rdma.c 50.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/*
 * NVMe over Fabrics RDMA host code.
 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 */
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/string.h>
#include <linux/atomic.h>
#include <linux/blk-mq.h>
#include <linux/types.h>
#include <linux/list.h>
#include <linux/mutex.h>
#include <linux/scatterlist.h>
#include <linux/nvme.h>
#include <asm/unaligned.h>

#include <rdma/ib_verbs.h>
#include <rdma/rdma_cm.h>
#include <linux/nvme-rdma.h>

#include "nvme.h"
#include "fabrics.h"


37
#define NVME_RDMA_CONNECT_TIMEOUT_MS	3000		/* 3 second */
38 39 40 41 42 43 44 45 46 47 48

#define NVME_RDMA_MAX_SEGMENTS		256

#define NVME_RDMA_MAX_INLINE_SEGMENTS	1

/*
 * We handle AEN commands ourselves and don't even let the
 * block layer know about them.
 */
#define NVME_RDMA_NR_AEN_COMMANDS      1
#define NVME_RDMA_AQ_BLKMQ_DEPTH       \
49
	(NVME_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS)
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

struct nvme_rdma_device {
	struct ib_device       *dev;
	struct ib_pd	       *pd;
	struct kref		ref;
	struct list_head	entry;
};

struct nvme_rdma_qe {
	struct ib_cqe		cqe;
	void			*data;
	u64			dma;
};

struct nvme_rdma_queue;
struct nvme_rdma_request {
66
	struct nvme_request	req;
67 68 69 70 71 72 73 74 75 76 77 78 79 80
	struct ib_mr		*mr;
	struct nvme_rdma_qe	sqe;
	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
	u32			num_sge;
	int			nents;
	bool			inline_data;
	struct ib_reg_wr	reg_wr;
	struct ib_cqe		reg_cqe;
	struct nvme_rdma_queue  *queue;
	struct sg_table		sg_table;
	struct scatterlist	first_sgl[];
};

enum nvme_rdma_queue_flags {
81
	NVME_RDMA_Q_LIVE		= 0,
82
	NVME_RDMA_Q_DELETING		= 1,
83 84 85 86
};

struct nvme_rdma_queue {
	struct nvme_rdma_qe	*rsp_ring;
87
	atomic_t		sig_count;
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
	int			queue_size;
	size_t			cmnd_capsule_len;
	struct nvme_rdma_ctrl	*ctrl;
	struct nvme_rdma_device	*device;
	struct ib_cq		*ib_cq;
	struct ib_qp		*qp;

	unsigned long		flags;
	struct rdma_cm_id	*cm_id;
	int			cm_error;
	struct completion	cm_done;
};

struct nvme_rdma_ctrl {
	/* read only in the hot path */
	struct nvme_rdma_queue	*queues;

	/* other member variables */
	struct blk_mq_tag_set	tag_set;
	struct work_struct	delete_work;
	struct work_struct	err_work;

	struct nvme_rdma_qe	async_event_sqe;

	struct delayed_work	reconnect_work;

	struct list_head	list;

	struct blk_mq_tag_set	admin_tag_set;
	struct nvme_rdma_device	*device;

	u32			max_fr_pages;

121 122
	struct sockaddr_storage addr;
	struct sockaddr_storage src_addr;
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

	struct nvme_ctrl	ctrl;
};

static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
{
	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
}

static LIST_HEAD(device_list);
static DEFINE_MUTEX(device_list_mutex);

static LIST_HEAD(nvme_rdma_ctrl_list);
static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);

/*
 * Disabling this option makes small I/O goes faster, but is fundamentally
 * unsafe.  With it turned off we will have to register a global rkey that
 * allows read and write access to all physical memory.
 */
static bool register_always = true;
module_param(register_always, bool, 0444);
MODULE_PARM_DESC(register_always,
	 "Use memory registration even for contiguous memory regions");

static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
		struct rdma_cm_event *event);
static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);

152 153 154
static const struct blk_mq_ops nvme_rdma_mq_ops;
static const struct blk_mq_ops nvme_rdma_admin_mq_ops;

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
/* XXX: really should move to a generic header sooner or later.. */
static inline void put_unaligned_le24(u32 val, u8 *p)
{
	*p++ = val;
	*p++ = val >> 8;
	*p++ = val >> 16;
}

static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
{
	return queue - queue->ctrl->queues;
}

static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
{
	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
}

static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
		size_t capsule_size, enum dma_data_direction dir)
{
	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
	kfree(qe->data);
}

static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
		size_t capsule_size, enum dma_data_direction dir)
{
	qe->data = kzalloc(capsule_size, GFP_KERNEL);
	if (!qe->data)
		return -ENOMEM;

	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
	if (ib_dma_mapping_error(ibdev, qe->dma)) {
		kfree(qe->data);
		return -ENOMEM;
	}

	return 0;
}

static void nvme_rdma_free_ring(struct ib_device *ibdev,
		struct nvme_rdma_qe *ring, size_t ib_queue_size,
		size_t capsule_size, enum dma_data_direction dir)
{
	int i;

	for (i = 0; i < ib_queue_size; i++)
		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
	kfree(ring);
}

static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
		size_t ib_queue_size, size_t capsule_size,
		enum dma_data_direction dir)
{
	struct nvme_rdma_qe *ring;
	int i;

	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
	if (!ring)
		return NULL;

	for (i = 0; i < ib_queue_size; i++) {
		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
			goto out_free_ring;
	}

	return ring;

out_free_ring:
	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
	return NULL;
}

static void nvme_rdma_qp_event(struct ib_event *event, void *context)
{
232 233 234
	pr_debug("QP event %s (%d)\n",
		 ib_event_msg(event->event), event->event);

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
}

static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
{
	wait_for_completion_interruptible_timeout(&queue->cm_done,
			msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
	return queue->cm_error;
}

static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
{
	struct nvme_rdma_device *dev = queue->device;
	struct ib_qp_init_attr init_attr;
	int ret;

	memset(&init_attr, 0, sizeof(init_attr));
	init_attr.event_handler = nvme_rdma_qp_event;
	/* +1 for drain */
	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
	/* +1 for drain */
	init_attr.cap.max_recv_wr = queue->queue_size + 1;
	init_attr.cap.max_recv_sge = 1;
	init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
	init_attr.qp_type = IB_QPT_RC;
	init_attr.send_cq = queue->ib_cq;
	init_attr.recv_cq = queue->ib_cq;

	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);

	queue->qp = queue->cm_id->qp;
	return ret;
}

static int nvme_rdma_reinit_request(void *data, struct request *rq)
{
	struct nvme_rdma_ctrl *ctrl = data;
	struct nvme_rdma_device *dev = ctrl->device;
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
	int ret = 0;

	ib_dereg_mr(req->mr);

	req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
			ctrl->max_fr_pages);
	if (IS_ERR(req->mr)) {
		ret = PTR_ERR(req->mr);
282
		req->mr = NULL;
283
		goto out;
284 285
	}

286
	req->mr->need_inval = false;
287 288 289 290 291

out:
	return ret;
}

292 293
static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
		struct request *rq, unsigned int hctx_idx)
294
{
295
	struct nvme_rdma_ctrl *ctrl = set->driver_data;
296
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
297
	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
298 299 300 301 302 303 304 305 306 307
	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
	struct nvme_rdma_device *dev = queue->device;

	if (req->mr)
		ib_dereg_mr(req->mr);

	nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
			DMA_TO_DEVICE);
}

308 309 310
static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
		struct request *rq, unsigned int hctx_idx,
		unsigned int numa_node)
311
{
312
	struct nvme_rdma_ctrl *ctrl = set->driver_data;
313
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
314
	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
	struct nvme_rdma_device *dev = queue->device;
	struct ib_device *ibdev = dev->dev;
	int ret;

	ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
			DMA_TO_DEVICE);
	if (ret)
		return ret;

	req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
			ctrl->max_fr_pages);
	if (IS_ERR(req->mr)) {
		ret = PTR_ERR(req->mr);
		goto out_free_qe;
	}

	req->queue = queue;

	return 0;

out_free_qe:
	nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
			DMA_TO_DEVICE);
	return -ENOMEM;
}

static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
		unsigned int hctx_idx)
{
	struct nvme_rdma_ctrl *ctrl = data;
	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];

348
	BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407

	hctx->driver_data = queue;
	return 0;
}

static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
		unsigned int hctx_idx)
{
	struct nvme_rdma_ctrl *ctrl = data;
	struct nvme_rdma_queue *queue = &ctrl->queues[0];

	BUG_ON(hctx_idx != 0);

	hctx->driver_data = queue;
	return 0;
}

static void nvme_rdma_free_dev(struct kref *ref)
{
	struct nvme_rdma_device *ndev =
		container_of(ref, struct nvme_rdma_device, ref);

	mutex_lock(&device_list_mutex);
	list_del(&ndev->entry);
	mutex_unlock(&device_list_mutex);

	ib_dealloc_pd(ndev->pd);
	kfree(ndev);
}

static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
{
	kref_put(&dev->ref, nvme_rdma_free_dev);
}

static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
{
	return kref_get_unless_zero(&dev->ref);
}

static struct nvme_rdma_device *
nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
{
	struct nvme_rdma_device *ndev;

	mutex_lock(&device_list_mutex);
	list_for_each_entry(ndev, &device_list, entry) {
		if (ndev->dev->node_guid == cm_id->device->node_guid &&
		    nvme_rdma_dev_get(ndev))
			goto out_unlock;
	}

	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
	if (!ndev)
		goto out_err;

	ndev->dev = cm_id->device;
	kref_init(&ndev->ref);

408 409
	ndev->pd = ib_alloc_pd(ndev->dev,
		register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
410 411 412 413 414 415 416
	if (IS_ERR(ndev->pd))
		goto out_free_dev;

	if (!(ndev->dev->attrs.device_cap_flags &
	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
		dev_err(&ndev->dev->dev,
			"Memory registrations not supported.\n");
417
		goto out_free_pd;
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
	}

	list_add(&ndev->entry, &device_list);
out_unlock:
	mutex_unlock(&device_list_mutex);
	return ndev;

out_free_pd:
	ib_dealloc_pd(ndev->pd);
out_free_dev:
	kfree(ndev);
out_err:
	mutex_unlock(&device_list_mutex);
	return NULL;
}

static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
{
436 437
	struct nvme_rdma_device *dev;
	struct ib_device *ibdev;
438

439 440
	dev = queue->device;
	ibdev = dev->dev;
441 442 443 444 445 446 447 448 449
	rdma_destroy_qp(queue->cm_id);
	ib_free_cq(queue->ib_cq);

	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
			sizeof(struct nvme_completion), DMA_FROM_DEVICE);

	nvme_rdma_dev_put(dev);
}

450
static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
451
{
452
	struct ib_device *ibdev;
453 454 455 456 457
	const int send_wr_factor = 3;			/* MR, SEND, INV */
	const int cq_factor = send_wr_factor + 1;	/* + RECV */
	int comp_vector, idx = nvme_rdma_queue_idx(queue);
	int ret;

458 459 460 461 462 463 464
	queue->device = nvme_rdma_find_get_device(queue->cm_id);
	if (!queue->device) {
		dev_err(queue->cm_id->device->dev.parent,
			"no client data found!\n");
		return -ECONNREFUSED;
	}
	ibdev = queue->device->dev;
465 466 467 468 469 470 471 472 473 474 475 476

	/*
	 * The admin queue is barely used once the controller is live, so don't
	 * bother to spread it out.
	 */
	if (idx == 0)
		comp_vector = 0;
	else
		comp_vector = idx % ibdev->num_comp_vectors;


	/* +1 for ib_stop_cq */
477 478 479
	queue->ib_cq = ib_alloc_cq(ibdev, queue,
				cq_factor * queue->queue_size + 1,
				comp_vector, IB_POLL_SOFTIRQ);
480 481
	if (IS_ERR(queue->ib_cq)) {
		ret = PTR_ERR(queue->ib_cq);
482
		goto out_put_dev;
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
	}

	ret = nvme_rdma_create_qp(queue, send_wr_factor);
	if (ret)
		goto out_destroy_ib_cq;

	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
	if (!queue->rsp_ring) {
		ret = -ENOMEM;
		goto out_destroy_qp;
	}

	return 0;

out_destroy_qp:
	ib_destroy_qp(queue->qp);
out_destroy_ib_cq:
	ib_free_cq(queue->ib_cq);
502 503
out_put_dev:
	nvme_rdma_dev_put(queue->device);
504 505 506
	return ret;
}

507
static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
508 509 510
		int idx, size_t queue_size)
{
	struct nvme_rdma_queue *queue;
511
	struct sockaddr *src_addr = NULL;
512 513 514 515 516 517 518 519 520 521 522 523
	int ret;

	queue = &ctrl->queues[idx];
	queue->ctrl = ctrl;
	init_completion(&queue->cm_done);

	if (idx > 0)
		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
	else
		queue->cmnd_capsule_len = sizeof(struct nvme_command);

	queue->queue_size = queue_size;
524
	atomic_set(&queue->sig_count, 0);
525 526 527 528 529 530 531 532 533

	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
			RDMA_PS_TCP, IB_QPT_RC);
	if (IS_ERR(queue->cm_id)) {
		dev_info(ctrl->ctrl.device,
			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
		return PTR_ERR(queue->cm_id);
	}

534
	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
535
		src_addr = (struct sockaddr *)&ctrl->src_addr;
536

537 538 539
	queue->cm_error = -ETIMEDOUT;
	ret = rdma_resolve_addr(queue->cm_id, src_addr,
			(struct sockaddr *)&ctrl->addr,
540 541 542 543 544 545 546 547 548 549 550 551 552 553
			NVME_RDMA_CONNECT_TIMEOUT_MS);
	if (ret) {
		dev_info(ctrl->ctrl.device,
			"rdma_resolve_addr failed (%d).\n", ret);
		goto out_destroy_cm_id;
	}

	ret = nvme_rdma_wait_for_cm(queue);
	if (ret) {
		dev_info(ctrl->ctrl.device,
			"rdma_resolve_addr wait failed (%d).\n", ret);
		goto out_destroy_cm_id;
	}

554
	clear_bit(NVME_RDMA_Q_DELETING, &queue->flags);
555 556 557 558 559 560 561 562 563 564

	return 0;

out_destroy_cm_id:
	rdma_destroy_id(queue->cm_id);
	return ret;
}

static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
{
565 566 567
	if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
		return;

568 569 570 571 572 573
	rdma_disconnect(queue->cm_id);
	ib_drain_qp(queue->qp);
}

static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
{
574 575 576
	if (test_and_set_bit(NVME_RDMA_Q_DELETING, &queue->flags))
		return;

