))
#define evo_data(p,d)   *((p)++) = (d)

434 435 436
static bool
evo_sync_wait(void *data)
{
437 438 439 440
	if (nouveau_bo_rd32(data, EVO_MAST_NTFY) != 0x00000000)
		return true;
	usleep_range(1, 2);
	return false;
441 442 443
}

static int
444
evo_sync(struct drm_device *dev)
445
{
446
	struct nouveau_device *device = nouveau_dev(dev);
447 448
	struct nv50_disp *disp = nv50_disp(dev);
	struct nv50_mast *mast = nv50_mast(dev);
449
	u32 *push = evo_wait(mast, 8);
450
	if (push) {
451
		nouveau_bo_wr32(disp->sync, EVO_MAST_NTFY, 0x00000000);
452
		evo_mthd(push, 0x0084, 1);
453
		evo_data(push, 0x80000000 | EVO_MAST_NTFY);
454 455 456
		evo_mthd(push, 0x0080, 2);
		evo_data(push, 0x00000000);
		evo_data(push, 0x00000000);
457
		evo_kick(push, mast);
458
		if (nv_wait_cb(device, evo_sync_wait, disp->sync))
459 460 461 462 463 464 465
			return 0;
	}

	return -EBUSY;
}

/******************************************************************************
466
 * Page flipping channel
467 468
 *****************************************************************************/
struct nouveau_bo *
469
nv50_display_crtc_sema(struct drm_device *dev, int crtc)
470
{
471
	return nv50_disp(dev)->sync;
472 473 474
}

void
475
nv50_display_flip_stop(struct drm_crtc *crtc)
476
{
477
	struct nv50_sync *sync = nv50_sync(crtc);
478 479
	u32 *push;

480
	push = evo_wait(sync, 8);
481 482 483 484 485 486 487 488 489
	if (push) {
		evo_mthd(push, 0x0084, 1);
		evo_data(push, 0x00000000);
		evo_mthd(push, 0x0094, 1);
		evo_data(push, 0x00000000);
		evo_mthd(push, 0x00c0, 1);
		evo_data(push, 0x00000000);
		evo_mthd(push, 0x0080, 1);
		evo_data(push, 0x00000000);
490
		evo_kick(push, sync);
491 492 493 494
	}
}

int
495
nv50_display_flip_next(struct drm_crtc *crtc, struct drm_framebuffer *fb,
496 497 498
		       struct nouveau_channel *chan, u32 swap_interval)
{
	struct nouveau_framebuffer *nv_fb = nouveau_framebuffer(fb);
499
	struct nv50_disp *disp = nv50_disp(crtc->dev);
500
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
501
	struct nv50_sync *sync = nv50_sync(crtc);
502 503 504 505 506 507 508
	u32 *push;
	int ret;

	swap_interval <<= 4;
	if (swap_interval == 0)
		swap_interval |= 0x100;

509
	push = evo_wait(sync, 128);
510 511 512 513 514
	if (unlikely(push == NULL))
		return -EBUSY;

	/* synchronise with the rendering channel, if necessary */
	if (likely(chan)) {
515
		if (nv_mclass(chan->object) < NV84_CHANNEL_IND_CLASS) {
516 517 518 519
			ret = RING_SPACE(chan, 8);
			if (ret)
				return ret;

520 521 522 523 524 525 526 527
			BEGIN_NV04(chan, 0, NV11_SUBCHAN_DMA_SEMAPHORE, 2);
			OUT_RING  (chan, NvEvoSema0 + nv_crtc->index);
			OUT_RING  (chan, sync->sem.offset);
			BEGIN_NV04(chan, 0, NV11_SUBCHAN_SEMAPHORE_RELEASE, 1);
			OUT_RING  (chan, 0xf00d0000 | sync->sem.value);
			BEGIN_NV04(chan, 0, NV11_SUBCHAN_SEMAPHORE_OFFSET, 2);
			OUT_RING  (chan, sync->sem.offset ^ 0x10);
			OUT_RING  (chan, 0x74b1e000);
528 529 530 531 532
		} else
		if (nv_mclass(chan->object) < NVC0_CHANNEL_IND_CLASS) {
			u64 offset = nv84_fence_crtc(chan, nv_crtc->index);
			offset += sync->sem.offset;

533 534 535 536 537 538
			ret = RING_SPACE(chan, 12);
			if (ret)
				return ret;

			BEGIN_NV04(chan, 0, NV11_SUBCHAN_DMA_SEMAPHORE, 1);
			OUT_RING  (chan, chan->vram);
539 540 541 542 543 544 545 546 547 548
			BEGIN_NV04(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
			OUT_RING  (chan, upper_32_bits(offset));
			OUT_RING  (chan, lower_32_bits(offset));
			OUT_RING  (chan, 0xf00d0000 | sync->sem.value);
			OUT_RING  (chan, 0x00000002);
			BEGIN_NV04(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
			OUT_RING  (chan, upper_32_bits(offset));
			OUT_RING  (chan, lower_32_bits(offset ^ 0x10));
			OUT_RING  (chan, 0x74b1e000);
			OUT_RING  (chan, 0x00000001);
549
		} else {
550
			u64 offset = nv84_fence_crtc(chan, nv_crtc->index);
551 552
			offset += sync->sem.offset;

553 554 555 556
			ret = RING_SPACE(chan, 10);
			if (ret)
				return ret;

557 558 559 560
			BEGIN_NVC0(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
			OUT_RING  (chan, upper_32_bits(offset));
			OUT_RING  (chan, lower_32_bits(offset));
			OUT_RING  (chan, 0xf00d0000 | sync->sem.value);
561
			OUT_RING  (chan, 0x00001002);
562 563 564 565
			BEGIN_NVC0(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
			OUT_RING  (chan, upper_32_bits(offset));
			OUT_RING  (chan, lower_32_bits(offset ^ 0x10));
			OUT_RING  (chan, 0x74b1e000);
566
			OUT_RING  (chan, 0x00001001);
567
		}
568

569 570
		FIRE_RING (chan);
	} else {
571 572 573
		nouveau_bo_wr32(disp->sync, sync->sem.offset / 4,
				0xf00d0000 | sync->sem.value);
		evo_sync(crtc->dev);
574 575 576 577 578 579 580 581 582 583 584 585
	}

	/* queue the flip */
	evo_mthd(push, 0x0100, 1);
	evo_data(push, 0xfffe0000);
	evo_mthd(push, 0x0084, 1);
	evo_data(push, swap_interval);
	if (!(swap_interval & 0x00000100)) {
		evo_mthd(push, 0x00e0, 1);
		evo_data(push, 0x40000000);
	}
	evo_mthd(push, 0x0088, 4);
586 587
	evo_data(push, sync->sem.offset);
	evo_data(push, 0xf00d0000 | sync->sem.value);
588 589 590 591 592 593 594 595 596 597
	evo_data(push, 0x74b1e000);
	evo_data(push, NvEvoSync);
	evo_mthd(push, 0x00a0, 2);
	evo_data(push, 0x00000000);
	evo_data(push, 0x00000000);
	evo_mthd(push, 0x00c0, 1);
	evo_data(push, nv_fb->r_dma);
	evo_mthd(push, 0x0110, 2);
	evo_data(push, 0x00000000);
	evo_data(push, 0x00000000);
598
	if (nv50_vers(sync) < NVD0_DISP_SYNC_CLASS) {
599 600 601 602 603 604 605 606 607 608 609 610 611 612
		evo_mthd(push, 0x0800, 5);
		evo_data(push, nv_fb->nvbo->bo.offset >> 8);
		evo_data(push, 0);
		evo_data(push, (fb->height << 16) | fb->width);
		evo_data(push, nv_fb->r_pitch);
		evo_data(push, nv_fb->r_format);
	} else {
		evo_mthd(push, 0x0400, 5);
		evo_data(push, nv_fb->nvbo->bo.offset >> 8);
		evo_data(push, 0);
		evo_data(push, (fb->height << 16) | fb->width);
		evo_data(push, nv_fb->r_pitch);
		evo_data(push, nv_fb->r_format);
	}
613 614
	evo_mthd(push, 0x0080, 1);
	evo_data(push, 0x00000000);
615
	evo_kick(push, sync);
616

617 618
	sync->sem.offset ^= 0x10;
	sync->sem.value++;
619 620 621
	return 0;
}

622 623 624 625
/******************************************************************************
 * CRTC
 *****************************************************************************/
static int
626
nv50_crtc_set_dither(struct nouveau_crtc *nv_crtc, bool update)
627
{
628
	struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
629 630 631
	struct nouveau_connector *nv_connector;
	struct drm_connector *connector;
	u32 *push, mode = 0x00;
632

