rdma.c 51.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/*
 * NVMe over Fabrics RDMA host code.
 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 */
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/string.h>
#include <linux/atomic.h>
#include <linux/blk-mq.h>
#include <linux/types.h>
#include <linux/list.h>
#include <linux/mutex.h>
#include <linux/scatterlist.h>
#include <linux/nvme.h>
#include <asm/unaligned.h>

#include <rdma/ib_verbs.h>
#include <rdma/rdma_cm.h>
#include <linux/nvme-rdma.h>

#include "nvme.h"
#include "fabrics.h"


37
#define NVME_RDMA_CONNECT_TIMEOUT_MS	3000		/* 3 second */
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

#define NVME_RDMA_MAX_SEGMENT_SIZE	0xffffff	/* 24-bit SGL field */

#define NVME_RDMA_MAX_SEGMENTS		256

#define NVME_RDMA_MAX_INLINE_SEGMENTS	1

/*
 * We handle AEN commands ourselves and don't even let the
 * block layer know about them.
 */
#define NVME_RDMA_NR_AEN_COMMANDS      1
#define NVME_RDMA_AQ_BLKMQ_DEPTH       \
	(NVMF_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS)

struct nvme_rdma_device {
	struct ib_device       *dev;
	struct ib_pd	       *pd;
	struct kref		ref;
	struct list_head	entry;
};

struct nvme_rdma_qe {
	struct ib_cqe		cqe;
	void			*data;
	u64			dma;
};

struct nvme_rdma_queue;
struct nvme_rdma_request {
68
	struct nvme_request	req;
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
	struct ib_mr		*mr;
	struct nvme_rdma_qe	sqe;
	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
	u32			num_sge;
	int			nents;
	bool			inline_data;
	struct ib_reg_wr	reg_wr;
	struct ib_cqe		reg_cqe;
	struct nvme_rdma_queue  *queue;
	struct sg_table		sg_table;
	struct scatterlist	first_sgl[];
};

enum nvme_rdma_queue_flags {
	NVME_RDMA_Q_CONNECTED = (1 << 0),
84
	NVME_RDMA_IB_QUEUE_ALLOCATED = (1 << 1),
85
	NVME_RDMA_Q_DELETING = (1 << 2),
86
	NVME_RDMA_Q_LIVE = (1 << 3),
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
};

struct nvme_rdma_queue {
	struct nvme_rdma_qe	*rsp_ring;
	u8			sig_count;
	int			queue_size;
	size_t			cmnd_capsule_len;
	struct nvme_rdma_ctrl	*ctrl;
	struct nvme_rdma_device	*device;
	struct ib_cq		*ib_cq;
	struct ib_qp		*qp;

	unsigned long		flags;
	struct rdma_cm_id	*cm_id;
	int			cm_error;
	struct completion	cm_done;
};

struct nvme_rdma_ctrl {
	/* read and written in the hot path */
	spinlock_t		lock;

	/* read only in the hot path */
	struct nvme_rdma_queue	*queues;
	u32			queue_count;

	/* other member variables */
	struct blk_mq_tag_set	tag_set;
	struct work_struct	delete_work;
	struct work_struct	reset_work;
	struct work_struct	err_work;

	struct nvme_rdma_qe	async_event_sqe;

	int			reconnect_delay;
	struct delayed_work	reconnect_work;

	struct list_head	list;

	struct blk_mq_tag_set	admin_tag_set;
	struct nvme_rdma_device	*device;

	u64			cap;
	u32			max_fr_pages;

132 133
	struct sockaddr_storage addr;
	struct sockaddr_storage src_addr;
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241

	struct nvme_ctrl	ctrl;
};

static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
{
	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
}

static LIST_HEAD(device_list);
static DEFINE_MUTEX(device_list_mutex);

static LIST_HEAD(nvme_rdma_ctrl_list);
static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);

static struct workqueue_struct *nvme_rdma_wq;

/*
 * Disabling this option makes small I/O goes faster, but is fundamentally
 * unsafe.  With it turned off we will have to register a global rkey that
 * allows read and write access to all physical memory.
 */
static bool register_always = true;
module_param(register_always, bool, 0444);
MODULE_PARM_DESC(register_always,
	 "Use memory registration even for contiguous memory regions");

static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
		struct rdma_cm_event *event);
static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);

/* XXX: really should move to a generic header sooner or later.. */
static inline void put_unaligned_le24(u32 val, u8 *p)
{
	*p++ = val;
	*p++ = val >> 8;
	*p++ = val >> 16;
}

static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
{
	return queue - queue->ctrl->queues;
}

static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
{
	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
}

static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
		size_t capsule_size, enum dma_data_direction dir)
{
	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
	kfree(qe->data);
}

static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
		size_t capsule_size, enum dma_data_direction dir)
{
	qe->data = kzalloc(capsule_size, GFP_KERNEL);
	if (!qe->data)
		return -ENOMEM;

	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
	if (ib_dma_mapping_error(ibdev, qe->dma)) {
		kfree(qe->data);
		return -ENOMEM;
	}

	return 0;
}

static void nvme_rdma_free_ring(struct ib_device *ibdev,
		struct nvme_rdma_qe *ring, size_t ib_queue_size,
		size_t capsule_size, enum dma_data_direction dir)
{
	int i;

	for (i = 0; i < ib_queue_size; i++)
		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
	kfree(ring);
}

static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
		size_t ib_queue_size, size_t capsule_size,
		enum dma_data_direction dir)
{
	struct nvme_rdma_qe *ring;
	int i;

	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
	if (!ring)
		return NULL;

	for (i = 0; i < ib_queue_size; i++) {
		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
			goto out_free_ring;
	}

	return ring;

out_free_ring:
	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
	return NULL;
}

static void nvme_rdma_qp_event(struct ib_event *event, void *context)
{
242 243 244
	pr_debug("QP event %s (%d)\n",
		 ib_event_msg(event->event), event->event);

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
}

static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
{
	wait_for_completion_interruptible_timeout(&queue->cm_done,
			msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
	return queue->cm_error;
}

static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
{
	struct nvme_rdma_device *dev = queue->device;
	struct ib_qp_init_attr init_attr;
	int ret;

	memset(&init_attr, 0, sizeof(init_attr));
	init_attr.event_handler = nvme_rdma_qp_event;
	/* +1 for drain */
	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
	/* +1 for drain */
	init_attr.cap.max_recv_wr = queue->queue_size + 1;
	init_attr.cap.max_recv_sge = 1;
	init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
	init_attr.qp_type = IB_QPT_RC;
	init_attr.send_cq = queue->ib_cq;
	init_attr.recv_cq = queue->ib_cq;

	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);

	queue->qp = queue->cm_id->qp;
	return ret;
}

static int nvme_rdma_reinit_request(void *data, struct request *rq)
{
	struct nvme_rdma_ctrl *ctrl = data;
	struct nvme_rdma_device *dev = ctrl->device;
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
	int ret = 0;

286
	if (!req->mr->need_inval)
287 288 289 290 291 292 293 294
		goto out;

	ib_dereg_mr(req->mr);

	req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
			ctrl->max_fr_pages);
	if (IS_ERR(req->mr)) {
		ret = PTR_ERR(req->mr);
295
		req->mr = NULL;
296
		goto out;
297 298
	}