577 578 579 580
	nvme_rdma_destroy_queue_ib(queue);
	rdma_destroy_id(queue->cm_id);
}

581
static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
582
{
583 584 585 586
	int i;

	for (i = 1; i < ctrl->ctrl.queue_count; i++)
		nvme_rdma_free_queue(&ctrl->queues[i]);
587 588
}

589
static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
590 591 592
{
	int i;

593
	for (i = 1; i < ctrl->ctrl.queue_count; i++)
594
		nvme_rdma_stop_queue(&ctrl->queues[i]);
595 596 597 598 599 600
}

static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl *ctrl)
{
	int i, ret = 0;

601
	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
602
		ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
603 604 605
		if (ret) {
			dev_info(ctrl->ctrl.device,
				"failed to connect i/o queue: %d\n", ret);
606
			goto out_stop_queues;
607
		}
608
		set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags);
609 610
	}

611 612
	return 0;

613 614
out_stop_queues:
	nvme_rdma_stop_io_queues(ctrl);
615 616 617
	return ret;
}

618
static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
619
{
620 621
	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
	unsigned int nr_io_queues;
622 623
	int i, ret;

624 625 626 627 628
	nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
	if (ret)
		return ret;

629 630
	ctrl->ctrl.queue_count = nr_io_queues + 1;
	if (ctrl->ctrl.queue_count < 2)
631 632 633 634 635
		return 0;

	dev_info(ctrl->ctrl.device,
		"creating %d I/O queues.\n", nr_io_queues);

636
	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
637 638 639
		ret = nvme_rdma_alloc_queue(ctrl, i,
				ctrl->ctrl.sqsize + 1);
		if (ret)
640 641 642 643 644 645
			goto out_free_queues;
	}

	return 0;

out_free_queues:
646
	for (i--; i >= 1; i--)
647
		nvme_rdma_free_queue(&ctrl->queues[i]);
648 649 650 651

	return ret;
}

652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl, bool admin)
{
	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
	struct blk_mq_tag_set *set = admin ?
			&ctrl->admin_tag_set : &ctrl->tag_set;

	blk_mq_free_tag_set(set);
	nvme_rdma_dev_put(ctrl->device);
}

static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
		bool admin)
{
	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
	struct blk_mq_tag_set *set;
	int ret;

	if (admin) {
		set = &ctrl->admin_tag_set;
		memset(set, 0, sizeof(*set));
		set->ops = &nvme_rdma_admin_mq_ops;
		set->queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH;
		set->reserved_tags = 2; /* connect + keep-alive */
		set->numa_node = NUMA_NO_NODE;
		set->cmd_size = sizeof(struct nvme_rdma_request) +
			SG_CHUNK_SIZE * sizeof(struct scatterlist);
		set->driver_data = ctrl;
		set->nr_hw_queues = 1;
		set->timeout = ADMIN_TIMEOUT;
	} else {
		set = &ctrl->tag_set;
		memset(set, 0, sizeof(*set));
		set->ops = &nvme_rdma_mq_ops;
		set->queue_depth = nctrl->opts->queue_size;
		set->reserved_tags = 1; /* fabric connect */
		set->numa_node = NUMA_NO_NODE;
		set->flags = BLK_MQ_F_SHOULD_MERGE;
		set->cmd_size = sizeof(struct nvme_rdma_request) +
			SG_CHUNK_SIZE * sizeof(struct scatterlist);
		set->driver_data = ctrl;
		set->nr_hw_queues = nctrl->queue_count - 1;
		set->timeout = NVME_IO_TIMEOUT;
	}

	ret = blk_mq_alloc_tag_set(set);
	if (ret)
		goto out;

	/*
	 * We need a reference on the device as long as the tag_set is alive,
	 * as the MRs in the request structures need a valid ib_device.
	 */
	ret = nvme_rdma_dev_get(ctrl->device);
	if (!ret) {
		ret = -EINVAL;
		goto out_free_tagset;
	}

	return set;

out_free_tagset:
	blk_mq_free_tag_set(set);
out:
	return ERR_PTR(ret);
}

718 719
static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
		bool remove)
720 721 722
{
	nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe,
			sizeof(struct nvme_command), DMA_TO_DEVICE);
723
	nvme_rdma_stop_queue(&ctrl->queues[0]);
724 725 726 727
	if (remove) {
		blk_cleanup_queue(ctrl->ctrl.admin_q);
		nvme_rdma_free_tagset(&ctrl->ctrl, true);
	}
728
	nvme_rdma_free_queue(&ctrl->queues[0]);
729 730
}

731 732
static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
		bool new)
733 734 735
{
	int error;

736
	error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
737 738 739 740 741 742 743 744
	if (error)
		return error;

	ctrl->device = ctrl->queues[0].device;

	ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS,
		ctrl->device->dev->attrs.max_fast_reg_page_list_len);

745 746 747 748
	if (new) {
		ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
		if (IS_ERR(ctrl->ctrl.admin_tagset))
			goto out_free_queue;
749

750 751 752 753 754 755 756 757 758 759
		ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
		if (IS_ERR(ctrl->ctrl.admin_q)) {
			error = PTR_ERR(ctrl->ctrl.admin_q);
			goto out_free_tagset;
		}
	} else {
		error = blk_mq_reinit_tagset(&ctrl->admin_tag_set,
					     nvme_rdma_reinit_request);
		if (error)
			goto out_free_queue;
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
	}

	error = nvmf_connect_admin_queue(&ctrl->ctrl);
	if (error)
		goto out_cleanup_queue;

	set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags);

	error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP,
			&ctrl->ctrl.cap);
	if (error) {
		dev_err(ctrl->ctrl.device,
			"prop_get NVME_REG_CAP failed\n");
		goto out_cleanup_queue;
	}

	ctrl->ctrl.sqsize =
		min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);

	error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
	if (error)
		goto out_cleanup_queue;

	ctrl->ctrl.max_hw_sectors =
		(ctrl->max_fr_pages - 1) << (PAGE_SHIFT - 9);

	error = nvme_init_identify(&ctrl->ctrl);
	if (error)
		goto out_cleanup_queue;

	error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
			&ctrl->async_event_sqe, sizeof(struct nvme_command),
			DMA_TO_DEVICE);
	if (error)
		goto out_cleanup_queue;

	return 0;

out_cleanup_queue:
799 800
	if (new)
		blk_cleanup_queue(ctrl->ctrl.admin_q);
801
out_free_tagset:
802 803
	if (new)
		nvme_rdma_free_tagset(&ctrl->ctrl, true);
804 805 806 807 808
out_free_queue:
	nvme_rdma_free_queue(&ctrl->queues[0]);
	return error;
}

809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
		bool remove)
{
	nvme_rdma_stop_io_queues(ctrl);
	if (remove) {
		blk_cleanup_queue(ctrl->ctrl.connect_q);
		nvme_rdma_free_tagset(&ctrl->ctrl, false);
	}
	nvme_rdma_free_io_queues(ctrl);
}

static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
{
	int ret;

824
	ret = nvme_rdma_alloc_io_queues(ctrl);
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
	if (ret)
		return ret;

	if (new) {
		ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
		if (IS_ERR(ctrl->ctrl.tagset))
			goto out_free_io_queues;

		ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
		if (IS_ERR(ctrl->ctrl.connect_q)) {
			ret = PTR_ERR(ctrl->ctrl.connect_q);
			goto out_free_tag_set;
		}
	} else {
		ret = blk_mq_reinit_tagset(&ctrl->tag_set,
					   nvme_rdma_reinit_request);
		if (ret)
			goto out_free_io_queues;

		blk_mq_update_nr_hw_queues(&ctrl->tag_set,
			ctrl->ctrl.queue_count - 1);
	}

	ret = nvme_rdma_connect_io_queues(ctrl);
	if (ret)
		goto out_cleanup_connect_q;

	return 0;

out_cleanup_connect_q:
	if (new)
		blk_cleanup_queue(ctrl->ctrl.connect_q);
out_free_tag_set:
	if (new)
		nvme_rdma_free_tagset(&ctrl->ctrl, false);
out_free_io_queues:
	nvme_rdma_free_io_queues(ctrl);
	return ret;
}

865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
{
	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);

	if (list_empty(&ctrl->list))
		goto free_ctrl;

	mutex_lock(&nvme_rdma_ctrl_mutex);
	list_del(&ctrl->list);
	mutex_unlock(&nvme_rdma_ctrl_mutex);

	kfree(ctrl->queues);
	nvmf_free_options(nctrl->opts);
free_ctrl:
	kfree(ctrl);
}

S
Sagi Grimberg 已提交
882 883 884 885 886 887 888 889 890 891 892 893
static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
{
	/* If we are resetting/deleting then do nothing */
	if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) {
		WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
			ctrl->ctrl.state == NVME_CTRL_LIVE);
		return;
	}

	if (nvmf_should_reconnect(&ctrl->ctrl)) {
		dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
			ctrl->ctrl.opts->reconnect_delay);
894
		queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
S
Sagi Grimberg 已提交
895 896 897
				ctrl->ctrl.opts->reconnect_delay * HZ);
	} else {
		dev_info(ctrl->ctrl.device, "Removing controller...\n");
898
		queue_work(nvme_wq, &ctrl->delete_work);
S
Sagi Grimberg 已提交
899 900 901
	}
}

902 903 904 905 906 907 908
static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
{
	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
			struct nvme_rdma_ctrl, reconnect_work);
	bool changed;
	int ret;

909
	++ctrl->ctrl.nr_reconnects;
S
Sagi Grimberg 已提交
910

911 912
	if (ctrl->ctrl.queue_count > 1)
		nvme_rdma_destroy_io_queues(ctrl, false);
913

914 915
	nvme_rdma_destroy_admin_queue(ctrl, false);
	ret = nvme_rdma_configure_admin_queue(ctrl, false);
916
	if (ret)
917
		goto requeue;
918

919
	if (ctrl->ctrl.queue_count > 1) {
920
		ret = nvme_rdma_configure_io_queues(ctrl, false);
921
		if (ret)
922
			goto requeue;
923 924 925 926
	}

	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
	WARN_ON_ONCE(!changed);
927
	ctrl->ctrl.nr_reconnects = 0;
928

929
	nvme_start_ctrl(&ctrl->ctrl);
930 931 932 933 934 935

	dev_info(ctrl->ctrl.device, "Successfully reconnected\n");

	return;

requeue:
S
Sagi Grimberg 已提交
936
	dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
937
			ctrl->ctrl.nr_reconnects);
S
Sagi Grimberg 已提交
938
	nvme_rdma_reconnect_or_remove(ctrl);
939 940 941 942 943 944 945
}

static void nvme_rdma_error_recovery_work(struct work_struct *work)
{
	struct nvme_rdma_ctrl *ctrl = container_of(work,
			struct nvme_rdma_ctrl, err_work);

946
	nvme_stop_ctrl(&ctrl->ctrl);
947

948
	if (ctrl->ctrl.queue_count > 1) {
949
		nvme_stop_queues(&ctrl->ctrl);
950 951
		nvme_rdma_stop_io_queues(ctrl);
	}
952
	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
953
	nvme_rdma_stop_queue(&ctrl->queues[0]);
954 955

	/* We must take care of fastfail/requeue all our inflight requests */
956
	if (ctrl->ctrl.queue_count > 1)
957 958 959 960 961
		blk_mq_tagset_busy_iter(&ctrl->tag_set,
					nvme_cancel_request, &ctrl->ctrl);
	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
				nvme_cancel_request, &ctrl->ctrl);

962 963 964 965
	/*
	 * queues are not a live anymore, so restart the queues to fail fast
	 * new IO
	 */
966
	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
967 968
	nvme_start_queues(&ctrl->ctrl);

S
Sagi Grimberg 已提交
969
	nvme_rdma_reconnect_or_remove(ctrl);
970 971 972 973 974 975 976
}

static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
{
	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING))
		return;

977
	queue_work(nvme_wq, &ctrl->err_work);
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
}

static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
		const char *op)
{
	struct nvme_rdma_queue *queue = cq->cq_context;
	struct nvme_rdma_ctrl *ctrl = queue->ctrl;

	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
		dev_info(ctrl->ctrl.device,
			     "%s for CQE 0x%p failed with status %s (%d)\n",
			     op, wc->wr_cqe,
			     ib_wc_status_msg(wc->status), wc->status);
	nvme_rdma_error_recovery(ctrl);
}

static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
{
	if (unlikely(wc->status != IB_WC_SUCCESS))
		nvme_rdma_wr_error(cq, wc, "MEMREG");
}

static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
{
	if (unlikely(wc->status != IB_WC_SUCCESS))
		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
}

static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
		struct nvme_rdma_request *req)
{
	struct ib_send_wr *bad_wr;
	struct ib_send_wr wr = {
		.opcode		    = IB_WR_LOCAL_INV,
		.next		    = NULL,
		.num_sge	    = 0,
		.send_flags	    = 0,
		.ex.invalidate_rkey = req->mr->rkey,
	};

	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
	wr.wr_cqe = &req->reg_cqe;

	return ib_post_send(queue->qp, &wr, &bad_wr);
}

static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
		struct request *rq)
{
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
	struct nvme_rdma_device *dev = queue->device;
	struct ib_device *ibdev = dev->dev;
	int res;

	if (!blk_rq_bytes(rq))
		return;

1036
	if (req->mr->need_inval) {
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
		res = nvme_rdma_inv_rkey(queue, req);
		if (res < 0) {
			dev_err(ctrl->ctrl.device,
				"Queueing INV WR for rkey %#x failed (%d)\n",
				req->mr->rkey, res);
			nvme_rdma_error_recovery(queue->ctrl);
		}
	}

	ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
			req->nents, rq_data_dir(rq) ==
				    WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);

	nvme_cleanup_cmd(rq);
	sg_free_table_chained(&req->sg_table, true);
}

static int nvme_rdma_set_sg_null(struct nvme_command *c)
{
	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;

	sg->addr = 0;
	put_unaligned_le24(0, sg->length);
	put_unaligned_le32(0, sg->key);
	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
	return 0;
}

static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
		struct nvme_rdma_request *req, struct nvme_command *c)
{
	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;

	req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
	req->sge[1].length = sg_dma_len(req->sg_table.sgl);
	req->sge[1].lkey = queue->device->pd->local_dma_lkey;

	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
	sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;

	req->inline_data = true;
	req->num_sge++;
	return 0;
}

static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
		struct nvme_rdma_request *req, struct nvme_command *c)
{
	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;

	sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
	put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1090
	put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
	return 0;
}

static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
		struct nvme_rdma_request *req, struct nvme_command *c,
		int count)
{
	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
	int nr;

	nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, PAGE_SIZE);
	if (nr < count) {
		if (nr < 0)
			return nr;
		return -EINVAL;
	}