633
	nv_connector = nouveau_crtc_connector_get(nv_crtc);
634 635 636 637 638 639 640 641 642 643 644 645 646
	connector = &nv_connector->base;
	if (nv_connector->dithering_mode == DITHERING_MODE_AUTO) {
		if (nv_crtc->base.fb->depth > connector->display_info.bpc * 3)
			mode = DITHERING_MODE_DYNAMIC2X2;
	} else {
		mode = nv_connector->dithering_mode;
	}

	if (nv_connector->dithering_depth == DITHERING_DEPTH_AUTO) {
		if (connector->display_info.bpc >= 8)
			mode |= DITHERING_DEPTH_8BPC;
	} else {
		mode |= nv_connector->dithering_depth;
647 648
	}

649
	push = evo_wait(mast, 4);
650
	if (push) {
651
		if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
652 653 654
			evo_mthd(push, 0x08a0 + (nv_crtc->index * 0x0400), 1);
			evo_data(push, mode);
		} else
655
		if (nv50_vers(mast) < NVE0_DISP_MAST_CLASS) {
656 657 658 659 660 661 662
			evo_mthd(push, 0x0490 + (nv_crtc->index * 0x0300), 1);
			evo_data(push, mode);
		} else {
			evo_mthd(push, 0x04a0 + (nv_crtc->index * 0x0300), 1);
			evo_data(push, mode);
		}

663 664 665 666
		if (update) {
			evo_mthd(push, 0x0080, 1);
			evo_data(push, 0x00000000);
		}
667
		evo_kick(push, mast);
668 669 670 671 672 673
	}

	return 0;
}

static int
674
nv50_crtc_set_scale(struct nouveau_crtc *nv_crtc, bool update)
675
{
676
	struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
677
	struct drm_display_mode *omode, *umode = &nv_crtc->base.mode;
678
	struct drm_crtc *crtc = &nv_crtc->base;
B
Ben Skeggs 已提交
679
	struct nouveau_connector *nv_connector;
680 681
	int mode = DRM_MODE_SCALE_NONE;
	u32 oX, oY, *push;
B
Ben Skeggs 已提交
682

683 684 685
	/* start off at the resolution we programmed the crtc for, this
	 * effectively handles NONE/FULL scaling
	 */
B
Ben Skeggs 已提交
686
	nv_connector = nouveau_crtc_connector_get(nv_crtc);
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
	if (nv_connector && nv_connector->native_mode)
		mode = nv_connector->scaling_mode;

	if (mode != DRM_MODE_SCALE_NONE)
		omode = nv_connector->native_mode;
	else
		omode = umode;

	oX = omode->hdisplay;
	oY = omode->vdisplay;
	if (omode->flags & DRM_MODE_FLAG_DBLSCAN)
		oY *= 2;

	/* add overscan compensation if necessary, will keep the aspect
	 * ratio the same as the backend mode unless overridden by the
	 * user setting both hborder and vborder properties.
	 */
	if (nv_connector && ( nv_connector->underscan == UNDERSCAN_ON ||
			     (nv_connector->underscan == UNDERSCAN_AUTO &&
			      nv_connector->edid &&
			      drm_detect_hdmi_monitor(nv_connector->edid)))) {
		u32 bX = nv_connector->underscan_hborder;
		u32 bY = nv_connector->underscan_vborder;
		u32 aspect = (oY << 19) / oX;

		if (bX) {
			oX -= (bX * 2);
			if (bY) oY -= (bY * 2);
			else    oY  = ((oX * aspect) + (aspect / 2)) >> 19;
		} else {
			oX -= (oX >> 4) + 32;
			if (bY) oY -= (bY * 2);
			else    oY  = ((oX * aspect) + (aspect / 2)) >> 19;
		}
	}

	/* handle CENTER/ASPECT scaling, taking into account the areas
	 * removed already for overscan compensation
	 */
	switch (mode) {
	case DRM_MODE_SCALE_CENTER:
		oX = min((u32)umode->hdisplay, oX);
		oY = min((u32)umode->vdisplay, oY);
		/* fall-through */
	case DRM_MODE_SCALE_ASPECT:
		if (oY < oX) {
			u32 aspect = (umode->hdisplay << 19) / umode->vdisplay;
			oX = ((oY * aspect) + (aspect / 2)) >> 19;
		} else {
			u32 aspect = (umode->vdisplay << 19) / umode->hdisplay;
			oY = ((oX * aspect) + (aspect / 2)) >> 19;
B
Ben Skeggs 已提交
738
		}
739 740 741
		break;
	default:
		break;
B
Ben Skeggs 已提交
742
	}
743

744
	push = evo_wait(mast, 8);
745
	if (push) {
746
		if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
			/*XXX: SCALE_CTRL_ACTIVE??? */
			evo_mthd(push, 0x08d8 + (nv_crtc->index * 0x400), 2);
			evo_data(push, (oY << 16) | oX);
			evo_data(push, (oY << 16) | oX);
			evo_mthd(push, 0x08a4 + (nv_crtc->index * 0x400), 1);
			evo_data(push, 0x00000000);
			evo_mthd(push, 0x08c8 + (nv_crtc->index * 0x400), 1);
			evo_data(push, umode->vdisplay << 16 | umode->hdisplay);
		} else {
			evo_mthd(push, 0x04c0 + (nv_crtc->index * 0x300), 3);
			evo_data(push, (oY << 16) | oX);
			evo_data(push, (oY << 16) | oX);
			evo_data(push, (oY << 16) | oX);
			evo_mthd(push, 0x0494 + (nv_crtc->index * 0x300), 1);
			evo_data(push, 0x00000000);
			evo_mthd(push, 0x04b8 + (nv_crtc->index * 0x300), 1);
			evo_data(push, umode->vdisplay << 16 | umode->hdisplay);
		}

		evo_kick(push, mast);

768
		if (update) {
769 770
			nv50_display_flip_stop(crtc);
			nv50_display_flip_next(crtc, crtc->fb, NULL, 1);
771 772 773 774 775 776
		}
	}

	return 0;
}

777
static int
778
nv50_crtc_set_color_vibrance(struct nouveau_crtc *nv_crtc, bool update)
779
{
780
	struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
781 782 783 784 785 786 787 788 789
	u32 *push, hue, vib;
	int adj;

	adj = (nv_crtc->color_vibrance > 0) ? 50 : 0;
	vib = ((nv_crtc->color_vibrance * 2047 + adj) / 100) & 0xfff;
	hue = ((nv_crtc->vibrant_hue * 2047) / 100) & 0xfff;

	push = evo_wait(mast, 16);
	if (push) {
790
		if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
			evo_mthd(push, 0x08a8 + (nv_crtc->index * 0x400), 1);
			evo_data(push, (hue << 20) | (vib << 8));
		} else {
			evo_mthd(push, 0x0498 + (nv_crtc->index * 0x300), 1);
			evo_data(push, (hue << 20) | (vib << 8));
		}

		if (update) {
			evo_mthd(push, 0x0080, 1);
			evo_data(push, 0x00000000);
		}
		evo_kick(push, mast);
	}

	return 0;
}

808
static int
809
nv50_crtc_set_image(struct nouveau_crtc *nv_crtc, struct drm_framebuffer *fb,
810 811 812
		    int x, int y, bool update)
{
	struct nouveau_framebuffer *nvfb = nouveau_framebuffer(fb);
813
	struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
814 815
	u32 *push;

816
	push = evo_wait(mast, 16);
817
	if (push) {
818
		if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
819 820 821 822 823 824 825 826
			evo_mthd(push, 0x0860 + (nv_crtc->index * 0x400), 1);
			evo_data(push, nvfb->nvbo->bo.offset >> 8);
			evo_mthd(push, 0x0868 + (nv_crtc->index * 0x400), 3);
			evo_data(push, (fb->height << 16) | fb->width);
			evo_data(push, nvfb->r_pitch);
			evo_data(push, nvfb->r_format);
			evo_mthd(push, 0x08c0 + (nv_crtc->index * 0x400), 1);
			evo_data(push, (y << 16) | x);
827
			if (nv50_vers(mast) > NV50_DISP_MAST_CLASS) {
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
				evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
				evo_data(push, nvfb->r_dma);
			}
		} else {
			evo_mthd(push, 0x0460 + (nv_crtc->index * 0x300), 1);
			evo_data(push, nvfb->nvbo->bo.offset >> 8);
			evo_mthd(push, 0x0468 + (nv_crtc->index * 0x300), 4);
			evo_data(push, (fb->height << 16) | fb->width);
			evo_data(push, nvfb->r_pitch);
			evo_data(push, nvfb->r_format);
			evo_data(push, nvfb->r_dma);
			evo_mthd(push, 0x04b0 + (nv_crtc->index * 0x300), 1);
			evo_data(push, (y << 16) | x);
		}

843 844 845 846
		if (update) {
			evo_mthd(push, 0x0080, 1);
			evo_data(push, 0x00000000);
		}
847
		evo_kick(push, mast);
848 849
	}