299
	req->mr->need_inval = false;
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441

out:
	return ret;
}

static void __nvme_rdma_exit_request(struct nvme_rdma_ctrl *ctrl,
		struct request *rq, unsigned int queue_idx)
{
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
	struct nvme_rdma_device *dev = queue->device;

	if (req->mr)
		ib_dereg_mr(req->mr);

	nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
			DMA_TO_DEVICE);
}

static void nvme_rdma_exit_request(void *data, struct request *rq,
				unsigned int hctx_idx, unsigned int rq_idx)
{
	return __nvme_rdma_exit_request(data, rq, hctx_idx + 1);
}

static void nvme_rdma_exit_admin_request(void *data, struct request *rq,
				unsigned int hctx_idx, unsigned int rq_idx)
{
	return __nvme_rdma_exit_request(data, rq, 0);
}

static int __nvme_rdma_init_request(struct nvme_rdma_ctrl *ctrl,
		struct request *rq, unsigned int queue_idx)
{
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
	struct nvme_rdma_device *dev = queue->device;
	struct ib_device *ibdev = dev->dev;
	int ret;

	ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
			DMA_TO_DEVICE);
	if (ret)
		return ret;

	req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
			ctrl->max_fr_pages);
	if (IS_ERR(req->mr)) {
		ret = PTR_ERR(req->mr);
		goto out_free_qe;
	}

	req->queue = queue;

	return 0;

out_free_qe:
	nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
			DMA_TO_DEVICE);
	return -ENOMEM;
}

static int nvme_rdma_init_request(void *data, struct request *rq,
				unsigned int hctx_idx, unsigned int rq_idx,
				unsigned int numa_node)
{
	return __nvme_rdma_init_request(data, rq, hctx_idx + 1);
}

static int nvme_rdma_init_admin_request(void *data, struct request *rq,
				unsigned int hctx_idx, unsigned int rq_idx,
				unsigned int numa_node)
{
	return __nvme_rdma_init_request(data, rq, 0);
}

static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
		unsigned int hctx_idx)
{
	struct nvme_rdma_ctrl *ctrl = data;
	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];

	BUG_ON(hctx_idx >= ctrl->queue_count);

	hctx->driver_data = queue;
	return 0;
}

static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
		unsigned int hctx_idx)
{
	struct nvme_rdma_ctrl *ctrl = data;
	struct nvme_rdma_queue *queue = &ctrl->queues[0];

	BUG_ON(hctx_idx != 0);

	hctx->driver_data = queue;
	return 0;
}

static void nvme_rdma_free_dev(struct kref *ref)
{
	struct nvme_rdma_device *ndev =
		container_of(ref, struct nvme_rdma_device, ref);

	mutex_lock(&device_list_mutex);
	list_del(&ndev->entry);
	mutex_unlock(&device_list_mutex);

	ib_dealloc_pd(ndev->pd);
	kfree(ndev);
}

static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
{
	kref_put(&dev->ref, nvme_rdma_free_dev);
}

static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
{
	return kref_get_unless_zero(&dev->ref);
}

static struct nvme_rdma_device *
nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
{
	struct nvme_rdma_device *ndev;

	mutex_lock(&device_list_mutex);
	list_for_each_entry(ndev, &device_list, entry) {
		if (ndev->dev->node_guid == cm_id->device->node_guid &&
		    nvme_rdma_dev_get(ndev))
			goto out_unlock;
	}

	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
	if (!ndev)
		goto out_err;

	ndev->dev = cm_id->device;
	kref_init(&ndev->ref);

442 443
	ndev->pd = ib_alloc_pd(ndev->dev,
		register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
444 445 446 447 448 449 450
	if (IS_ERR(ndev->pd))
		goto out_free_dev;

	if (!(ndev->dev->attrs.device_cap_flags &
	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
		dev_err(&ndev->dev->dev,
			"Memory registrations not supported.\n");
451
		goto out_free_pd;
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
	}

	list_add(&ndev->entry, &device_list);
out_unlock:
	mutex_unlock(&device_list_mutex);
	return ndev;

out_free_pd:
	ib_dealloc_pd(ndev->pd);
out_free_dev:
	kfree(ndev);
out_err:
	mutex_unlock(&device_list_mutex);
	return NULL;
}

static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
{
470 471
	struct nvme_rdma_device *dev;
	struct ib_device *ibdev;
472

473 474 475 476 477
	if (!test_and_clear_bit(NVME_RDMA_IB_QUEUE_ALLOCATED, &queue->flags))
		return;

	dev = queue->device;
	ibdev = dev->dev;
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
	rdma_destroy_qp(queue->cm_id);
	ib_free_cq(queue->ib_cq);

	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
			sizeof(struct nvme_completion), DMA_FROM_DEVICE);

	nvme_rdma_dev_put(dev);
}

static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue,
		struct nvme_rdma_device *dev)
{
	struct ib_device *ibdev = dev->dev;
	const int send_wr_factor = 3;			/* MR, SEND, INV */
	const int cq_factor = send_wr_factor + 1;	/* + RECV */
	int comp_vector, idx = nvme_rdma_queue_idx(queue);

	int ret;

	queue->device = dev;

	/*
	 * The admin queue is barely used once the controller is live, so don't
	 * bother to spread it out.
	 */
	if (idx == 0)
		comp_vector = 0;
	else
		comp_vector = idx % ibdev->num_comp_vectors;


	/* +1 for ib_stop_cq */
	queue->ib_cq = ib_alloc_cq(dev->dev, queue,
				cq_factor * queue->queue_size + 1, comp_vector,
				IB_POLL_SOFTIRQ);
	if (IS_ERR(queue->ib_cq)) {
		ret = PTR_ERR(queue->ib_cq);
		goto out;
	}

	ret = nvme_rdma_create_qp(queue, send_wr_factor);
	if (ret)
		goto out_destroy_ib_cq;

	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
	if (!queue->rsp_ring) {
		ret = -ENOMEM;
		goto out_destroy_qp;
	}
528
	set_bit(NVME_RDMA_IB_QUEUE_ALLOCATED, &queue->flags);
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543

	return 0;

out_destroy_qp:
	ib_destroy_qp(queue->qp);
out_destroy_ib_cq:
	ib_free_cq(queue->ib_cq);
out:
	return ret;
}

static int nvme_rdma_init_queue(struct nvme_rdma_ctrl *ctrl,
		int idx, size_t queue_size)
{
	struct nvme_rdma_queue *queue;
544
	struct sockaddr *src_addr = NULL;
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
	int ret;

	queue = &ctrl->queues[idx];
	queue->ctrl = ctrl;
	init_completion(&queue->cm_done);

	if (idx > 0)
		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
	else
		queue->cmnd_capsule_len = sizeof(struct nvme_command);

	queue->queue_size = queue_size;

	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
			RDMA_PS_TCP, IB_QPT_RC);
	if (IS_ERR(queue->cm_id)) {
		dev_info(ctrl->ctrl.device,
			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
		return PTR_ERR(queue->cm_id);
	}

566
	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
567
		src_addr = (struct sockaddr *)&ctrl->src_addr;
568