	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));

	req->reg_cqe.done = nvme_rdma_memreg_done;
	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
	req->reg_wr.wr.opcode = IB_WR_REG_MR;
	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
	req->reg_wr.wr.num_sge = 0;
	req->reg_wr.mr = req->mr;
	req->reg_wr.key = req->mr->rkey;
	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
			     IB_ACCESS_REMOTE_READ |
			     IB_ACCESS_REMOTE_WRITE;

1122
	req->mr->need_inval = true;
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133

	sg->addr = cpu_to_le64(req->mr->iova);
	put_unaligned_le24(req->mr->length, sg->length);
	put_unaligned_le32(req->mr->rkey, sg->key);
	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
			NVME_SGL_FMT_INVALIDATE;

	return 0;
}

static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1134
		struct request *rq, struct nvme_command *c)
1135 1136 1137 1138
{
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
	struct nvme_rdma_device *dev = queue->device;
	struct ib_device *ibdev = dev->dev;
1139
	int count, ret;
1140 1141 1142

	req->num_sge = 1;
	req->inline_data = false;
1143
	req->mr->need_inval = false;
1144 1145 1146 1147 1148 1149 1150

	c->common.flags |= NVME_CMD_SGL_METABUF;

	if (!blk_rq_bytes(rq))
		return nvme_rdma_set_sg_null(c);

	req->sg_table.sgl = req->first_sgl;
1151 1152
	ret = sg_alloc_table_chained(&req->sg_table,
			blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
1153 1154 1155
	if (ret)
		return -ENOMEM;

1156
	req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1157

1158
	count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1159 1160 1161 1162 1163 1164 1165
		    rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
	if (unlikely(count <= 0)) {
		sg_free_table_chained(&req->sg_table, true);
		return -EIO;
	}

	if (count == 1) {
1166 1167 1168
		if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
		    blk_rq_payload_bytes(rq) <=
				nvme_rdma_inline_data_size(queue))
1169 1170
			return nvme_rdma_map_sg_inline(queue, req, c);

1171
		if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
			return nvme_rdma_map_sg_single(queue, req, c);
	}

	return nvme_rdma_map_sg_fr(queue, req, c, count);
}

static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
{
	if (unlikely(wc->status != IB_WC_SUCCESS))
		nvme_rdma_wr_error(cq, wc, "SEND");
}

1184 1185 1186 1187 1188 1189
/*
 * We want to signal completion at least every queue depth/2.  This returns the
 * largest power of two that is not above half of (queue size + 1) to optimize
 * (avoid divisions).
 */
static inline bool nvme_rdma_queue_sig_limit(struct nvme_rdma_queue *queue)
1190
{
1191
	int limit = 1 << ilog2((queue->queue_size + 1) / 2);
1192

1193
	return (atomic_inc_return(&queue->sig_count) & (limit - 1)) == 0;
1194 1195
}

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
		struct ib_send_wr *first, bool flush)
{
	struct ib_send_wr wr, *bad_wr;
	int ret;

	sge->addr   = qe->dma;
	sge->length = sizeof(struct nvme_command),
	sge->lkey   = queue->device->pd->local_dma_lkey;

	qe->cqe.done = nvme_rdma_send_done;

	wr.next       = NULL;
	wr.wr_cqe     = &qe->cqe;
	wr.sg_list    = sge;
	wr.num_sge    = num_sge;
	wr.opcode     = IB_WR_SEND;
	wr.send_flags = 0;

	/*
	 * Unsignalled send completions are another giant desaster in the
	 * IB Verbs spec:  If we don't regularly post signalled sends
	 * the send queue will fill up and only a QP reset will rescue us.
	 * Would have been way to obvious to handle this in hardware or
	 * at least the RDMA stack..
	 *
	 * Always signal the flushes. The magic request used for the flush
	 * sequencer is not allocated in our driver's tagset and it's
	 * triggered to be freed by blk_cleanup_queue(). So we need to
	 * always mark it as signaled to ensure that the "wr_cqe", which is
1227
	 * embedded in request's payload, is not freed when __ib_process_cq()
1228 1229
	 * calls wr_cqe->done().
	 */
1230
	if (nvme_rdma_queue_sig_limit(queue) || flush)
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
		wr.send_flags |= IB_SEND_SIGNALED;

	if (first)
		first->next = &wr;
	else
		first = &wr;

	ret = ib_post_send(queue->qp, first, &bad_wr);
	if (ret) {
		dev_err(queue->ctrl->ctrl.device,
			     "%s failed with error code %d\n", __func__, ret);
	}
	return ret;
}

static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
		struct nvme_rdma_qe *qe)
{
	struct ib_recv_wr wr, *bad_wr;
	struct ib_sge list;
	int ret;

	list.addr   = qe->dma;
	list.length = sizeof(struct nvme_completion);
	list.lkey   = queue->device->pd->local_dma_lkey;

	qe->cqe.done = nvme_rdma_recv_done;

	wr.next     = NULL;
	wr.wr_cqe   = &qe->cqe;
	wr.sg_list  = &list;
	wr.num_sge  = 1;

	ret = ib_post_recv(queue->qp, &wr, &bad_wr);
	if (ret) {
		dev_err(queue->ctrl->ctrl.device,
			"%s failed with error code %d\n", __func__, ret);
	}
	return ret;
}

static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
{
	u32 queue_idx = nvme_rdma_queue_idx(queue);

	if (queue_idx == 0)
		return queue->ctrl->admin_tag_set.tags[queue_idx];
	return queue->ctrl->tag_set.tags[queue_idx - 1];
}

static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
{
	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
	struct nvme_rdma_queue *queue = &ctrl->queues[0];
	struct ib_device *dev = queue->device->dev;
	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
	struct nvme_command *cmd = sqe->data;
	struct ib_sge sge;
	int ret;

	if (WARN_ON_ONCE(aer_idx != 0))
		return;

	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);

	memset(cmd, 0, sizeof(*cmd));
	cmd->common.opcode = nvme_admin_async_event;
	cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH;
	cmd->common.flags |= NVME_CMD_SGL_METABUF;
	nvme_rdma_set_sg_null(cmd);

	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
			DMA_TO_DEVICE);

	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false);
	WARN_ON_ONCE(ret);
}

static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
		struct nvme_completion *cqe, struct ib_wc *wc, int tag)
{
	struct request *rq;
	struct nvme_rdma_request *req;
	int ret = 0;

	rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
	if (!rq) {
		dev_err(queue->ctrl->ctrl.device,
			"tag 0x%x on QP %#x not found\n",
			cqe->command_id, queue->qp->qp_num);
		nvme_rdma_error_recovery(queue->ctrl);
		return ret;
	}
	req = blk_mq_rq_to_pdu(rq);

	if (rq->tag == tag)
		ret = 1;

	if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) &&
	    wc->ex.invalidate_rkey == req->mr->rkey)
1331
		req->mr->need_inval = false;
1332

1333
	nvme_end_request(rq, cqe->status, cqe->result);
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
	return ret;
}

static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
{
	struct nvme_rdma_qe *qe =
		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
	struct nvme_rdma_queue *queue = cq->cq_context;
	struct ib_device *ibdev = queue->device->dev;
	struct nvme_completion *cqe = qe->data;
	const size_t len = sizeof(struct nvme_completion);
	int ret = 0;

	if (unlikely(wc->status != IB_WC_SUCCESS)) {
		nvme_rdma_wr_error(cq, wc, "RECV");
		return 0;
	}