850
	nv_crtc->fb.tile_flags = nvfb->r_dma;
851 852 853 854
	return 0;
}

static void
855
nv50_crtc_cursor_show(struct nouveau_crtc *nv_crtc)
856
{
857
	struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
858
	u32 *push = evo_wait(mast, 16);
859
	if (push) {
860
		if (nv50_vers(mast) < NV84_DISP_MAST_CLASS) {
861 862 863 864
			evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 2);
			evo_data(push, 0x85000000);
			evo_data(push, nv_crtc->cursor.nvbo->bo.offset >> 8);
		} else
865
		if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
866 867 868 869 870 871
			evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 2);
			evo_data(push, 0x85000000);
			evo_data(push, nv_crtc->cursor.nvbo->bo.offset >> 8);
			evo_mthd(push, 0x089c + (nv_crtc->index * 0x400), 1);
			evo_data(push, NvEvoVRAM);
		} else {
872 873 874 875
			evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 2);
			evo_data(push, 0x85000000);
			evo_data(push, nv_crtc->cursor.nvbo->bo.offset >> 8);
			evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1);
876
			evo_data(push, NvEvoVRAM);
877 878 879 880 881 882
		}
		evo_kick(push, mast);
	}
}

static void
883
nv50_crtc_cursor_hide(struct nouveau_crtc *nv_crtc)
884
{
885
	struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
886 887
	u32 *push = evo_wait(mast, 16);
	if (push) {
888
		if (nv50_vers(mast) < NV84_DISP_MAST_CLASS) {
889 890 891
			evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 1);
			evo_data(push, 0x05000000);
		} else
892
		if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
893 894 895 896
			evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 1);
			evo_data(push, 0x05000000);
			evo_mthd(push, 0x089c + (nv_crtc->index * 0x400), 1);
			evo_data(push, 0x00000000);
897 898 899 900 901 902
		} else {
			evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 1);
			evo_data(push, 0x05000000);
			evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1);
			evo_data(push, 0x00000000);
		}
903 904 905
		evo_kick(push, mast);
	}
}
906

907
static void
908
nv50_crtc_cursor_show_hide(struct nouveau_crtc *nv_crtc, bool show, bool update)
909
{
910
	struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
911 912

	if (show)
913
		nv50_crtc_cursor_show(nv_crtc);
914
	else
915
		nv50_crtc_cursor_hide(nv_crtc);
916 917 918 919

	if (update) {
		u32 *push = evo_wait(mast, 2);
		if (push) {
920 921
			evo_mthd(push, 0x0080, 1);
			evo_data(push, 0x00000000);
922
			evo_kick(push, mast);
923 924 925 926 927
		}
	}
}

static void
928
nv50_crtc_dpms(struct drm_crtc *crtc, int mode)
929 930 931 932
{
}

static void
933
nv50_crtc_prepare(struct drm_crtc *crtc)
934 935
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
936
	struct nv50_mast *mast = nv50_mast(crtc->dev);
937 938
	u32 *push;

939
	nv50_display_flip_stop(crtc);
940

941
	push = evo_wait(mast, 2);
942
	if (push) {
943
		if (nv50_vers(mast) < NV84_DISP_MAST_CLASS) {
944 945 946 947 948
			evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
			evo_data(push, 0x00000000);
			evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 1);
			evo_data(push, 0x40000000);
		} else
949
		if (nv50_vers(mast) <  NVD0_DISP_MAST_CLASS) {
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
			evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
			evo_data(push, 0x00000000);
			evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 1);
			evo_data(push, 0x40000000);
			evo_mthd(push, 0x085c + (nv_crtc->index * 0x400), 1);
			evo_data(push, 0x00000000);
		} else {
			evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1);
			evo_data(push, 0x00000000);
			evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 1);
			evo_data(push, 0x03000000);
			evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1);
			evo_data(push, 0x00000000);
		}

		evo_kick(push, mast);
966 967
	}

968
	nv50_crtc_cursor_show_hide(nv_crtc, false, false);
969 970 971
}

static void
972
nv50_crtc_commit(struct drm_crtc *crtc)
973 974
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
975
	struct nv50_mast *mast = nv50_mast(crtc->dev);
976 977
	u32 *push;

978
	push = evo_wait(mast, 32);
979
	if (push) {
980
		if (nv50_vers(mast) < NV84_DISP_MAST_CLASS) {
981 982 983 984 985 986
			evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
			evo_data(push, NvEvoVRAM_LP);
			evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 2);
			evo_data(push, 0xc0000000);
			evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8);
		} else
987
		if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
			evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
			evo_data(push, nv_crtc->fb.tile_flags);
			evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 2);
			evo_data(push, 0xc0000000);
			evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8);
			evo_mthd(push, 0x085c + (nv_crtc->index * 0x400), 1);
			evo_data(push, NvEvoVRAM);
		} else {
			evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1);
			evo_data(push, nv_crtc->fb.tile_flags);
			evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 4);
			evo_data(push, 0x83000000);
			evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8);
			evo_data(push, 0x00000000);
			evo_data(push, 0x00000000);
			evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1);
			evo_data(push, NvEvoVRAM);
			evo_mthd(push, 0x0430 + (nv_crtc->index * 0x300), 1);
			evo_data(push, 0xffffff00);
		}

		evo_kick(push, mast);
1010 1011
	}

1012 1013
	nv50_crtc_cursor_show_hide(nv_crtc, nv_crtc->cursor.visible, true);
	nv50_display_flip_next(crtc, crtc->fb, NULL, 1);
1014 1015 1016
}

static bool
1017
nv50_crtc_mode_fixup(struct drm_crtc *crtc, const struct drm_display_mode *mode,
1018 1019 1020 1021 1022 1023
		     struct drm_display_mode *adjusted_mode)
{
	return true;
}

static int
1024
nv50_crtc_swap_fbs(struct drm_crtc *crtc, struct drm_framebuffer *old_fb)
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
{
	struct nouveau_framebuffer *nvfb = nouveau_framebuffer(crtc->fb);
	int ret;

	ret = nouveau_bo_pin(nvfb->nvbo, TTM_PL_FLAG_VRAM);
	if (ret)
		return ret;

	if (old_fb) {
		nvfb = nouveau_framebuffer(old_fb);
		nouveau_bo_unpin(nvfb->nvbo);
	}

	return 0;
}

static int
1042
nv50_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *umode,
1043 1044 1045
		   struct drm_display_mode *mode, int x, int y,
		   struct drm_framebuffer *old_fb)
{
1046
	struct nv50_mast *mast = nv50_mast(crtc->dev);
1047 1048
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	struct nouveau_connector *nv_connector;
1049 1050 1051 1052 1053
	u32 ilace = (mode->flags & DRM_MODE_FLAG_INTERLACE) ? 2 : 1;
	u32 vscan = (mode->flags & DRM_MODE_FLAG_DBLSCAN) ? 2 : 1;
	u32 hactive, hsynce, hbackp, hfrontp, hblanke, hblanks;
	u32 vactive, vsynce, vbackp, vfrontp, vblanke, vblanks;
	u32 vblan2e = 0, vblan2s = 1;
1054
	u32 *push;
1055 1056
	int ret;

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
	hactive = mode->htotal;
	hsynce  = mode->hsync_end - mode->hsync_start - 1;
	hbackp  = mode->htotal - mode->hsync_end;
	hblanke = hsynce + hbackp;
	hfrontp = mode->hsync_start - mode->hdisplay;
	hblanks = mode->htotal - hfrontp - 1;

	vactive = mode->vtotal * vscan / ilace;
	vsynce  = ((mode->vsync_end - mode->vsync_start) * vscan / ilace) - 1;
	vbackp  = (mode->vtotal - mode->vsync_end) * vscan / ilace;
	vblanke = vsynce + vbackp;
	vfrontp = (mode->vsync_start - mode->vdisplay) * vscan / ilace;
	vblanks = vactive - vfrontp - 1;
	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
		vblan2e = vactive + vsynce + vbackp;
		vblan2s = vblan2e + (mode->vdisplay * vscan / ilace);
		vactive = (vactive * 2) + 1;
	}

1076
	ret = nv50_crtc_swap_fbs(crtc, old_fb);
1077 1078 1079
	if (ret)
		return ret;