569 570 571
	queue->cm_error = -ETIMEDOUT;
	ret = rdma_resolve_addr(queue->cm_id, src_addr,
			(struct sockaddr *)&ctrl->addr,
572 573 574 575 576 577 578 579 580 581 582 583 584 585
			NVME_RDMA_CONNECT_TIMEOUT_MS);
	if (ret) {
		dev_info(ctrl->ctrl.device,
			"rdma_resolve_addr failed (%d).\n", ret);
		goto out_destroy_cm_id;
	}

	ret = nvme_rdma_wait_for_cm(queue);
	if (ret) {
		dev_info(ctrl->ctrl.device,
			"rdma_resolve_addr wait failed (%d).\n", ret);
		goto out_destroy_cm_id;
	}

586
	clear_bit(NVME_RDMA_Q_DELETING, &queue->flags);
587 588 589 590 591
	set_bit(NVME_RDMA_Q_CONNECTED, &queue->flags);

	return 0;

out_destroy_cm_id:
592
	nvme_rdma_destroy_queue_ib(queue);
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
	rdma_destroy_id(queue->cm_id);
	return ret;
}

static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
{
	rdma_disconnect(queue->cm_id);
	ib_drain_qp(queue->qp);
}

static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
{
	nvme_rdma_destroy_queue_ib(queue);
	rdma_destroy_id(queue->cm_id);
}

static void nvme_rdma_stop_and_free_queue(struct nvme_rdma_queue *queue)
{
611
	if (test_and_set_bit(NVME_RDMA_Q_DELETING, &queue->flags))
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
		return;
	nvme_rdma_stop_queue(queue);
	nvme_rdma_free_queue(queue);
}

static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
{
	int i;

	for (i = 1; i < ctrl->queue_count; i++)
		nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
}

static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl *ctrl)
{
	int i, ret = 0;

	for (i = 1; i < ctrl->queue_count; i++) {
		ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
631 632 633 634 635
		if (ret) {
			dev_info(ctrl->ctrl.device,
				"failed to connect i/o queue: %d\n", ret);
			goto out_free_queues;
		}
636
		set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags);
637 638
	}

639 640 641 642
	return 0;

out_free_queues:
	nvme_rdma_free_io_queues(ctrl);
643 644 645 646 647
	return ret;
}

static int nvme_rdma_init_io_queues(struct nvme_rdma_ctrl *ctrl)
{
648 649
	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
	unsigned int nr_io_queues;
650 651
	int i, ret;

652 653 654 655 656 657 658 659 660 661 662 663
	nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
	if (ret)
		return ret;

	ctrl->queue_count = nr_io_queues + 1;
	if (ctrl->queue_count < 2)
		return 0;

	dev_info(ctrl->ctrl.device,
		"creating %d I/O queues.\n", nr_io_queues);

664
	for (i = 1; i < ctrl->queue_count; i++) {
665 666
		ret = nvme_rdma_init_queue(ctrl, i,
					   ctrl->ctrl.opts->queue_size);
667 668 669 670 671 672 673 674 675 676
		if (ret) {
			dev_info(ctrl->ctrl.device,
				"failed to initialize i/o queue: %d\n", ret);
			goto out_free_queues;
		}
	}

	return 0;

out_free_queues:
677
	for (i--; i >= 1; i--)
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
		nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);

	return ret;
}

static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
{
	nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe,
			sizeof(struct nvme_command), DMA_TO_DEVICE);
	nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
	blk_cleanup_queue(ctrl->ctrl.admin_q);
	blk_mq_free_tag_set(&ctrl->admin_tag_set);
	nvme_rdma_dev_put(ctrl->device);
}

static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
{
	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);

	if (list_empty(&ctrl->list))
		goto free_ctrl;

	mutex_lock(&nvme_rdma_ctrl_mutex);
	list_del(&ctrl->list);
	mutex_unlock(&nvme_rdma_ctrl_mutex);

	kfree(ctrl->queues);
	nvmf_free_options(nctrl->opts);
free_ctrl:
	kfree(ctrl);
}

static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
{
	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
			struct nvme_rdma_ctrl, reconnect_work);
	bool changed;
	int ret;

	if (ctrl->queue_count > 1) {
		nvme_rdma_free_io_queues(ctrl);

		ret = blk_mq_reinit_tagset(&ctrl->tag_set);
		if (ret)
			goto requeue;
	}

	nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);

	ret = blk_mq_reinit_tagset(&ctrl->admin_tag_set);
	if (ret)
		goto requeue;

	ret = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
	if (ret)
		goto requeue;

	blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true);

	ret = nvmf_connect_admin_queue(&ctrl->ctrl);
	if (ret)
		goto stop_admin_q;

741 742
	set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags);

743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
	ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
	if (ret)
		goto stop_admin_q;

	nvme_start_keep_alive(&ctrl->ctrl);

	if (ctrl->queue_count > 1) {
		ret = nvme_rdma_init_io_queues(ctrl);
		if (ret)
			goto stop_admin_q;

		ret = nvme_rdma_connect_io_queues(ctrl);
		if (ret)
			goto stop_admin_q;
	}

	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
	WARN_ON_ONCE(!changed);

762
	if (ctrl->queue_count > 1) {
763
		nvme_start_queues(&ctrl->ctrl);
764
		nvme_queue_scan(&ctrl->ctrl);
765
		nvme_queue_async_events(&ctrl->ctrl);
766
	}
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787

	dev_info(ctrl->ctrl.device, "Successfully reconnected\n");

	return;

stop_admin_q:
	blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
requeue:
	/* Make sure we are not resetting/deleting */
	if (ctrl->ctrl.state == NVME_CTRL_RECONNECTING) {
		dev_info(ctrl->ctrl.device,
			"Failed reconnect attempt, requeueing...\n");
		queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work,
					ctrl->reconnect_delay * HZ);
	}
}

static void nvme_rdma_error_recovery_work(struct work_struct *work)
{
	struct nvme_rdma_ctrl *ctrl = container_of(work,
			struct nvme_rdma_ctrl, err_work);
788
	int i;
789 790

	nvme_stop_keep_alive(&ctrl->ctrl);
791

792
	for (i = 0; i < ctrl->queue_count; i++) {
793
		clear_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[i].flags);
794 795
		clear_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags);
	}
796

797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
	if (ctrl->queue_count > 1)
		nvme_stop_queues(&ctrl->ctrl);
	blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);

	/* We must take care of fastfail/requeue all our inflight requests */
	if (ctrl->queue_count > 1)
		blk_mq_tagset_busy_iter(&ctrl->tag_set,
					nvme_cancel_request, &ctrl->ctrl);
	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
				nvme_cancel_request, &ctrl->ctrl);

	dev_info(ctrl->ctrl.device, "reconnecting in %d seconds\n",
		ctrl->reconnect_delay);

	queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work,
				ctrl->reconnect_delay * HZ);
}

static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
{
	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING))
		return;

	queue_work(nvme_rdma_wq, &ctrl->err_work);
}

static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
		const char *op)
{
	struct nvme_rdma_queue *queue = cq->cq_context;
	struct nvme_rdma_ctrl *ctrl = queue->ctrl;