	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
	/*
	 * AEN requests are special as they don't time out and can
	 * survive any kind of queue freeze and often don't respond to
	 * aborts.  We don't even bother to allocate a struct request
	 * for them but rather special case them here.
	 */
	if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
			cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH))
1361 1362
		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
				&cqe->result);
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
	else
		ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);

	nvme_rdma_post_recv(queue, qe);
	return ret;
}

static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
{
	__nvme_rdma_recv_done(cq, wc, -1);
}

static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
{
	int ret, i;

	for (i = 0; i < queue->queue_size; i++) {
		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
		if (ret)
			goto out_destroy_queue_ib;
	}

	return 0;

out_destroy_queue_ib:
	nvme_rdma_destroy_queue_ib(queue);
	return ret;
}

static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
		struct rdma_cm_event *ev)
{
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	struct rdma_cm_id *cm_id = queue->cm_id;
	int status = ev->status;
	const char *rej_msg;
	const struct nvme_rdma_cm_rej *rej_data;
	u8 rej_data_len;

	rej_msg = rdma_reject_msg(cm_id, status);
	rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);

	if (rej_data && rej_data_len >= sizeof(u16)) {
		u16 sts = le16_to_cpu(rej_data->sts);
1407 1408

		dev_err(queue->ctrl->ctrl.device,
1409 1410
		      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
		      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1411 1412
	} else {
		dev_err(queue->ctrl->ctrl.device,
1413
			"Connect rejected: status %d (%s).\n", status, rej_msg);
1414 1415 1416 1417 1418 1419 1420 1421 1422
	}

	return -ECONNRESET;
}

static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
{
	int ret;

1423 1424 1425
	ret = nvme_rdma_create_queue_ib(queue);
	if (ret)
		return ret;
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445

	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
	if (ret) {
		dev_err(queue->ctrl->ctrl.device,
			"rdma_resolve_route failed (%d).\n",
			queue->cm_error);
		goto out_destroy_queue;
	}

	return 0;

out_destroy_queue:
	nvme_rdma_destroy_queue_ib(queue);
	return ret;
}

static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
{
	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
	struct rdma_conn_param param = { };
1446
	struct nvme_rdma_cm_req priv = { };
1447 1448 1449 1450 1451 1452
	int ret;

	param.qp_num = queue->qp->qp_num;
	param.flow_control = 1;

	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1453 1454
	/* maximum retry count */
	param.retry_count = 7;
1455 1456 1457 1458 1459 1460
	param.rnr_retry_count = 7;
	param.private_data = &priv;
	param.private_data_len = sizeof(priv);

	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1461 1462 1463 1464 1465
	/*
	 * set the admin queue depth to the minimum size
	 * specified by the Fabrics standard.
	 */
	if (priv.qid == 0) {
1466 1467
		priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
		priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1468
	} else {
1469 1470 1471 1472 1473
		/*
		 * current interpretation of the fabrics spec
		 * is at minimum you make hrqsize sqsize+1, or a
		 * 1's based representation of sqsize.
		 */
1474
		priv.hrqsize = cpu_to_le16(queue->queue_size);
1475
		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1476
	}
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514

	ret = rdma_connect(queue->cm_id, &param);
	if (ret) {
		dev_err(ctrl->ctrl.device,
			"rdma_connect failed (%d).\n", ret);
		goto out_destroy_queue_ib;
	}

	return 0;

out_destroy_queue_ib:
	nvme_rdma_destroy_queue_ib(queue);
	return ret;
}

static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
		struct rdma_cm_event *ev)
{
	struct nvme_rdma_queue *queue = cm_id->context;
	int cm_error = 0;

	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
		rdma_event_msg(ev->event), ev->event,
		ev->status, cm_id);

	switch (ev->event) {
	case RDMA_CM_EVENT_ADDR_RESOLVED:
		cm_error = nvme_rdma_addr_resolved(queue);
		break;
	case RDMA_CM_EVENT_ROUTE_RESOLVED:
		cm_error = nvme_rdma_route_resolved(queue);
		break;
	case RDMA_CM_EVENT_ESTABLISHED:
		queue->cm_error = nvme_rdma_conn_established(queue);
		/* complete cm_done regardless of success/failure */
		complete(&queue->cm_done);
		return 0;
	case RDMA_CM_EVENT_REJECTED:
1515
		nvme_rdma_destroy_queue_ib(queue);
1516 1517 1518 1519 1520
		cm_error = nvme_rdma_conn_rejected(queue, ev);
		break;
	case RDMA_CM_EVENT_ROUTE_ERROR:
	case RDMA_CM_EVENT_CONNECT_ERROR:
	case RDMA_CM_EVENT_UNREACHABLE:
1521 1522
		nvme_rdma_destroy_queue_ib(queue);
	case RDMA_CM_EVENT_ADDR_ERROR:
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
		dev_dbg(queue->ctrl->ctrl.device,
			"CM error event %d\n", ev->event);
		cm_error = -ECONNRESET;
		break;
	case RDMA_CM_EVENT_DISCONNECTED:
	case RDMA_CM_EVENT_ADDR_CHANGE:
	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
		dev_dbg(queue->ctrl->ctrl.device,
			"disconnect received - connection closed\n");
		nvme_rdma_error_recovery(queue->ctrl);
		break;
	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1535 1536
		/* device removal is handled via the ib_client API */
		break;
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
	default:
		dev_err(queue->ctrl->ctrl.device,
			"Unexpected RDMA CM event (%d)\n", ev->event);
		nvme_rdma_error_recovery(queue->ctrl);
		break;
	}

	if (cm_error) {
		queue->cm_error = cm_error;
		complete(&queue->cm_done);
	}

	return 0;
}

static enum blk_eh_timer_return
nvme_rdma_timeout(struct request *rq, bool reserved)
{
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);

	/* queue error recovery */
	nvme_rdma_error_recovery(req->queue->ctrl);

	/* fail with DNR on cmd timeout */
1561
	nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1562 1563 1564 1565

	return BLK_EH_HANDLED;
}

1566 1567 1568
/*
 * We cannot accept any other command until the Connect command has completed.
 */
C
Christoph Hellwig 已提交
1569 1570
static inline blk_status_t
nvme_rdma_queue_is_ready(struct nvme_rdma_queue *queue, struct request *rq)
1571 1572
{
	if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags))) {
1573
		struct nvme_command *cmd = nvme_req(rq)->cmd;
1574

1575
		if (!blk_rq_is_passthrough(rq) ||
1576
		    cmd->common.opcode != nvme_fabrics_command ||
1577 1578 1579 1580 1581 1582 1583 1584 1585
		    cmd->fabrics.fctype != nvme_fabrics_type_connect) {
			/*
			 * reconnecting state means transport disruption, which
			 * can take a long time and even might fail permanently,
			 * so we can't let incoming I/O be requeued forever.
			 * fail it fast to allow upper layers a chance to
			 * failover.
			 */
			if (queue->ctrl->ctrl.state == NVME_CTRL_RECONNECTING)
C
Christoph Hellwig 已提交
1586 1587
				return BLK_STS_IOERR;
			return BLK_STS_RESOURCE; /* try again later */
1588
		}
1589 1590
	}