1080
	push = evo_wait(mast, 64);
1081
	if (push) {
1082
		if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
			evo_mthd(push, 0x0804 + (nv_crtc->index * 0x400), 2);
			evo_data(push, 0x00800000 | mode->clock);
			evo_data(push, (ilace == 2) ? 2 : 0);
			evo_mthd(push, 0x0810 + (nv_crtc->index * 0x400), 6);
			evo_data(push, 0x00000000);
			evo_data(push, (vactive << 16) | hactive);
			evo_data(push, ( vsynce << 16) | hsynce);
			evo_data(push, (vblanke << 16) | hblanke);
			evo_data(push, (vblanks << 16) | hblanks);
			evo_data(push, (vblan2e << 16) | vblan2s);
			evo_mthd(push, 0x082c + (nv_crtc->index * 0x400), 1);
			evo_data(push, 0x00000000);
			evo_mthd(push, 0x0900 + (nv_crtc->index * 0x400), 2);
			evo_data(push, 0x00000311);
			evo_data(push, 0x00000100);
		} else {
			evo_mthd(push, 0x0410 + (nv_crtc->index * 0x300), 6);
			evo_data(push, 0x00000000);
			evo_data(push, (vactive << 16) | hactive);
			evo_data(push, ( vsynce << 16) | hsynce);
			evo_data(push, (vblanke << 16) | hblanke);
			evo_data(push, (vblanks << 16) | hblanks);
			evo_data(push, (vblan2e << 16) | vblan2s);
			evo_mthd(push, 0x042c + (nv_crtc->index * 0x300), 1);
			evo_data(push, 0x00000000); /* ??? */
			evo_mthd(push, 0x0450 + (nv_crtc->index * 0x300), 3);
			evo_data(push, mode->clock * 1000);
			evo_data(push, 0x00200000); /* ??? */
			evo_data(push, mode->clock * 1000);
			evo_mthd(push, 0x04d0 + (nv_crtc->index * 0x300), 2);
			evo_data(push, 0x00000311);
			evo_data(push, 0x00000100);
		}

		evo_kick(push, mast);
1118 1119 1120
	}

	nv_connector = nouveau_crtc_connector_get(nv_crtc);
1121 1122 1123 1124
	nv50_crtc_set_dither(nv_crtc, false);
	nv50_crtc_set_scale(nv_crtc, false);
	nv50_crtc_set_color_vibrance(nv_crtc, false);
	nv50_crtc_set_image(nv_crtc, crtc->fb, x, y, false);
1125 1126 1127 1128
	return 0;
}

static int
1129
nv50_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
1130 1131
			struct drm_framebuffer *old_fb)
{
1132
	struct nouveau_drm *drm = nouveau_drm(crtc->dev);
1133 1134 1135
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	int ret;

1136
	if (!crtc->fb) {
1137
		NV_DEBUG(drm, "No FB bound\n");
1138 1139 1140
		return 0;
	}

1141
	ret = nv50_crtc_swap_fbs(crtc, old_fb);
1142 1143 1144
	if (ret)
		return ret;

1145 1146 1147
	nv50_display_flip_stop(crtc);
	nv50_crtc_set_image(nv_crtc, crtc->fb, x, y, true);
	nv50_display_flip_next(crtc, crtc->fb, NULL, 1);
1148 1149 1150 1151
	return 0;
}

static int
1152
nv50_crtc_mode_set_base_atomic(struct drm_crtc *crtc,
1153 1154 1155 1156
			       struct drm_framebuffer *fb, int x, int y,
			       enum mode_set_atomic state)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
1157 1158
	nv50_display_flip_stop(crtc);
	nv50_crtc_set_image(nv_crtc, fb, x, y, true);
1159 1160 1161 1162
	return 0;
}

static void
1163
nv50_crtc_lut_load(struct drm_crtc *crtc)
1164
{
1165
	struct nv50_disp *disp = nv50_disp(crtc->dev);
1166 1167 1168 1169 1170
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	void __iomem *lut = nvbo_kmap_obj_iovirtual(nv_crtc->lut.nvbo);
	int i;

	for (i = 0; i < 256; i++) {
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
		u16 r = nv_crtc->lut.r[i] >> 2;
		u16 g = nv_crtc->lut.g[i] >> 2;
		u16 b = nv_crtc->lut.b[i] >> 2;

		if (nv_mclass(disp->core) < NVD0_DISP_CLASS) {
			writew(r + 0x0000, lut + (i * 0x08) + 0);
			writew(g + 0x0000, lut + (i * 0x08) + 2);
			writew(b + 0x0000, lut + (i * 0x08) + 4);
		} else {
			writew(r + 0x6000, lut + (i * 0x20) + 0);
			writew(g + 0x6000, lut + (i * 0x20) + 2);
			writew(b + 0x6000, lut + (i * 0x20) + 4);
		}
1184 1185 1186 1187
	}
}

static int
1188
nv50_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv,
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
		     uint32_t handle, uint32_t width, uint32_t height)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_gem_object *gem;
	struct nouveau_bo *nvbo;
	bool visible = (handle != 0);
	int i, ret = 0;

	if (visible) {
		if (width != 64 || height != 64)
			return -EINVAL;

		gem = drm_gem_object_lookup(dev, file_priv, handle);
		if (unlikely(!gem))
			return -ENOENT;
		nvbo = nouveau_gem_object(gem);

		ret = nouveau_bo_map(nvbo);
		if (ret == 0) {
			for (i = 0; i < 64 * 64; i++) {
				u32 v = nouveau_bo_rd32(nvbo, i);
				nouveau_bo_wr32(nv_crtc->cursor.nvbo, i, v);
			}
			nouveau_bo_unmap(nvbo);
		}

		drm_gem_object_unreference_unlocked(gem);
	}

	if (visible != nv_crtc->cursor.visible) {
1220
		nv50_crtc_cursor_show_hide(nv_crtc, visible, true);
1221 1222 1223 1224 1225 1226 1227
		nv_crtc->cursor.visible = visible;
	}

	return ret;
}

static int
1228
nv50_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
1229
{
1230 1231
	struct nv50_curs *curs = nv50_curs(crtc);
	struct nv50_chan *chan = nv50_chan(curs);
1232 1233
	nv_wo32(chan->user, 0x0084, (y << 16) | (x & 0xffff));
	nv_wo32(chan->user, 0x0080, 0x00000000);
1234 1235 1236 1237
	return 0;
}

static void
1238
nv50_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
		    uint32_t start, uint32_t size)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	u32 end = max(start + size, (u32)256);
	u32 i;

	for (i = start; i < end; i++) {
		nv_crtc->lut.r[i] = r[i];
		nv_crtc->lut.g[i] = g[i];
		nv_crtc->lut.b[i] = b[i];
	}

1251
	nv50_crtc_lut_load(crtc);
1252 1253 1254
}

static void
1255
nv50_crtc_destroy(struct drm_crtc *crtc)
1256 1257
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
1258 1259 1260 1261 1262 1263
	struct nv50_disp *disp = nv50_disp(crtc->dev);
	struct nv50_head *head = nv50_head(crtc);
	nv50_dmac_destroy(disp->core, &head->ovly.base);
	nv50_pioc_destroy(disp->core, &head->oimm.base);
	nv50_dmac_destroy(disp->core, &head->sync.base);
	nv50_pioc_destroy(disp->core, &head->curs.base);
1264
	nouveau_bo_unmap(nv_crtc->cursor.nvbo);
1265 1266
	if (nv_crtc->cursor.nvbo)
		nouveau_bo_unpin(nv_crtc->cursor.nvbo);
1267 1268
	nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
	nouveau_bo_unmap(nv_crtc->lut.nvbo);
1269 1270
	if (nv_crtc->lut.nvbo)
		nouveau_bo_unpin(nv_crtc->lut.nvbo);
1271 1272 1273 1274 1275
	nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
	drm_crtc_cleanup(crtc);
	kfree(crtc);
}

1276 1277 1278 1279 1280 1281 1282 1283 1284
static const struct drm_crtc_helper_funcs nv50_crtc_hfunc = {
	.dpms = nv50_crtc_dpms,
	.prepare = nv50_crtc_prepare,
	.commit = nv50_crtc_commit,
	.mode_fixup = nv50_crtc_mode_fixup,
	.mode_set = nv50_crtc_mode_set,
	.mode_set_base = nv50_crtc_mode_set_base,
	.mode_set_base_atomic = nv50_crtc_mode_set_base_atomic,
	.load_lut = nv50_crtc_lut_load,
1285 1286
};

1287 1288 1289 1290
static const struct drm_crtc_funcs nv50_crtc_func = {
	.cursor_set = nv50_crtc_cursor_set,
	.cursor_move = nv50_crtc_cursor_move,
	.gamma_set = nv50_crtc_gamma_set,
1291
	.set_config = drm_crtc_helper_set_config,
1292
	.destroy = nv50_crtc_destroy,
1293
	.page_flip = nouveau_crtc_page_flip,
1294 1295
};

1296
static void
1297
nv50_cursor_set_pos(struct nouveau_crtc *nv_crtc, int x, int y)
1298 1299 1300 1301
{
}

static void
1302
nv50_cursor_set_offset(struct nouveau_crtc *nv_crtc, uint32_t offset)
1303 1304 1305
{
}

1306
static int
1307
nv50_crtc_create(struct drm_device *dev, struct nouveau_object *core, int index)
1308
{
1309 1310
	struct nv50_disp *disp = nv50_disp(dev);
	struct nv50_head *head;
1311 1312 1313
	struct drm_crtc *crtc;
	int ret, i;

1314 1315
	head = kzalloc(sizeof(*head), GFP_KERNEL);
	if (!head)
1316 1317
		return -ENOMEM;

1318
	head->base.index = index;
1319 1320 1321
	head->base.set_dither = nv50_crtc_set_dither;
	head->base.set_scale = nv50_crtc_set_scale;
	head->base.set_color_vibrance = nv50_crtc_set_color_vibrance;
1322 1323
	head->base.color_vibrance = 50;
	head->base.vibrant_hue = 0;
1324 1325
	head->base.cursor.set_offset = nv50_cursor_set_offset;
	head->base.cursor.set_pos = nv50_cursor_set_pos;
1326
	for (i = 0; i < 256; i++) {
1327 1328 1329
		head->base.lut.r[i] = i << 8;
		head->base.lut.g[i] = i << 8;
		head->base.lut.b[i] = i << 8;
1330 1331
	}