	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
		dev_info(ctrl->ctrl.device,
			     "%s for CQE 0x%p failed with status %s (%d)\n",
			     op, wc->wr_cqe,
			     ib_wc_status_msg(wc->status), wc->status);
	nvme_rdma_error_recovery(ctrl);
}

static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
{
	if (unlikely(wc->status != IB_WC_SUCCESS))
		nvme_rdma_wr_error(cq, wc, "MEMREG");
}

static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
{
	if (unlikely(wc->status != IB_WC_SUCCESS))
		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
}

static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
		struct nvme_rdma_request *req)
{
	struct ib_send_wr *bad_wr;
	struct ib_send_wr wr = {
		.opcode		    = IB_WR_LOCAL_INV,
		.next		    = NULL,
		.num_sge	    = 0,
		.send_flags	    = 0,
		.ex.invalidate_rkey = req->mr->rkey,
	};

	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
	wr.wr_cqe = &req->reg_cqe;

	return ib_post_send(queue->qp, &wr, &bad_wr);
}

static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
		struct request *rq)
{
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
	struct nvme_rdma_device *dev = queue->device;
	struct ib_device *ibdev = dev->dev;
	int res;

	if (!blk_rq_bytes(rq))
		return;

879
	if (req->mr->need_inval) {
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
		res = nvme_rdma_inv_rkey(queue, req);
		if (res < 0) {
			dev_err(ctrl->ctrl.device,
				"Queueing INV WR for rkey %#x failed (%d)\n",
				req->mr->rkey, res);
			nvme_rdma_error_recovery(queue->ctrl);
		}
	}

	ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
			req->nents, rq_data_dir(rq) ==
				    WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);

	nvme_cleanup_cmd(rq);
	sg_free_table_chained(&req->sg_table, true);
}

static int nvme_rdma_set_sg_null(struct nvme_command *c)
{
	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;

	sg->addr = 0;
	put_unaligned_le24(0, sg->length);
	put_unaligned_le32(0, sg->key);
	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
	return 0;
}

static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
		struct nvme_rdma_request *req, struct nvme_command *c)
{
	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;

	req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
	req->sge[1].length = sg_dma_len(req->sg_table.sgl);
	req->sge[1].lkey = queue->device->pd->local_dma_lkey;

	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
	sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;

	req->inline_data = true;
	req->num_sge++;
	return 0;
}

static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
		struct nvme_rdma_request *req, struct nvme_command *c)
{
	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;

	sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
	put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
933
	put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
	return 0;
}

static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
		struct nvme_rdma_request *req, struct nvme_command *c,
		int count)
{
	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
	int nr;

	nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, PAGE_SIZE);
	if (nr < count) {
		if (nr < 0)
			return nr;
		return -EINVAL;
	}

	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));

	req->reg_cqe.done = nvme_rdma_memreg_done;
	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
	req->reg_wr.wr.opcode = IB_WR_REG_MR;
	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
	req->reg_wr.wr.num_sge = 0;
	req->reg_wr.mr = req->mr;
	req->reg_wr.key = req->mr->rkey;
	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
			     IB_ACCESS_REMOTE_READ |
			     IB_ACCESS_REMOTE_WRITE;

965
	req->mr->need_inval = true;
966 967 968 969 970 971 972 973 974 975 976

	sg->addr = cpu_to_le64(req->mr->iova);
	put_unaligned_le24(req->mr->length, sg->length);
	put_unaligned_le32(req->mr->rkey, sg->key);
	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
			NVME_SGL_FMT_INVALIDATE;

	return 0;
}

static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
977
		struct request *rq, struct nvme_command *c)
978 979 980 981
{
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
	struct nvme_rdma_device *dev = queue->device;
	struct ib_device *ibdev = dev->dev;
982
	int count, ret;
983 984 985

	req->num_sge = 1;
	req->inline_data = false;
986
	req->mr->need_inval = false;
987 988 989 990 991 992 993

	c->common.flags |= NVME_CMD_SGL_METABUF;

	if (!blk_rq_bytes(rq))
		return nvme_rdma_set_sg_null(c);

	req->sg_table.sgl = req->first_sgl;
994 995
	ret = sg_alloc_table_chained(&req->sg_table,
			blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
996 997 998
	if (ret)
		return -ENOMEM;

999
	req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1000

1001
	count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1002 1003 1004 1005 1006 1007 1008
		    rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
	if (unlikely(count <= 0)) {
		sg_free_table_chained(&req->sg_table, true);
		return -EIO;
	}

	if (count == 1) {
1009 1010 1011
		if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
		    blk_rq_payload_bytes(rq) <=
				nvme_rdma_inline_data_size(queue))
1012 1013
			return nvme_rdma_map_sg_inline(queue, req, c);

1014
		if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
			return nvme_rdma_map_sg_single(queue, req, c);
	}

	return nvme_rdma_map_sg_fr(queue, req, c, count);
}

static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
{
	if (unlikely(wc->status != IB_WC_SUCCESS))
		nvme_rdma_wr_error(cq, wc, "SEND");
}

static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
		struct ib_send_wr *first, bool flush)
{
	struct ib_send_wr wr, *bad_wr;
	int ret;

	sge->addr   = qe->dma;
	sge->length = sizeof(struct nvme_command),
	sge->lkey   = queue->device->pd->local_dma_lkey;

	qe->cqe.done = nvme_rdma_send_done;

	wr.next       = NULL;
	wr.wr_cqe     = &qe->cqe;
	wr.sg_list    = sge;
	wr.num_sge    = num_sge;
	wr.opcode     = IB_WR_SEND;
	wr.send_flags = 0;

	/*
	 * Unsignalled send completions are another giant desaster in the
	 * IB Verbs spec:  If we don't regularly post signalled sends
	 * the send queue will fill up and only a QP reset will rescue us.
	 * Would have been way to obvious to handle this in hardware or
	 * at least the RDMA stack..
	 *
	 * This messy and racy code sniplet is copy and pasted from the iSER
	 * initiator, and the magic '32' comes from there as well.
	 *
	 * Always signal the flushes. The magic request used for the flush
	 * sequencer is not allocated in our driver's tagset and it's
	 * triggered to be freed by blk_cleanup_queue(). So we need to
	 * always mark it as signaled to ensure that the "wr_cqe", which is
1061
	 * embedded in request's payload, is not freed when __ib_process_cq()
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
	 * calls wr_cqe->done().
	 */
	if ((++queue->sig_count % 32) == 0 || flush)
		wr.send_flags |= IB_SEND_SIGNALED;

	if (first)
		first->next = &wr;
	else
		first = &wr;

	ret = ib_post_send(queue->qp, first, &bad_wr);
	if (ret) {
		dev_err(queue->ctrl->ctrl.device,
			     "%s failed with error code %d\n", __func__, ret);
	}
	return ret;
}

static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
		struct nvme_rdma_qe *qe)
{
	struct ib_recv_wr wr, *bad_wr;
	struct ib_sge list;
	int ret;

	list.addr   = qe->dma;
	list.length = sizeof(struct nvme_completion);
	list.lkey   = queue->device->pd->local_dma_lkey;

	qe->cqe.done = nvme_rdma_recv_done;

	wr.next     = NULL;
	wr.wr_cqe   = &qe->cqe;
	wr.sg_list  = &list;
	wr.num_sge  = 1;

	ret = ib_post_recv(queue->qp, &wr, &bad_wr);
	if (ret) {
		dev_err(queue->ctrl->ctrl.device,
			"%s failed with error code %d\n", __func__, ret);
	}
	return ret;
}

static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
{
	u32 queue_idx = nvme_rdma_queue_idx(queue);

	if (queue_idx == 0)
		return queue->ctrl->admin_tag_set.tags[queue_idx];
	return queue->ctrl->tag_set.tags[queue_idx - 1];
}

static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
{
	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
	struct nvme_rdma_queue *queue = &ctrl->queues[0];
	struct ib_device *dev = queue->device->dev;
	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
	struct nvme_command *cmd = sqe->data;
	struct ib_sge sge;
	int ret;

	if (WARN_ON_ONCE(aer_idx != 0))
		return;