1591
	return 0;
1592 1593
}

1594
static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
		const struct blk_mq_queue_data *bd)
{
	struct nvme_ns *ns = hctx->queue->queuedata;
	struct nvme_rdma_queue *queue = hctx->driver_data;
	struct request *rq = bd->rq;
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
	struct nvme_rdma_qe *sqe = &req->sqe;
	struct nvme_command *c = sqe->data;
	bool flush = false;
	struct ib_device *dev;
1605 1606
	blk_status_t ret;
	int err;
1607 1608 1609

	WARN_ON_ONCE(rq->tag < 0);

1610 1611
	ret = nvme_rdma_queue_is_ready(queue, rq);
	if (unlikely(ret))
C
Christoph Hellwig 已提交
1612
		return ret;
1613

1614 1615 1616 1617 1618
	dev = queue->device->dev;
	ib_dma_sync_single_for_cpu(dev, sqe->dma,
			sizeof(struct nvme_command), DMA_TO_DEVICE);

	ret = nvme_setup_cmd(ns, rq, c);
1619
	if (ret)
1620 1621 1622 1623
		return ret;

	blk_mq_start_request(rq);

1624 1625
	err = nvme_rdma_map_data(queue, rq, c);
	if (err < 0) {
1626
		dev_err(queue->ctrl->ctrl.device,
1627
			     "Failed to map data (%d)\n", err);
1628 1629 1630 1631 1632 1633 1634
		nvme_cleanup_cmd(rq);
		goto err;
	}

	ib_dma_sync_single_for_device(dev, sqe->dma,
			sizeof(struct nvme_command), DMA_TO_DEVICE);

1635
	if (req_op(rq) == REQ_OP_FLUSH)
1636
		flush = true;
1637
	err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1638
			req->mr->need_inval ? &req->reg_wr.wr : NULL, flush);
1639
	if (err) {
1640 1641 1642 1643
		nvme_rdma_unmap_data(queue, rq);
		goto err;
	}

1644
	return BLK_STS_OK;
1645
err:
1646 1647 1648
	if (err == -ENOMEM || err == -EAGAIN)
		return BLK_STS_RESOURCE;
	return BLK_STS_IOERR;
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
}

static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
{
	struct nvme_rdma_queue *queue = hctx->driver_data;
	struct ib_cq *cq = queue->ib_cq;
	struct ib_wc wc;
	int found = 0;

	while (ib_poll_cq(cq, 1, &wc) > 0) {
		struct ib_cqe *cqe = wc.wr_cqe;

		if (cqe) {
			if (cqe->done == nvme_rdma_recv_done)
				found |= __nvme_rdma_recv_done(cq, &wc, tag);
			else
				cqe->done(cq, &wc);
		}
	}

	return found;
}

static void nvme_rdma_complete_rq(struct request *rq)
{
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);

1676 1677
	nvme_rdma_unmap_data(req->queue, rq);
	nvme_complete_rq(rq);
1678 1679
}

1680
static const struct blk_mq_ops nvme_rdma_mq_ops = {
1681 1682 1683 1684 1685 1686 1687 1688 1689
	.queue_rq	= nvme_rdma_queue_rq,
	.complete	= nvme_rdma_complete_rq,
	.init_request	= nvme_rdma_init_request,
	.exit_request	= nvme_rdma_exit_request,
	.init_hctx	= nvme_rdma_init_hctx,
	.poll		= nvme_rdma_poll,
	.timeout	= nvme_rdma_timeout,
};

1690
static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1691 1692
	.queue_rq	= nvme_rdma_queue_rq,
	.complete	= nvme_rdma_complete_rq,
1693 1694
	.init_request	= nvme_rdma_init_request,
	.exit_request	= nvme_rdma_exit_request,
1695 1696 1697 1698
	.init_hctx	= nvme_rdma_init_admin_hctx,
	.timeout	= nvme_rdma_timeout,
};

1699
static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1700 1701 1702 1703
{
	cancel_work_sync(&ctrl->err_work);
	cancel_delayed_work_sync(&ctrl->reconnect_work);

1704
	if (ctrl->ctrl.queue_count > 1) {
1705 1706 1707
		nvme_stop_queues(&ctrl->ctrl);
		blk_mq_tagset_busy_iter(&ctrl->tag_set,
					nvme_cancel_request, &ctrl->ctrl);
1708
		nvme_rdma_destroy_io_queues(ctrl, shutdown);
1709 1710
	}

1711
	if (shutdown)
1712
		nvme_shutdown_ctrl(&ctrl->ctrl);
1713 1714
	else
		nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
1715

1716
	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1717 1718
	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
				nvme_cancel_request, &ctrl->ctrl);
1719
	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1720
	nvme_rdma_destroy_admin_queue(ctrl, shutdown);
1721 1722
}

1723 1724
static void __nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
{
1725 1726
	nvme_stop_ctrl(&ctrl->ctrl);
	nvme_remove_namespaces(&ctrl->ctrl);
1727
	if (shutdown)
1728
		nvme_rdma_shutdown_ctrl(ctrl, shutdown);
1729

1730
	nvme_uninit_ctrl(&ctrl->ctrl);
1731 1732 1733
	nvme_put_ctrl(&ctrl->ctrl);
}

1734 1735 1736 1737 1738
static void nvme_rdma_del_ctrl_work(struct work_struct *work)
{
	struct nvme_rdma_ctrl *ctrl = container_of(work,
				struct nvme_rdma_ctrl, delete_work);

1739
	__nvme_rdma_remove_ctrl(ctrl, true);
1740 1741 1742 1743 1744 1745 1746
}

static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl)
{
	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
		return -EBUSY;

1747
	if (!queue_work(nvme_wq, &ctrl->delete_work))
1748 1749 1750 1751 1752 1753 1754 1755
		return -EBUSY;

	return 0;
}

static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl)
{
	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1756
	int ret = 0;
1757

1758 1759 1760 1761 1762 1763
	/*
	 * Keep a reference until all work is flushed since
	 * __nvme_rdma_del_ctrl can free the ctrl mem
	 */
	if (!kref_get_unless_zero(&ctrl->ctrl.kref))
		return -EBUSY;
1764
	ret = __nvme_rdma_del_ctrl(ctrl);
1765 1766 1767 1768
	if (!ret)
		flush_work(&ctrl->delete_work);
	nvme_put_ctrl(&ctrl->ctrl);
	return ret;
1769 1770 1771 1772 1773 1774 1775
}

static void nvme_rdma_remove_ctrl_work(struct work_struct *work)
{
	struct nvme_rdma_ctrl *ctrl = container_of(work,
				struct nvme_rdma_ctrl, delete_work);

1776
	__nvme_rdma_remove_ctrl(ctrl, false);
1777 1778 1779 1780
}

static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
{
1781 1782
	struct nvme_rdma_ctrl *ctrl =
		container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1783 1784 1785
	int ret;
	bool changed;

1786
	nvme_stop_ctrl(&ctrl->ctrl);
1787
	nvme_rdma_shutdown_ctrl(ctrl, false);
1788

1789
	ret = nvme_rdma_configure_admin_queue(ctrl, false);
1790 1791 1792 1793 1794 1795
	if (ret) {
		/* ctrl is already shutdown, just remove the ctrl */
		INIT_WORK(&ctrl->delete_work, nvme_rdma_remove_ctrl_work);
		goto del_dead_ctrl;
	}

1796
	if (ctrl->ctrl.queue_count > 1) {
1797
		ret = nvme_rdma_configure_io_queues(ctrl, false);
1798 1799 1800 1801 1802 1803 1804
		if (ret)
			goto del_dead_ctrl;
	}