1332
	crtc = &head->base.base;
1333 1334
	drm_crtc_init(dev, crtc, &nv50_crtc_func);
	drm_crtc_helper_add(crtc, &nv50_crtc_hfunc);
1335 1336
	drm_mode_crtc_set_gamma_size(crtc, 256);

1337 1338 1339 1340
	ret = nouveau_bo_new(dev, 8192, 0x100, TTM_PL_FLAG_VRAM,
			     0, 0x0000, NULL, &head->base.lut.nvbo);
	if (!ret) {
		ret = nouveau_bo_pin(head->base.lut.nvbo, TTM_PL_FLAG_VRAM);
1341
		if (!ret) {
1342
			ret = nouveau_bo_map(head->base.lut.nvbo);
1343 1344 1345
			if (ret)
				nouveau_bo_unpin(head->base.lut.nvbo);
		}
1346 1347 1348 1349 1350 1351 1352
		if (ret)
			nouveau_bo_ref(NULL, &head->base.lut.nvbo);
	}

	if (ret)
		goto out;

1353
	nv50_crtc_lut_load(crtc);
1354 1355

	/* allocate cursor resources */
1356
	ret = nv50_pioc_create(disp->core, NV50_DISP_CURS_CLASS, index,
1357 1358 1359 1360 1361 1362 1363
			      &(struct nv50_display_curs_class) {
					.head = index,
			      }, sizeof(struct nv50_display_curs_class),
			      &head->curs.base);
	if (ret)
		goto out;

1364
	ret = nouveau_bo_new(dev, 64 * 64 * 4, 0x100, TTM_PL_FLAG_VRAM,
1365
			     0, 0x0000, NULL, &head->base.cursor.nvbo);
1366
	if (!ret) {
1367
		ret = nouveau_bo_pin(head->base.cursor.nvbo, TTM_PL_FLAG_VRAM);
1368
		if (!ret) {
1369
			ret = nouveau_bo_map(head->base.cursor.nvbo);
1370 1371 1372
			if (ret)
				nouveau_bo_unpin(head->base.lut.nvbo);
		}
1373
		if (ret)
1374
			nouveau_bo_ref(NULL, &head->base.cursor.nvbo);
1375 1376 1377 1378 1379
	}

	if (ret)
		goto out;

1380
	/* allocate page flip / sync resources */
1381
	ret = nv50_dmac_create(disp->core, NV50_DISP_SYNC_CLASS, index,
1382 1383 1384 1385 1386 1387 1388 1389 1390
			      &(struct nv50_display_sync_class) {
					.pushbuf = EVO_PUSH_HANDLE(SYNC, index),
					.head = index,
			      }, sizeof(struct nv50_display_sync_class),
			      disp->sync->bo.offset, &head->sync.base);
	if (ret)
		goto out;

	head->sync.sem.offset = EVO_SYNC(1 + index, 0x00);
1391

1392
	/* allocate overlay resources */
1393
	ret = nv50_pioc_create(disp->core, NV50_DISP_OIMM_CLASS, index,
1394 1395 1396 1397
			      &(struct nv50_display_oimm_class) {
					.head = index,
			      }, sizeof(struct nv50_display_oimm_class),
			      &head->oimm.base);
1398 1399 1400
	if (ret)
		goto out;

1401
	ret = nv50_dmac_create(disp->core, NV50_DISP_OVLY_CLASS, index,
1402 1403 1404 1405 1406 1407 1408
			      &(struct nv50_display_ovly_class) {
					.pushbuf = EVO_PUSH_HANDLE(OVLY, index),
					.head = index,
			      }, sizeof(struct nv50_display_ovly_class),
			      disp->sync->bo.offset, &head->ovly.base);
	if (ret)
		goto out;
1409 1410 1411

out:
	if (ret)
1412
		nv50_crtc_destroy(crtc);
1413 1414 1415
	return ret;
}

1416 1417 1418
/******************************************************************************
 * DAC
 *****************************************************************************/
B
Ben Skeggs 已提交
1419
static void
1420
nv50_dac_dpms(struct drm_encoder *encoder, int mode)
B
Ben Skeggs 已提交
1421 1422
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1423
	struct nv50_disp *disp = nv50_disp(encoder->dev);
B
Ben Skeggs 已提交
1424 1425 1426
	int or = nv_encoder->or;
	u32 dpms_ctrl;

1427
	dpms_ctrl = 0x00000000;
B
Ben Skeggs 已提交
1428 1429 1430 1431 1432
	if (mode == DRM_MODE_DPMS_STANDBY || mode == DRM_MODE_DPMS_OFF)
		dpms_ctrl |= 0x00000001;
	if (mode == DRM_MODE_DPMS_SUSPEND || mode == DRM_MODE_DPMS_OFF)
		dpms_ctrl |= 0x00000004;

1433
	nv_call(disp->core, NV50_DISP_DAC_PWR + or, dpms_ctrl);
B
Ben Skeggs 已提交
1434 1435 1436
}

static bool
1437
nv50_dac_mode_fixup(struct drm_encoder *encoder,
1438
		    const struct drm_display_mode *mode,
B
Ben Skeggs 已提交
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
		    struct drm_display_mode *adjusted_mode)
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_connector *nv_connector;

	nv_connector = nouveau_encoder_connector_get(nv_encoder);
	if (nv_connector && nv_connector->native_mode) {
		if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) {
			int id = adjusted_mode->base.id;
			*adjusted_mode = *nv_connector->native_mode;
			adjusted_mode->base.id = id;
		}
	}

	return true;
}

static void
1457
nv50_dac_commit(struct drm_encoder *encoder)
B
Ben Skeggs 已提交
1458 1459 1460 1461
{
}

static void
1462
nv50_dac_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
B
Ben Skeggs 已提交
1463 1464
		  struct drm_display_mode *adjusted_mode)
{
1465
	struct nv50_mast *mast = nv50_mast(encoder->dev);
B
Ben Skeggs 已提交
1466 1467
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
1468
	u32 *push;
B
Ben Skeggs 已提交
1469

1470
	nv50_dac_dpms(encoder, DRM_MODE_DPMS_ON);
B
Ben Skeggs 已提交
1471

1472
	push = evo_wait(mast, 8);
B
Ben Skeggs 已提交
1473
	if (push) {
1474
		if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
			u32 syncs = 0x00000000;

			if (mode->flags & DRM_MODE_FLAG_NHSYNC)
				syncs |= 0x00000001;
			if (mode->flags & DRM_MODE_FLAG_NVSYNC)
				syncs |= 0x00000002;

			evo_mthd(push, 0x0400 + (nv_encoder->or * 0x080), 2);
			evo_data(push, 1 << nv_crtc->index);
			evo_data(push, syncs);
		} else {
			u32 magic = 0x31ec6000 | (nv_crtc->index << 25);
			u32 syncs = 0x00000001;

			if (mode->flags & DRM_MODE_FLAG_NHSYNC)
				syncs |= 0x00000008;
			if (mode->flags & DRM_MODE_FLAG_NVSYNC)
				syncs |= 0x00000010;

			if (mode->flags & DRM_MODE_FLAG_INTERLACE)
				magic |= 0x00000001;

			evo_mthd(push, 0x0404 + (nv_crtc->index * 0x300), 2);
			evo_data(push, syncs);
			evo_data(push, magic);
			evo_mthd(push, 0x0180 + (nv_encoder->or * 0x020), 1);
			evo_data(push, 1 << nv_crtc->index);
		}

		evo_kick(push, mast);
B
Ben Skeggs 已提交
1505 1506 1507 1508 1509 1510
	}

	nv_encoder->crtc = encoder->crtc;
}

static void
1511
nv50_dac_disconnect(struct drm_encoder *encoder)
B
Ben Skeggs 已提交
1512 1513
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1514
	struct nv50_mast *mast = nv50_mast(encoder->dev);
1515
	const int or = nv_encoder->or;
B
Ben Skeggs 已提交
1516 1517 1518
	u32 *push;

	if (nv_encoder->crtc) {
1519
		nv50_crtc_prepare(nv_encoder->crtc);
B
Ben Skeggs 已提交
1520

1521
		push = evo_wait(mast, 4);
B
Ben Skeggs 已提交
1522
		if (push) {
1523
			if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
1524 1525 1526 1527 1528 1529 1530
				evo_mthd(push, 0x0400 + (or * 0x080), 1);
				evo_data(push, 0x00000000);
			} else {
				evo_mthd(push, 0x0180 + (or * 0x020), 1);
				evo_data(push, 0x00000000);
			}
			evo_kick(push, mast);
B
Ben Skeggs 已提交
1531 1532
		}
	}
1533 1534

	nv_encoder->crtc = NULL;
B
Ben Skeggs 已提交
1535 1536
}

1537
static enum drm_connector_status
1538
nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
1539
{
1540
	struct nv50_disp *disp = nv50_disp(encoder->dev);
1541
	int ret, or = nouveau_encoder(encoder)->or;
1542
	u32 load = 0;
B
Ben Skeggs 已提交
1543