	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);

	memset(cmd, 0, sizeof(*cmd));
	cmd->common.opcode = nvme_admin_async_event;
	cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH;
	cmd->common.flags |= NVME_CMD_SGL_METABUF;
	nvme_rdma_set_sg_null(cmd);

	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
			DMA_TO_DEVICE);

	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false);
	WARN_ON_ONCE(ret);
}

static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
		struct nvme_completion *cqe, struct ib_wc *wc, int tag)
{
	struct request *rq;
	struct nvme_rdma_request *req;
	int ret = 0;

	rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
	if (!rq) {
		dev_err(queue->ctrl->ctrl.device,
			"tag 0x%x on QP %#x not found\n",
			cqe->command_id, queue->qp->qp_num);
		nvme_rdma_error_recovery(queue->ctrl);
		return ret;
	}
	req = blk_mq_rq_to_pdu(rq);

	if (rq->tag == tag)
		ret = 1;

	if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) &&
	    wc->ex.invalidate_rkey == req->mr->rkey)
1165
		req->mr->need_inval = false;
1166

1167 1168
	req->req.result = cqe->result;
	blk_mq_complete_request(rq, le16_to_cpu(cqe->status) >> 1);
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
	return ret;
}

static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
{
	struct nvme_rdma_qe *qe =
		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
	struct nvme_rdma_queue *queue = cq->cq_context;
	struct ib_device *ibdev = queue->device->dev;
	struct nvme_completion *cqe = qe->data;
	const size_t len = sizeof(struct nvme_completion);
	int ret = 0;

	if (unlikely(wc->status != IB_WC_SUCCESS)) {
		nvme_rdma_wr_error(cq, wc, "RECV");
		return 0;
	}

	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
	/*
	 * AEN requests are special as they don't time out and can
	 * survive any kind of queue freeze and often don't respond to
	 * aborts.  We don't even bother to allocate a struct request
	 * for them but rather special case them here.
	 */
	if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
			cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH))
1196 1197
		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
				&cqe->result);
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
	else
		ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);

	nvme_rdma_post_recv(queue, qe);
	return ret;
}

static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
{
	__nvme_rdma_recv_done(cq, wc, -1);
}

static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
{
	int ret, i;

	for (i = 0; i < queue->queue_size; i++) {
		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
		if (ret)
			goto out_destroy_queue_ib;
	}

	return 0;

out_destroy_queue_ib:
	nvme_rdma_destroy_queue_ib(queue);
	return ret;
}

static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
		struct rdma_cm_event *ev)
{
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
	struct rdma_cm_id *cm_id = queue->cm_id;
	int status = ev->status;
	const char *rej_msg;
	const struct nvme_rdma_cm_rej *rej_data;
	u8 rej_data_len;

	rej_msg = rdma_reject_msg(cm_id, status);
	rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);

	if (rej_data && rej_data_len >= sizeof(u16)) {
		u16 sts = le16_to_cpu(rej_data->sts);
1242 1243

		dev_err(queue->ctrl->ctrl.device,
1244 1245
		      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
		      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1246 1247
	} else {
		dev_err(queue->ctrl->ctrl.device,
1248
			"Connect rejected: status %d (%s).\n", status, rej_msg);
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
	}

	return -ECONNRESET;
}

static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
{
	struct nvme_rdma_device *dev;
	int ret;

	dev = nvme_rdma_find_get_device(queue->cm_id);
	if (!dev) {
1261
		dev_err(queue->cm_id->device->dev.parent,
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
			"no client data found!\n");
		return -ECONNREFUSED;
	}

	ret = nvme_rdma_create_queue_ib(queue, dev);
	if (ret) {
		nvme_rdma_dev_put(dev);
		goto out;
	}

	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
	if (ret) {
		dev_err(queue->ctrl->ctrl.device,
			"rdma_resolve_route failed (%d).\n",
			queue->cm_error);
		goto out_destroy_queue;
	}

	return 0;

out_destroy_queue:
	nvme_rdma_destroy_queue_ib(queue);
out:
	return ret;
}

static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
{
	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
	struct rdma_conn_param param = { };
1292
	struct nvme_rdma_cm_req priv = { };
1293 1294 1295 1296 1297 1298
	int ret;

	param.qp_num = queue->qp->qp_num;
	param.flow_control = 1;

	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1299 1300
	/* maximum retry count */
	param.retry_count = 7;
1301 1302 1303 1304 1305 1306
	param.rnr_retry_count = 7;
	param.private_data = &priv;
	param.private_data_len = sizeof(priv);

	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1307 1308 1309 1310 1311 1312 1313 1314
	/*
	 * set the admin queue depth to the minimum size
	 * specified by the Fabrics standard.
	 */
	if (priv.qid == 0) {
		priv.hrqsize = cpu_to_le16(NVMF_AQ_DEPTH);
		priv.hsqsize = cpu_to_le16(NVMF_AQ_DEPTH - 1);
	} else {
1315 1316 1317 1318 1319
		/*
		 * current interpretation of the fabrics spec
		 * is at minimum you make hrqsize sqsize+1, or a
		 * 1's based representation of sqsize.
		 */
1320
		priv.hrqsize = cpu_to_le16(queue->queue_size);
1321
		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1322
	}
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378

	ret = rdma_connect(queue->cm_id, &param);
	if (ret) {
		dev_err(ctrl->ctrl.device,
			"rdma_connect failed (%d).\n", ret);
		goto out_destroy_queue_ib;
	}

	return 0;

out_destroy_queue_ib:
	nvme_rdma_destroy_queue_ib(queue);
	return ret;
}

static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
		struct rdma_cm_event *ev)
{
	struct nvme_rdma_queue *queue = cm_id->context;
	int cm_error = 0;

	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
		rdma_event_msg(ev->event), ev->event,
		ev->status, cm_id);

	switch (ev->event) {
	case RDMA_CM_EVENT_ADDR_RESOLVED:
		cm_error = nvme_rdma_addr_resolved(queue);
		break;
	case RDMA_CM_EVENT_ROUTE_RESOLVED:
		cm_error = nvme_rdma_route_resolved(queue);
		break;
	case RDMA_CM_EVENT_ESTABLISHED:
		queue->cm_error = nvme_rdma_conn_established(queue);
		/* complete cm_done regardless of success/failure */
		complete(&queue->cm_done);
		return 0;
	case RDMA_CM_EVENT_REJECTED:
		cm_error = nvme_rdma_conn_rejected(queue, ev);
		break;
	case RDMA_CM_EVENT_ADDR_ERROR:
	case RDMA_CM_EVENT_ROUTE_ERROR:
	case RDMA_CM_EVENT_CONNECT_ERROR:
	case RDMA_CM_EVENT_UNREACHABLE:
		dev_dbg(queue->ctrl->ctrl.device,
			"CM error event %d\n", ev->event);
		cm_error = -ECONNRESET;
		break;
	case RDMA_CM_EVENT_DISCONNECTED:
	case RDMA_CM_EVENT_ADDR_CHANGE:
	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
		dev_dbg(queue->ctrl->ctrl.device,
			"disconnect received - connection closed\n");
		nvme_rdma_error_recovery(queue->ctrl);
		break;
	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1379 1380
		/* device removal is handled via the ib_client API */
		break;
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
	default:
		dev_err(queue->ctrl->ctrl.device,
			"Unexpected RDMA CM event (%d)\n", ev->event);
		nvme_rdma_error_recovery(queue->ctrl);
		break;
	}

	if (cm_error) {
		queue->cm_error = cm_error;
		complete(&queue->cm_done);
	}

	return 0;
}

static enum blk_eh_timer_return
nvme_rdma_timeout(struct request *rq, bool reserved)
{
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);