	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
	WARN_ON_ONCE(!changed);

1805
	nvme_start_ctrl(&ctrl->ctrl);
1806 1807 1808 1809 1810 1811

	return;

del_dead_ctrl:
	/* Deleting this dead controller... */
	dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
1812
	WARN_ON(!queue_work(nvme_wq, &ctrl->delete_work));
1813 1814 1815 1816 1817
}

static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
	.name			= "rdma",
	.module			= THIS_MODULE,
1818
	.flags			= NVME_F_FABRICS,
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
	.reg_read32		= nvmf_reg_read32,
	.reg_read64		= nvmf_reg_read64,
	.reg_write32		= nvmf_reg_write32,
	.free_ctrl		= nvme_rdma_free_ctrl,
	.submit_async_event	= nvme_rdma_submit_async_event,
	.delete_ctrl		= nvme_rdma_del_ctrl,
	.get_address		= nvmf_get_address,
};

static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
		struct nvmf_ctrl_options *opts)
{
	struct nvme_rdma_ctrl *ctrl;
	int ret;
	bool changed;
1834
	char *port;
1835 1836 1837 1838 1839 1840 1841

	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
	if (!ctrl)
		return ERR_PTR(-ENOMEM);
	ctrl->ctrl.opts = opts;
	INIT_LIST_HEAD(&ctrl->list);

1842 1843 1844 1845 1846 1847 1848
	if (opts->mask & NVMF_OPT_TRSVCID)
		port = opts->trsvcid;
	else
		port = __stringify(NVME_RDMA_IP_PORT);

	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
			opts->traddr, port, &ctrl->addr);
1849
	if (ret) {
1850
		pr_err("malformed address passed: %s:%s\n", opts->traddr, port);
1851 1852 1853
		goto out_free_ctrl;
	}

1854
	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1855 1856
		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
			opts->host_traddr, NULL, &ctrl->src_addr);
1857
		if (ret) {
1858
			pr_err("malformed src address passed: %s\n",
1859 1860 1861 1862 1863
			       opts->host_traddr);
			goto out_free_ctrl;
		}
	}

1864 1865 1866 1867 1868 1869 1870 1871 1872
	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
				0 /* no quirks, we're perfect! */);
	if (ret)
		goto out_free_ctrl;

	INIT_DELAYED_WORK(&ctrl->reconnect_work,
			nvme_rdma_reconnect_ctrl_work);
	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
	INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work);
1873
	INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1874

1875
	ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1876
	ctrl->ctrl.sqsize = opts->queue_size - 1;
1877 1878 1879
	ctrl->ctrl.kato = opts->kato;

	ret = -ENOMEM;
1880
	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
1881 1882 1883 1884
				GFP_KERNEL);
	if (!ctrl->queues)
		goto out_uninit_ctrl;

1885
	ret = nvme_rdma_configure_admin_queue(ctrl, true);
1886 1887 1888 1889 1890 1891
	if (ret)
		goto out_kfree_queues;

	/* sanity check icdoff */
	if (ctrl->ctrl.icdoff) {
		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1892
		ret = -EINVAL;
1893 1894 1895 1896 1897 1898
		goto out_remove_admin_queue;
	}

	/* sanity check keyed sgls */
	if (!(ctrl->ctrl.sgls & (1 << 20))) {
		dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
1899
		ret = -EINVAL;
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
		goto out_remove_admin_queue;
	}

	if (opts->queue_size > ctrl->ctrl.maxcmd) {
		/* warn if maxcmd is lower than queue_size */
		dev_warn(ctrl->ctrl.device,
			"queue_size %zu > ctrl maxcmd %u, clamping down\n",
			opts->queue_size, ctrl->ctrl.maxcmd);
		opts->queue_size = ctrl->ctrl.maxcmd;
	}

1911 1912 1913 1914 1915 1916 1917 1918
	if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
		/* warn if sqsize is lower than queue_size */
		dev_warn(ctrl->ctrl.device,
			"queue_size %zu > ctrl sqsize %u, clamping down\n",
			opts->queue_size, ctrl->ctrl.sqsize + 1);
		opts->queue_size = ctrl->ctrl.sqsize + 1;
	}

1919
	if (opts->nr_io_queues) {
1920
		ret = nvme_rdma_configure_io_queues(ctrl, true);
1921 1922 1923 1924 1925 1926 1927
		if (ret)
			goto out_remove_admin_queue;
	}

	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
	WARN_ON_ONCE(!changed);

1928
	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
1929 1930 1931 1932 1933 1934 1935 1936
		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);

	kref_get(&ctrl->ctrl.kref);

	mutex_lock(&nvme_rdma_ctrl_mutex);
	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
	mutex_unlock(&nvme_rdma_ctrl_mutex);

1937
	nvme_start_ctrl(&ctrl->ctrl);
1938 1939 1940 1941

	return &ctrl->ctrl;

out_remove_admin_queue:
1942
	nvme_rdma_destroy_admin_queue(ctrl, true);
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
out_kfree_queues:
	kfree(ctrl->queues);
out_uninit_ctrl:
	nvme_uninit_ctrl(&ctrl->ctrl);
	nvme_put_ctrl(&ctrl->ctrl);
	if (ret > 0)
		ret = -EIO;
	return ERR_PTR(ret);
out_free_ctrl:
	kfree(ctrl);
	return ERR_PTR(ret);
}

static struct nvmf_transport_ops nvme_rdma_transport = {
	.name		= "rdma",
	.required_opts	= NVMF_OPT_TRADDR,
1959
	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
S
Sagi Grimberg 已提交
1960
			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO,
1961 1962 1963
	.create_ctrl	= nvme_rdma_create_ctrl,
};

1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
static void nvme_rdma_add_one(struct ib_device *ib_device)
{
}

static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
{
	struct nvme_rdma_ctrl *ctrl;

	/* Delete all controllers using this device */
	mutex_lock(&nvme_rdma_ctrl_mutex);
	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
		if (ctrl->device->dev != ib_device)
			continue;
		dev_info(ctrl->ctrl.device,
			"Removing ctrl: NQN \"%s\", addr %pISp\n",
			ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
		__nvme_rdma_del_ctrl(ctrl);
	}
	mutex_unlock(&nvme_rdma_ctrl_mutex);

1984
	flush_workqueue(nvme_wq);
1985 1986 1987 1988 1989 1990 1991 1992
}

static struct ib_client nvme_rdma_ib_client = {
	.name   = "nvme_rdma",
	.add = nvme_rdma_add_one,
	.remove = nvme_rdma_remove_one
};

1993 1994
static int __init nvme_rdma_init_module(void)
{
1995 1996 1997
	int ret;

	ret = ib_register_client(&nvme_rdma_ib_client);
1998
	if (ret)
1999
		return ret;
2000 2001 2002 2003

	ret = nvmf_register_transport(&nvme_rdma_transport);
	if (ret)
		goto err_unreg_client;
2004

2005
	return 0;
2006

2007 2008 2009
err_unreg_client:
	ib_unregister_client(&nvme_rdma_ib_client);
	return ret;
2010 2011 2012 2013 2014
}

static void __exit nvme_rdma_cleanup_module(void)
{
	nvmf_unregister_transport(&nvme_rdma_transport);
2015
	ib_unregister_client(&nvme_rdma_ib_client);
2016 2017 2018 2019 2020 2021
}

module_init(nvme_rdma_init_module);
module_exit(nvme_rdma_cleanup_module);

MODULE_LICENSE("GPL v2");