1544 1545 1546
	ret = nv_exec(disp->core, NV50_DISP_DAC_LOAD + or, &load, sizeof(load));
	if (ret || load != 7)
		return connector_status_disconnected;
B
Ben Skeggs 已提交
1547

1548
	return connector_status_connected;
1549 1550
}

B
Ben Skeggs 已提交
1551
static void
1552
nv50_dac_destroy(struct drm_encoder *encoder)
B
Ben Skeggs 已提交
1553 1554 1555 1556 1557
{
	drm_encoder_cleanup(encoder);
	kfree(encoder);
}

1558 1559 1560 1561 1562 1563 1564 1565 1566
static const struct drm_encoder_helper_funcs nv50_dac_hfunc = {
	.dpms = nv50_dac_dpms,
	.mode_fixup = nv50_dac_mode_fixup,
	.prepare = nv50_dac_disconnect,
	.commit = nv50_dac_commit,
	.mode_set = nv50_dac_mode_set,
	.disable = nv50_dac_disconnect,
	.get_crtc = nv50_display_crtc_get,
	.detect = nv50_dac_detect
B
Ben Skeggs 已提交
1567 1568
};

1569 1570
static const struct drm_encoder_funcs nv50_dac_func = {
	.destroy = nv50_dac_destroy,
B
Ben Skeggs 已提交
1571 1572 1573
};

static int
1574
nv50_dac_create(struct drm_connector *connector, struct dcb_output *dcbe)
B
Ben Skeggs 已提交
1575
{
1576 1577
	struct nouveau_drm *drm = nouveau_drm(connector->dev);
	struct nouveau_i2c *i2c = nouveau_i2c(drm->device);
B
Ben Skeggs 已提交
1578 1579
	struct nouveau_encoder *nv_encoder;
	struct drm_encoder *encoder;
1580
	int type = DRM_MODE_ENCODER_DAC;
B
Ben Skeggs 已提交
1581 1582 1583 1584 1585 1586

	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
	if (!nv_encoder)
		return -ENOMEM;
	nv_encoder->dcb = dcbe;
	nv_encoder->or = ffs(dcbe->or) - 1;
1587
	nv_encoder->i2c = i2c->find(i2c, dcbe->i2c_index);
B
Ben Skeggs 已提交
1588 1589 1590 1591

	encoder = to_drm_encoder(nv_encoder);
	encoder->possible_crtcs = dcbe->heads;
	encoder->possible_clones = 0;
1592
	drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type);
1593
	drm_encoder_helper_add(encoder, &nv50_dac_hfunc);
B
Ben Skeggs 已提交
1594 1595 1596 1597

	drm_mode_connector_attach_encoder(connector, encoder);
	return 0;
}
1598

1599 1600 1601 1602
/******************************************************************************
 * Audio
 *****************************************************************************/
static void
1603
nv50_audio_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode)
1604 1605 1606
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_connector *nv_connector;
1607
	struct nv50_disp *disp = nv50_disp(encoder->dev);
1608 1609 1610 1611 1612 1613 1614

	nv_connector = nouveau_encoder_connector_get(nv_encoder);
	if (!drm_detect_monitor_audio(nv_connector->edid))
		return;

	drm_edid_to_eld(&nv_connector->base, nv_connector->edid);

1615 1616 1617
	nv_exec(disp->core, NVA3_DISP_SOR_HDA_ELD + nv_encoder->or,
			    nv_connector->base.eld,
			    nv_connector->base.eld[2] * 4);
1618 1619 1620
}

static void
1621
nv50_audio_disconnect(struct drm_encoder *encoder)
1622 1623
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1624
	struct nv50_disp *disp = nv50_disp(encoder->dev);
1625

1626
	nv_exec(disp->core, NVA3_DISP_SOR_HDA_ELD + nv_encoder->or, NULL, 0);
1627 1628 1629 1630 1631 1632
}

/******************************************************************************
 * HDMI
 *****************************************************************************/
static void
1633
nv50_hdmi_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode)
1634
{
1635 1636 1637
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
	struct nouveau_connector *nv_connector;
1638
	struct nv50_disp *disp = nv50_disp(encoder->dev);
1639
	const u32 moff = (nv_crtc->index << 3) | nv_encoder->or;
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
	u32 rekey = 56; /* binary driver, and tegra constant */
	u32 max_ac_packet;

	nv_connector = nouveau_encoder_connector_get(nv_encoder);
	if (!drm_detect_hdmi_monitor(nv_connector->edid))
		return;

	max_ac_packet  = mode->htotal - mode->hdisplay;
	max_ac_packet -= rekey;
	max_ac_packet -= 18; /* constant from tegra */
	max_ac_packet /= 32;

1652 1653 1654
	nv_call(disp->core, NV84_DISP_SOR_HDMI_PWR + moff,
			    NV84_DISP_SOR_HDMI_PWR_STATE_ON |
			    (max_ac_packet << 16) | rekey);
B
Ben Skeggs 已提交
1655

1656
	nv50_audio_mode_set(encoder, mode);
1657 1658 1659
}

static void
1660
nv50_hdmi_disconnect(struct drm_encoder *encoder)
1661
{
1662 1663
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc);
1664
	struct nv50_disp *disp = nv50_disp(encoder->dev);
1665
	const u32 moff = (nv_crtc->index << 3) | nv_encoder->or;
1666

1667
	nv50_audio_disconnect(encoder);
1668

1669
	nv_call(disp->core, NV84_DISP_SOR_HDMI_PWR + moff, 0x00000000);
1670 1671
}

1672 1673 1674
/******************************************************************************
 * SOR
 *****************************************************************************/
1675
static void
1676
nv50_sor_dpms(struct drm_encoder *encoder, int mode)
1677 1678 1679
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct drm_device *dev = encoder->dev;
1680
	struct nv50_disp *disp = nv50_disp(dev);
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
	struct drm_encoder *partner;
	int or = nv_encoder->or;

	nv_encoder->last_dpms = mode;

	list_for_each_entry(partner, &dev->mode_config.encoder_list, head) {
		struct nouveau_encoder *nv_partner = nouveau_encoder(partner);

		if (partner->encoder_type != DRM_MODE_ENCODER_TMDS)
			continue;

		if (nv_partner != nv_encoder &&
1693
		    nv_partner->dcb->or == nv_encoder->dcb->or) {
1694 1695 1696 1697 1698 1699
			if (nv_partner->last_dpms == DRM_MODE_DPMS_ON)
				return;
			break;
		}
	}

1700
	nv_call(disp->core, NV50_DISP_SOR_PWR + or, (mode == DRM_MODE_DPMS_ON));
1701 1702 1703
}

static bool
1704
nv50_sor_mode_fixup(struct drm_encoder *encoder,
1705
		    const struct drm_display_mode *mode,
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
		    struct drm_display_mode *adjusted_mode)
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_connector *nv_connector;

	nv_connector = nouveau_encoder_connector_get(nv_encoder);
	if (nv_connector && nv_connector->native_mode) {
		if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) {
			int id = adjusted_mode->base.id;
			*adjusted_mode = *nv_connector->native_mode;
			adjusted_mode->base.id = id;
		}
	}

	return true;
}

1723
static void
1724
nv50_sor_disconnect(struct drm_encoder *encoder)
1725 1726
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1727
	struct nv50_mast *mast = nv50_mast(encoder->dev);
1728
	const int or = nv_encoder->or;
1729 1730 1731
	u32 *push;

	if (nv_encoder->crtc) {
1732
		nv50_crtc_prepare(nv_encoder->crtc);
1733

1734
		push = evo_wait(mast, 4);
1735
		if (push) {
1736
			if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
1737 1738 1739 1740 1741 1742 1743
				evo_mthd(push, 0x0600 + (or * 0x40), 1);
				evo_data(push, 0x00000000);
			} else {
				evo_mthd(push, 0x0200 + (or * 0x20), 1);
				evo_data(push, 0x00000000);
			}
			evo_kick(push, mast);
1744 1745
		}

1746
		nv50_hdmi_disconnect(encoder);
1747
	}
1748 1749 1750

	nv_encoder->last_dpms = DRM_MODE_DPMS_OFF;
	nv_encoder->crtc = NULL;
1751 1752
}

1753
static void
1754
nv50_sor_commit(struct drm_encoder *encoder)
1755 1756 1757 1758
{
}

static void
1759
nv50_sor_mode_set(struct drm_encoder *encoder, struct drm_display_mode *umode,
1760
		  struct drm_display_mode *mode)
1761
{
1762 1763
	struct nv50_disp *disp = nv50_disp(encoder->dev);
	struct nv50_mast *mast = nv50_mast(encoder->dev);
1764
	struct drm_device *dev = encoder->dev;
1765
	struct nouveau_drm *drm = nouveau_drm(dev);
1766 1767
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
1768
	struct nouveau_connector *nv_connector;
1769
	struct nvbios *bios = &drm->vbios;
1770 1771 1772 1773
	u32 *push, lvds = 0;
	u8 owner = 1 << nv_crtc->index;
	u8 proto = 0xf;
	u8 depth = 0x0;
1774