	/* queue error recovery */
	nvme_rdma_error_recovery(req->queue->ctrl);

	/* fail with DNR on cmd timeout */
	rq->errors = NVME_SC_ABORT_REQ | NVME_SC_DNR;

	return BLK_EH_HANDLED;
}

1410 1411 1412 1413 1414 1415 1416
/*
 * We cannot accept any other command until the Connect command has completed.
 */
static inline bool nvme_rdma_queue_is_ready(struct nvme_rdma_queue *queue,
		struct request *rq)
{
	if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags))) {
1417
		struct nvme_command *cmd = nvme_req(rq)->cmd;
1418

1419
		if (!blk_rq_is_passthrough(rq) ||
1420 1421 1422 1423 1424 1425 1426 1427
		    cmd->common.opcode != nvme_fabrics_command ||
		    cmd->fabrics.fctype != nvme_fabrics_type_connect)
			return false;
	}

	return true;
}

1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
static int nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
		const struct blk_mq_queue_data *bd)
{
	struct nvme_ns *ns = hctx->queue->queuedata;
	struct nvme_rdma_queue *queue = hctx->driver_data;
	struct request *rq = bd->rq;
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
	struct nvme_rdma_qe *sqe = &req->sqe;
	struct nvme_command *c = sqe->data;
	bool flush = false;
	struct ib_device *dev;
	int ret;

	WARN_ON_ONCE(rq->tag < 0);

1443 1444 1445
	if (!nvme_rdma_queue_is_ready(queue, rq))
		return BLK_MQ_RQ_QUEUE_BUSY;

1446 1447 1448 1449 1450
	dev = queue->device->dev;
	ib_dma_sync_single_for_cpu(dev, sqe->dma,
			sizeof(struct nvme_command), DMA_TO_DEVICE);

	ret = nvme_setup_cmd(ns, rq, c);
1451
	if (ret != BLK_MQ_RQ_QUEUE_OK)
1452 1453 1454 1455
		return ret;

	blk_mq_start_request(rq);

1456
	ret = nvme_rdma_map_data(queue, rq, c);
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
	if (ret < 0) {
		dev_err(queue->ctrl->ctrl.device,
			     "Failed to map data (%d)\n", ret);
		nvme_cleanup_cmd(rq);
		goto err;
	}

	ib_dma_sync_single_for_device(dev, sqe->dma,
			sizeof(struct nvme_command), DMA_TO_DEVICE);

1467
	if (req_op(rq) == REQ_OP_FLUSH)
1468 1469
		flush = true;
	ret = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1470
			req->mr->need_inval ? &req->reg_wr.wr : NULL, flush);
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
	if (ret) {
		nvme_rdma_unmap_data(queue, rq);
		goto err;
	}

	return BLK_MQ_RQ_QUEUE_OK;
err:
	return (ret == -ENOMEM || ret == -EAGAIN) ?
		BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR;
}

static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
{
	struct nvme_rdma_queue *queue = hctx->driver_data;
	struct ib_cq *cq = queue->ib_cq;
	struct ib_wc wc;
	int found = 0;

	ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
	while (ib_poll_cq(cq, 1, &wc) > 0) {
		struct ib_cqe *cqe = wc.wr_cqe;

		if (cqe) {
			if (cqe->done == nvme_rdma_recv_done)
				found |= __nvme_rdma_recv_done(cq, &wc, tag);
			else
				cqe->done(cq, &wc);
		}
	}

	return found;
}

static void nvme_rdma_complete_rq(struct request *rq)
{
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
	struct nvme_rdma_queue *queue = req->queue;
	int error = 0;

	nvme_rdma_unmap_data(queue, rq);

	if (unlikely(rq->errors)) {
		if (nvme_req_needs_retry(rq, rq->errors)) {
			nvme_requeue_req(rq);
			return;
		}

1518
		if (blk_rq_is_passthrough(rq))
1519 1520 1521 1522 1523 1524 1525 1526
			error = rq->errors;
		else
			error = nvme_error_status(rq->errors);
	}

	blk_mq_end_request(rq, error);
}

1527
static const struct blk_mq_ops nvme_rdma_mq_ops = {
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
	.queue_rq	= nvme_rdma_queue_rq,
	.complete	= nvme_rdma_complete_rq,
	.init_request	= nvme_rdma_init_request,
	.exit_request	= nvme_rdma_exit_request,
	.reinit_request	= nvme_rdma_reinit_request,
	.init_hctx	= nvme_rdma_init_hctx,
	.poll		= nvme_rdma_poll,
	.timeout	= nvme_rdma_timeout,
};

1538
static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
	.queue_rq	= nvme_rdma_queue_rq,
	.complete	= nvme_rdma_complete_rq,
	.init_request	= nvme_rdma_init_admin_request,
	.exit_request	= nvme_rdma_exit_admin_request,
	.reinit_request	= nvme_rdma_reinit_request,
	.init_hctx	= nvme_rdma_init_admin_hctx,
	.timeout	= nvme_rdma_timeout,
};

static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl)
{
	int error;

	error = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
	if (error)
		return error;

	ctrl->device = ctrl->queues[0].device;

	/*
	 * We need a reference on the device as long as the tag_set is alive,
	 * as the MRs in the request structures need a valid ib_device.
	 */
	error = -EINVAL;
	if (!nvme_rdma_dev_get(ctrl->device))
		goto out_free_queue;

	ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS,
		ctrl->device->dev->attrs.max_fast_reg_page_list_len);

	memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
	ctrl->admin_tag_set.ops = &nvme_rdma_admin_mq_ops;
	ctrl->admin_tag_set.queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH;
	ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */
	ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
	ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
		SG_CHUNK_SIZE * sizeof(struct scatterlist);
	ctrl->admin_tag_set.driver_data = ctrl;
	ctrl->admin_tag_set.nr_hw_queues = 1;
	ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;

	error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
	if (error)
		goto out_put_dev;

	ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
	if (IS_ERR(ctrl->ctrl.admin_q)) {
		error = PTR_ERR(ctrl->ctrl.admin_q);
		goto out_free_tagset;
	}

	error = nvmf_connect_admin_queue(&ctrl->ctrl);
	if (error)
		goto out_cleanup_queue;

1594 1595
	set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags);