1775 1776
	nv_connector = nouveau_encoder_connector_get(nv_encoder);
	switch (nv_encoder->dcb->type) {
1777
	case DCB_OUTPUT_TMDS:
1778 1779
		if (nv_encoder->dcb->sorconf.link & 1) {
			if (mode->clock < 165000)
1780
				proto = 0x1;
1781
			else
1782
				proto = 0x5;
1783
		} else {
1784
			proto = 0x2;
1785 1786
		}

1787
		nv50_hdmi_mode_set(encoder, mode);
1788
		break;
1789
	case DCB_OUTPUT_LVDS:
1790 1791
		proto = 0x0;

1792 1793
		if (bios->fp_no_ddc) {
			if (bios->fp.dual_link)
1794
				lvds |= 0x0100;
1795
			if (bios->fp.if_is_24bit)
1796
				lvds |= 0x0200;
1797
		} else {
1798
			if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
1799
				if (((u8 *)nv_connector->edid)[121] == 2)
1800
					lvds |= 0x0100;
1801 1802
			} else
			if (mode->clock >= bios->fp.duallink_transition_clk) {
1803
				lvds |= 0x0100;
1804
			}
1805

1806
			if (lvds & 0x0100) {
1807
				if (bios->fp.strapless_is_24bit & 2)
1808
					lvds |= 0x0200;
1809 1810
			} else {
				if (bios->fp.strapless_is_24bit & 1)
1811
					lvds |= 0x0200;
1812 1813 1814
			}

			if (nv_connector->base.display_info.bpc == 8)
1815
				lvds |= 0x0200;
1816
		}
1817

1818
		nv_call(disp->core, NV50_DISP_SOR_LVDS_SCRIPT + nv_encoder->or, lvds);
1819
		break;
1820
	case DCB_OUTPUT_DP:
1821
		if (nv_connector->base.display_info.bpc == 6) {
1822
			nv_encoder->dp.datarate = mode->clock * 18 / 8;
1823
			depth = 0x2;
1824 1825
		} else
		if (nv_connector->base.display_info.bpc == 8) {
1826
			nv_encoder->dp.datarate = mode->clock * 24 / 8;
1827
			depth = 0x5;
1828 1829 1830
		} else {
			nv_encoder->dp.datarate = mode->clock * 30 / 8;
			depth = 0x6;
1831
		}
1832 1833

		if (nv_encoder->dcb->sorconf.link & 1)
1834
			proto = 0x8;
1835
		else
1836
			proto = 0x9;
1837
		break;
1838 1839 1840 1841
	default:
		BUG_ON(1);
		break;
	}
1842

1843
	nv50_sor_dpms(encoder, DRM_MODE_DPMS_ON);
1844

1845
	push = evo_wait(nv50_mast(dev), 8);
1846
	if (push) {
1847
		if (nv50_vers(mast) < NVD0_DISP_CLASS) {
1848 1849 1850 1851 1852
			u32 ctrl = (depth << 16) | (proto << 8) | owner;
			if (mode->flags & DRM_MODE_FLAG_NHSYNC)
				ctrl |= 0x00001000;
			if (mode->flags & DRM_MODE_FLAG_NVSYNC)
				ctrl |= 0x00002000;
1853
			evo_mthd(push, 0x0600 + (nv_encoder->or * 0x040), 1);
1854
			evo_data(push, ctrl);
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
		} else {
			u32 magic = 0x31ec6000 | (nv_crtc->index << 25);
			u32 syncs = 0x00000001;

			if (mode->flags & DRM_MODE_FLAG_NHSYNC)
				syncs |= 0x00000008;
			if (mode->flags & DRM_MODE_FLAG_NVSYNC)
				syncs |= 0x00000010;

			if (mode->flags & DRM_MODE_FLAG_INTERLACE)
				magic |= 0x00000001;

			evo_mthd(push, 0x0404 + (nv_crtc->index * 0x300), 2);
			evo_data(push, syncs | (depth << 6));
			evo_data(push, magic);
			evo_mthd(push, 0x0200 + (nv_encoder->or * 0x020), 1);
			evo_data(push, owner | (proto << 8));
		}

		evo_kick(push, mast);
1875 1876 1877 1878 1879 1880
	}

	nv_encoder->crtc = encoder->crtc;
}

static void
1881
nv50_sor_destroy(struct drm_encoder *encoder)
1882 1883 1884 1885 1886
{
	drm_encoder_cleanup(encoder);
	kfree(encoder);
}

1887 1888 1889
static const struct drm_encoder_helper_funcs nv50_sor_hfunc = {
	.dpms = nv50_sor_dpms,
	.mode_fixup = nv50_sor_mode_fixup,
1890
	.prepare = nv50_sor_disconnect,
1891 1892 1893 1894
	.commit = nv50_sor_commit,
	.mode_set = nv50_sor_mode_set,
	.disable = nv50_sor_disconnect,
	.get_crtc = nv50_display_crtc_get,
1895 1896
};

1897 1898
static const struct drm_encoder_funcs nv50_sor_func = {
	.destroy = nv50_sor_destroy,
1899 1900 1901
};

static int
1902
nv50_sor_create(struct drm_connector *connector, struct dcb_output *dcbe)
1903
{
1904 1905
	struct nouveau_drm *drm = nouveau_drm(connector->dev);
	struct nouveau_i2c *i2c = nouveau_i2c(drm->device);
1906 1907
	struct nouveau_encoder *nv_encoder;
	struct drm_encoder *encoder;
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
	int type;

	switch (dcbe->type) {
	case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break;
	case DCB_OUTPUT_TMDS:
	case DCB_OUTPUT_DP:
	default:
		type = DRM_MODE_ENCODER_TMDS;
		break;
	}
1918 1919 1920 1921 1922 1923

	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
	if (!nv_encoder)
		return -ENOMEM;
	nv_encoder->dcb = dcbe;
	nv_encoder->or = ffs(dcbe->or) - 1;
1924
	nv_encoder->i2c = i2c->find(i2c, dcbe->i2c_index);
1925 1926 1927 1928 1929
	nv_encoder->last_dpms = DRM_MODE_DPMS_OFF;

	encoder = to_drm_encoder(nv_encoder);
	encoder->possible_crtcs = dcbe->heads;
	encoder->possible_clones = 0;
1930
	drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type);
1931
	drm_encoder_helper_add(encoder, &nv50_sor_hfunc);
1932 1933 1934 1935

	drm_mode_connector_attach_encoder(connector, encoder);
	return 0;
}
1936

1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
/******************************************************************************
 * PIOR
 *****************************************************************************/

static void
nv50_pior_dpms(struct drm_encoder *encoder, int mode)
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nv50_disp *disp = nv50_disp(encoder->dev);
	u32 mthd = (nv_encoder->dcb->type << 12) | nv_encoder->or;
	u32 ctrl = (mode == DRM_MODE_DPMS_ON);
	nv_call(disp->core, NV50_DISP_PIOR_PWR + mthd, ctrl);
}

static bool
nv50_pior_mode_fixup(struct drm_encoder *encoder,
		     const struct drm_display_mode *mode,
		     struct drm_display_mode *adjusted_mode)
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_connector *nv_connector;

	nv_connector = nouveau_encoder_connector_get(nv_encoder);
	if (nv_connector && nv_connector->native_mode) {
		if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) {
			int id = adjusted_mode->base.id;
			*adjusted_mode = *nv_connector->native_mode;
			adjusted_mode->base.id = id;
		}
	}

	adjusted_mode->clock *= 2;
	return true;
}

static void
nv50_pior_commit(struct drm_encoder *encoder)
{
}

static void
nv50_pior_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
		   struct drm_display_mode *adjusted_mode)
{
	struct nv50_mast *mast = nv50_mast(encoder->dev);
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
	struct nouveau_connector *nv_connector;
	u8 owner = 1 << nv_crtc->index;
	u8 proto, depth;
	u32 *push;

	nv_connector = nouveau_encoder_connector_get(nv_encoder);
	switch (nv_connector->base.display_info.bpc) {
	case 10: depth = 0x6; break;
	case  8: depth = 0x5; break;
	case  6: depth = 0x2; break;
	default: depth = 0x0; break;
	}

	switch (nv_encoder->dcb->type) {
	case DCB_OUTPUT_TMDS:
	case DCB_OUTPUT_DP:
		proto = 0x0;
		break;
	default:
		BUG_ON(1);
		break;
	}

	nv50_pior_dpms(encoder, DRM_MODE_DPMS_ON);