1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
	error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap);
	if (error) {
		dev_err(ctrl->ctrl.device,
			"prop_get NVME_REG_CAP failed\n");
		goto out_cleanup_queue;
	}

	ctrl->ctrl.sqsize =
		min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize);

	error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
	if (error)
		goto out_cleanup_queue;

	ctrl->ctrl.max_hw_sectors =
		(ctrl->max_fr_pages - 1) << (PAGE_SHIFT - 9);

	error = nvme_init_identify(&ctrl->ctrl);
	if (error)
		goto out_cleanup_queue;

	error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
			&ctrl->async_event_sqe, sizeof(struct nvme_command),
			DMA_TO_DEVICE);
	if (error)
		goto out_cleanup_queue;

	nvme_start_keep_alive(&ctrl->ctrl);

	return 0;

out_cleanup_queue:
	blk_cleanup_queue(ctrl->ctrl.admin_q);
out_free_tagset:
	/* disconnect and drain the queue before freeing the tagset */
	nvme_rdma_stop_queue(&ctrl->queues[0]);
	blk_mq_free_tag_set(&ctrl->admin_tag_set);
out_put_dev:
	nvme_rdma_dev_put(ctrl->device);
out_free_queue:
	nvme_rdma_free_queue(&ctrl->queues[0]);
	return error;
}

static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl)
{
	nvme_stop_keep_alive(&ctrl->ctrl);
	cancel_work_sync(&ctrl->err_work);
	cancel_delayed_work_sync(&ctrl->reconnect_work);

	if (ctrl->queue_count > 1) {
		nvme_stop_queues(&ctrl->ctrl);
		blk_mq_tagset_busy_iter(&ctrl->tag_set,
					nvme_cancel_request, &ctrl->ctrl);
		nvme_rdma_free_io_queues(ctrl);
	}

1653
	if (test_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[0].flags))
1654 1655 1656 1657 1658 1659 1660 1661
		nvme_shutdown_ctrl(&ctrl->ctrl);

	blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
				nvme_cancel_request, &ctrl->ctrl);
	nvme_rdma_destroy_admin_queue(ctrl);
}

1662 1663 1664 1665 1666
static void __nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
{
	nvme_uninit_ctrl(&ctrl->ctrl);
	if (shutdown)
		nvme_rdma_shutdown_ctrl(ctrl);
1667 1668 1669 1670 1671 1672 1673

	if (ctrl->ctrl.tagset) {
		blk_cleanup_queue(ctrl->ctrl.connect_q);
		blk_mq_free_tag_set(&ctrl->tag_set);
		nvme_rdma_dev_put(ctrl->device);
	}

1674 1675 1676
	nvme_put_ctrl(&ctrl->ctrl);
}

1677 1678 1679 1680 1681
static void nvme_rdma_del_ctrl_work(struct work_struct *work)
{
	struct nvme_rdma_ctrl *ctrl = container_of(work,
				struct nvme_rdma_ctrl, delete_work);

1682
	__nvme_rdma_remove_ctrl(ctrl, true);
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
}

static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl)
{
	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
		return -EBUSY;

	if (!queue_work(nvme_rdma_wq, &ctrl->delete_work))
		return -EBUSY;

	return 0;
}

static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl)
{
	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1699
	int ret = 0;
1700

1701 1702 1703 1704 1705 1706
	/*
	 * Keep a reference until all work is flushed since
	 * __nvme_rdma_del_ctrl can free the ctrl mem
	 */
	if (!kref_get_unless_zero(&ctrl->ctrl.kref))
		return -EBUSY;
1707
	ret = __nvme_rdma_del_ctrl(ctrl);
1708 1709 1710 1711
	if (!ret)
		flush_work(&ctrl->delete_work);
	nvme_put_ctrl(&ctrl->ctrl);
	return ret;
1712 1713 1714 1715 1716 1717 1718
}

static void nvme_rdma_remove_ctrl_work(struct work_struct *work)
{
	struct nvme_rdma_ctrl *ctrl = container_of(work,
				struct nvme_rdma_ctrl, delete_work);

1719
	__nvme_rdma_remove_ctrl(ctrl, false);
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
}

static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
{
	struct nvme_rdma_ctrl *ctrl = container_of(work,
					struct nvme_rdma_ctrl, reset_work);
	int ret;
	bool changed;

	nvme_rdma_shutdown_ctrl(ctrl);

	ret = nvme_rdma_configure_admin_queue(ctrl);
	if (ret) {
		/* ctrl is already shutdown, just remove the ctrl */
		INIT_WORK(&ctrl->delete_work, nvme_rdma_remove_ctrl_work);
		goto del_dead_ctrl;
	}

	if (ctrl->queue_count > 1) {
		ret = blk_mq_reinit_tagset(&ctrl->tag_set);
		if (ret)
			goto del_dead_ctrl;

		ret = nvme_rdma_init_io_queues(ctrl);
		if (ret)
			goto del_dead_ctrl;

		ret = nvme_rdma_connect_io_queues(ctrl);
		if (ret)
			goto del_dead_ctrl;
	}

	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
	WARN_ON_ONCE(!changed);

	if (ctrl->queue_count > 1) {
		nvme_start_queues(&ctrl->ctrl);
		nvme_queue_scan(&ctrl->ctrl);
1758
		nvme_queue_async_events(&ctrl->ctrl);
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
	}

	return;

del_dead_ctrl:
	/* Deleting this dead controller... */
	dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
	WARN_ON(!queue_work(nvme_rdma_wq, &ctrl->delete_work));
}

static int nvme_rdma_reset_ctrl(struct nvme_ctrl *nctrl)
{
	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);

	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
		return -EBUSY;

	if (!queue_work(nvme_rdma_wq, &ctrl->reset_work))
		return -EBUSY;

	flush_work(&ctrl->reset_work);

	return 0;
}

static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
	.name			= "rdma",
	.module			= THIS_MODULE,
	.is_fabrics		= true,
	.reg_read32		= nvmf_reg_read32,
	.reg_read64		= nvmf_reg_read64,
	.reg_write32		= nvmf_reg_write32,
	.reset_ctrl		= nvme_rdma_reset_ctrl,
	.free_ctrl		= nvme_rdma_free_ctrl,
	.submit_async_event	= nvme_rdma_submit_async_event,
	.delete_ctrl		= nvme_rdma_del_ctrl,
	.get_subsysnqn		= nvmf_get_subsysnqn,
	.get_address		= nvmf_get_address,
};

static int nvme_rdma_create_io_queues(struct nvme_rdma_ctrl *ctrl)
{
	int ret;

	ret = nvme_rdma_init_io_queues(ctrl);
	if (ret)
		return ret;

	/*
	 * We need a reference on the device as long as the tag_set is alive,
	 * as the MRs in the request structures need a valid ib_device.
	 */
	ret = -EINVAL;
	if (!nvme_rdma_dev_get(ctrl->device))
		goto out_free_io_queues;

	memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
	ctrl->tag_set.ops = &nvme_rdma_mq_ops;
1817
	ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
	ctrl->tag_set.reserved_tags = 1; /* fabric connect */
	ctrl->tag_set.numa_node = NUMA_NO_NODE;
	ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
	ctrl->tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
		SG_CHUNK_SIZE * sizeof(struct scatterlist);
	ctrl->tag_set.driver_data = ctrl;
	ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1;
	ctrl->tag_set.timeout = NVME_IO_TIMEOUT;

	ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
	if (ret)
		goto out_put_dev;
	ctrl->ctrl.tagset = &ctrl->tag_set;

	ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
	if (IS_ERR(ctrl->ctrl.connect_q)) {
		ret = PTR_ERR(ctrl->ctrl.connect_q);
		goto out_free_tag_set;
	}

	ret = nvme_rdma_connect_io_queues(ctrl);
	if (ret)
		goto out_cleanup_connect_q;

	return 0;

out_cleanup_connect_q:
	blk_cleanup_queue(ctrl->ctrl.connect_q);
out_free_tag_set:
	blk_mq_free_tag_set(&ctrl->tag_set);
out_put_dev:
	nvme_rdma_dev_put(ctrl->device);
out_free_io_queues:
	nvme_rdma_free_io_queues(ctrl);
	return ret;
}

static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
		struct nvmf_ctrl_options *opts)
{
	struct nvme_rdma_ctrl *ctrl;
	int ret;
	bool changed;
1861
	char *port;
1862 1863 1864 1865 1866 1867 1868

	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
	if (!ctrl)
		return ERR_PTR(-ENOMEM);
	ctrl->ctrl.opts = opts;
	INIT_LIST_HEAD(&ctrl->list);

1869 1870 1871 1872 1873 1874 1875
	if (opts->mask & NVMF_OPT_TRSVCID)
		port = opts->trsvcid;
	else
		port = __stringify(NVME_RDMA_IP_PORT);

	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
			opts->traddr, port, &ctrl->addr);
1876
	if (ret) {
1877
		pr_err("malformed address passed: %s:%s\n", opts->traddr, port);
1878 1879 1880
		goto out_free_ctrl;
	}

1881
	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1882 1883
		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
			opts->host_traddr, NULL, &ctrl->src_addr);
1884
		if (ret) {
1885
			pr_err("malformed src address passed: %s\n",
1886 1887 1888 1889 1890
			       opts->host_traddr);
			goto out_free_ctrl;
		}
	}

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
				0 /* no quirks, we're perfect! */);
	if (ret)
		goto out_free_ctrl;

	ctrl->reconnect_delay = opts->reconnect_delay;
	INIT_DELAYED_WORK(&ctrl->reconnect_work,
			nvme_rdma_reconnect_ctrl_work);
	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
	INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work);
	INIT_WORK(&ctrl->reset_work, nvme_rdma_reset_ctrl_work);
	spin_lock_init(&ctrl->lock);

	ctrl->queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1905
	ctrl->ctrl.sqsize = opts->queue_size - 1;
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
	ctrl->ctrl.kato = opts->kato;

	ret = -ENOMEM;
	ctrl->queues = kcalloc(ctrl->queue_count, sizeof(*ctrl->queues),
				GFP_KERNEL);
	if (!ctrl->queues)
		goto out_uninit_ctrl;

	ret = nvme_rdma_configure_admin_queue(ctrl);
	if (ret)
		goto out_kfree_queues;

	/* sanity check icdoff */
	if (ctrl->ctrl.icdoff) {
		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
		goto out_remove_admin_queue;
	}

	/* sanity check keyed sgls */
	if (!(ctrl->ctrl.sgls & (1 << 20))) {
		dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
		goto out_remove_admin_queue;
	}

	if (opts->queue_size > ctrl->ctrl.maxcmd) {
		/* warn if maxcmd is lower than queue_size */
		dev_warn(ctrl->ctrl.device,
			"queue_size %zu > ctrl maxcmd %u, clamping down\n",
			opts->queue_size, ctrl->ctrl.maxcmd);
		opts->queue_size = ctrl->ctrl.maxcmd;
	}

1938 1939 1940 1941 1942 1943 1944 1945
	if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
		/* warn if sqsize is lower than queue_size */
		dev_warn(ctrl->ctrl.device,
			"queue_size %zu > ctrl sqsize %u, clamping down\n",
			opts->queue_size, ctrl->ctrl.sqsize + 1);
		opts->queue_size = ctrl->ctrl.sqsize + 1;
	}

1946 1947 1948 1949 1950 1951 1952 1953 1954
	if (opts->nr_io_queues) {
		ret = nvme_rdma_create_io_queues(ctrl);
		if (ret)
			goto out_remove_admin_queue;
	}

	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
	WARN_ON_ONCE(!changed);

1955
	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);

	kref_get(&ctrl->ctrl.kref);

	mutex_lock(&nvme_rdma_ctrl_mutex);
	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
	mutex_unlock(&nvme_rdma_ctrl_mutex);

	if (opts->nr_io_queues) {
		nvme_queue_scan(&ctrl->ctrl);
		nvme_queue_async_events(&ctrl->ctrl);
	}

	return &ctrl->ctrl;

out_remove_admin_queue:
	nvme_stop_keep_alive(&ctrl->ctrl);
	nvme_rdma_destroy_admin_queue(ctrl);
out_kfree_queues:
	kfree(ctrl->queues);
out_uninit_ctrl:
	nvme_uninit_ctrl(&ctrl->ctrl);
	nvme_put_ctrl(&ctrl->ctrl);
	if (ret > 0)
		ret = -EIO;
	return ERR_PTR(ret);
out_free_ctrl:
	kfree(ctrl);
	return ERR_PTR(ret);
}

static struct nvmf_transport_ops nvme_rdma_transport = {
	.name		= "rdma",
	.required_opts	= NVMF_OPT_TRADDR,
1990 1991
	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
			  NVMF_OPT_HOST_TRADDR,
1992 1993 1994
	.create_ctrl	= nvme_rdma_create_ctrl,
};

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
static void nvme_rdma_add_one(struct ib_device *ib_device)
{
}

static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
{
	struct nvme_rdma_ctrl *ctrl;

	/* Delete all controllers using this device */
	mutex_lock(&nvme_rdma_ctrl_mutex);
	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
		if (ctrl->device->dev != ib_device)
			continue;
		dev_info(ctrl->ctrl.device,
			"Removing ctrl: NQN \"%s\", addr %pISp\n",
			ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
		__nvme_rdma_del_ctrl(ctrl);
	}
	mutex_unlock(&nvme_rdma_ctrl_mutex);

	flush_workqueue(nvme_rdma_wq);
}

static struct ib_client nvme_rdma_ib_client = {
	.name   = "nvme_rdma",
	.add = nvme_rdma_add_one,
	.remove = nvme_rdma_remove_one
};

2024 2025
static int __init nvme_rdma_init_module(void)
{
2026 2027
	int ret;

2028 2029 2030 2031
	nvme_rdma_wq = create_workqueue("nvme_rdma_wq");
	if (!nvme_rdma_wq)
		return -ENOMEM;

2032 2033 2034 2035 2036 2037
	ret = ib_register_client(&nvme_rdma_ib_client);
	if (ret) {
		destroy_workqueue(nvme_rdma_wq);
		return ret;
	}

2038
	return nvmf_register_transport(&nvme_rdma_transport);
2039 2040 2041 2042 2043
}

static void __exit nvme_rdma_cleanup_module(void)
{
	nvmf_unregister_transport(&nvme_rdma_transport);
2044
	ib_unregister_client(&nvme_rdma_ib_client);
2045 2046 2047 2048 2049 2050 2051
	destroy_workqueue(nvme_rdma_wq);
}

module_init(nvme_rdma_init_module);
module_exit(nvme_rdma_cleanup_module);

MODULE_LICENSE("GPL v2");