	push = evo_wait(mast, 8);
	if (push) {
		if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
			u32 ctrl = (depth << 16) | (proto << 8) | owner;
			if (mode->flags & DRM_MODE_FLAG_NHSYNC)
				ctrl |= 0x00001000;
			if (mode->flags & DRM_MODE_FLAG_NVSYNC)
				ctrl |= 0x00002000;
			evo_mthd(push, 0x0700 + (nv_encoder->or * 0x040), 1);
			evo_data(push, ctrl);
		}

		evo_kick(push, mast);
	}

	nv_encoder->crtc = encoder->crtc;
}

static void
nv50_pior_disconnect(struct drm_encoder *encoder)
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nv50_mast *mast = nv50_mast(encoder->dev);
	const int or = nv_encoder->or;
	u32 *push;

	if (nv_encoder->crtc) {
		nv50_crtc_prepare(nv_encoder->crtc);

		push = evo_wait(mast, 4);
		if (push) {
			if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
				evo_mthd(push, 0x0700 + (or * 0x040), 1);
				evo_data(push, 0x00000000);
			}
			evo_kick(push, mast);
		}
	}

	nv_encoder->crtc = NULL;
}

static void
nv50_pior_destroy(struct drm_encoder *encoder)
{
	drm_encoder_cleanup(encoder);
	kfree(encoder);
}

static const struct drm_encoder_helper_funcs nv50_pior_hfunc = {
	.dpms = nv50_pior_dpms,
	.mode_fixup = nv50_pior_mode_fixup,
	.prepare = nv50_pior_disconnect,
	.commit = nv50_pior_commit,
	.mode_set = nv50_pior_mode_set,
	.disable = nv50_pior_disconnect,
	.get_crtc = nv50_display_crtc_get,
};

static const struct drm_encoder_funcs nv50_pior_func = {
	.destroy = nv50_pior_destroy,
};

static int
nv50_pior_create(struct drm_connector *connector, struct dcb_output *dcbe)
{
	struct nouveau_drm *drm = nouveau_drm(connector->dev);
	struct nouveau_i2c *i2c = nouveau_i2c(drm->device);
	struct nouveau_i2c_port *ddc = NULL;
	struct nouveau_encoder *nv_encoder;
	struct drm_encoder *encoder;
	int type;

	switch (dcbe->type) {
	case DCB_OUTPUT_TMDS:
		ddc  = i2c->find_type(i2c, NV_I2C_TYPE_EXTDDC(dcbe->extdev));
		type = DRM_MODE_ENCODER_TMDS;
		break;
	case DCB_OUTPUT_DP:
		ddc  = i2c->find_type(i2c, NV_I2C_TYPE_EXTAUX(dcbe->extdev));
		type = DRM_MODE_ENCODER_TMDS;
		break;
	default:
		return -ENODEV;
	}

	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
	if (!nv_encoder)
		return -ENOMEM;
	nv_encoder->dcb = dcbe;
	nv_encoder->or = ffs(dcbe->or) - 1;
	nv_encoder->i2c = ddc;

	encoder = to_drm_encoder(nv_encoder);
	encoder->possible_crtcs = dcbe->heads;
	encoder->possible_clones = 0;
	drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type);
	drm_encoder_helper_add(encoder, &nv50_pior_hfunc);

	drm_mode_connector_attach_encoder(connector, encoder);
	return 0;
}

2112 2113 2114
/******************************************************************************
 * Init
 *****************************************************************************/
2115
void
2116
nv50_display_fini(struct drm_device *dev)
2117 2118 2119 2120
{
}

int
2121
nv50_display_init(struct drm_device *dev)
2122
{
2123
	u32 *push = evo_wait(nv50_mast(dev), 32);
2124 2125 2126
	if (push) {
		evo_mthd(push, 0x0088, 1);
		evo_data(push, NvEvoSync);
2127
		evo_kick(push, nv50_mast(dev));
2128
		return 0;
2129
	}
2130

2131
	return -EBUSY;
2132 2133 2134
}

void
2135
nv50_display_destroy(struct drm_device *dev)
2136
{
2137
	struct nv50_disp *disp = nv50_disp(dev);
2138

2139
	nv50_dmac_destroy(disp->core, &disp->mast.base);
2140

2141
	nouveau_bo_unmap(disp->sync);
2142 2143
	if (disp->sync)
		nouveau_bo_unpin(disp->sync);
2144
	nouveau_bo_ref(NULL, &disp->sync);
2145

2146
	nouveau_display(dev)->priv = NULL;
2147 2148 2149 2150
	kfree(disp);
}

int
2151
nv50_display_create(struct drm_device *dev)
2152
{
2153 2154 2155
	static const u16 oclass[] = {
		NVE0_DISP_CLASS,
		NVD0_DISP_CLASS,
2156 2157 2158 2159 2160
		NVA3_DISP_CLASS,
		NV94_DISP_CLASS,
		NVA0_DISP_CLASS,
		NV84_DISP_CLASS,
		NV50_DISP_CLASS,
2161
	};
2162 2163 2164
	struct nouveau_device *device = nouveau_dev(dev);
	struct nouveau_drm *drm = nouveau_drm(dev);
	struct dcb_table *dcb = &drm->vbios.dcb;
2165
	struct drm_connector *connector, *tmp;
2166
	struct nv50_disp *disp;
2167
	struct dcb_output *dcbe;
2168
	int crtcs, ret, i;
2169 2170 2171 2172

	disp = kzalloc(sizeof(*disp), GFP_KERNEL);
	if (!disp)
		return -ENOMEM;
2173 2174

	nouveau_display(dev)->priv = disp;
2175 2176 2177
	nouveau_display(dev)->dtor = nv50_display_destroy;
	nouveau_display(dev)->init = nv50_display_init;
	nouveau_display(dev)->fini = nv50_display_fini;
2178

2179 2180 2181 2182 2183
	/* small shared memory area we use for notifiers and semaphores */
	ret = nouveau_bo_new(dev, 4096, 0x1000, TTM_PL_FLAG_VRAM,
			     0, 0x0000, NULL, &disp->sync);
	if (!ret) {
		ret = nouveau_bo_pin(disp->sync, TTM_PL_FLAG_VRAM);
2184
		if (!ret) {
2185
			ret = nouveau_bo_map(disp->sync);
2186 2187 2188
			if (ret)
				nouveau_bo_unpin(disp->sync);
		}
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
		if (ret)
			nouveau_bo_ref(NULL, &disp->sync);
	}

	if (ret)
		goto out;

	/* attempt to allocate a supported evo display class */
	ret = -ENODEV;
	for (i = 0; ret && i < ARRAY_SIZE(oclass); i++) {
		ret = nouveau_object_new(nv_object(drm), NVDRM_DEVICE,
					 0xd1500000, oclass[i], NULL, 0,
					 &disp->core);
	}

	if (ret)
		goto out;

	/* allocate master evo channel */
2208
	ret = nv50_dmac_create(disp->core, NV50_DISP_MAST_CLASS, 0,
2209 2210 2211 2212 2213 2214 2215
			      &(struct nv50_display_mast_class) {
					.pushbuf = EVO_PUSH_HANDLE(MAST, 0),
			      }, sizeof(struct nv50_display_mast_class),
			      disp->sync->bo.offset, &disp->mast.base);
	if (ret)
		goto out;

2216
	/* create crtc objects to represent the hw heads */
2217 2218 2219 2220 2221
	if (nv_mclass(disp->core) >= NVD0_DISP_CLASS)
		crtcs = nv_rd32(device, 0x022448);
	else
		crtcs = 2;

2222
	for (i = 0; i < crtcs; i++) {
2223
		ret = nv50_crtc_create(dev, disp->core, i);
2224 2225 2226 2227
		if (ret)
			goto out;
	}

2228 2229 2230 2231 2232 2233
	/* create encoder/connector objects based on VBIOS DCB table */
	for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) {
		connector = nouveau_connector_create(dev, dcbe->connector);
		if (IS_ERR(connector))
			continue;

2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
		if (dcbe->location == DCB_LOC_ON_CHIP) {
			switch (dcbe->type) {
			case DCB_OUTPUT_TMDS:
			case DCB_OUTPUT_LVDS:
			case DCB_OUTPUT_DP:
				ret = nv50_sor_create(connector, dcbe);
				break;
			case DCB_OUTPUT_ANALOG:
				ret = nv50_dac_create(connector, dcbe);
				break;
			default:
				ret = -ENODEV;
				break;
			}
		} else {
			ret = nv50_pior_create(connector, dcbe);
2250 2251
		}

2252 2253 2254 2255
		if (ret) {
			NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n",
				     dcbe->location, dcbe->type,
				     ffs(dcbe->or) - 1, ret);
2256 2257 2258 2259 2260 2261 2262 2263
		}
	}

	/* cull any connectors we created that don't have an encoder */
	list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) {
		if (connector->encoder_ids[0])
			continue;

2264
		NV_WARN(drm, "%s has no encoders, removing\n",
2265 2266 2267 2268
			drm_get_connector_name(connector));
		connector->funcs->destroy(connector);
	}

2269 2270
out:
	if (ret)
2271
		nv50_display_destroy(dev);
2272 2273
	return ret;
}