rx.c 25.8 KB
Newer Older
1 2 3
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2011 Solarflare Communications Inc.
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/socket.h>
#include <linux/in.h>
13
#include <linux/slab.h>
14 15 16
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/udp.h>
17
#include <linux/prefetch.h>
18
#include <linux/moduleparam.h>
19
#include <linux/iommu.h>
20 21 22 23
#include <net/ip.h>
#include <net/checksum.h>
#include "net_driver.h"
#include "efx.h"
24
#include "filter.h"
B
Ben Hutchings 已提交
25
#include "nic.h"
26
#include "selftest.h"
27 28
#include "workarounds.h"

29 30
/* Preferred number of descriptors to fill at once */
#define EFX_RX_PREFERRED_BATCH 8U
31

32 33 34 35 36
/* Number of RX buffers to recycle pages for.  When creating the RX page recycle
 * ring, this number is divided by the number of buffers per page to calculate
 * the number of pages to store in the RX page recycle ring.
 */
#define EFX_RECYCLE_RING_SIZE_IOMMU 4096
37
#define EFX_RECYCLE_RING_SIZE_NOIOMMU (2 * EFX_RX_PREFERRED_BATCH)
38

39
/* Size of buffer allocated for skb header area. */
40
#define EFX_SKB_HEADERS  128u
41 42 43 44

/* This is the percentage fill level below which new RX descriptors
 * will be added to the RX descriptor ring.
 */
45
static unsigned int rx_refill_threshold;
46

47 48 49 50
/* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */
#define EFX_RX_MAX_FRAGS DIV_ROUND_UP(EFX_MAX_FRAME_LEN(EFX_MAX_MTU), \
				      EFX_RX_USR_BUF_SIZE)

51 52 53
/*
 * RX maximum head room required.
 *
54 55
 * This must be at least 1 to prevent overflow, plus one packet-worth
 * to allow pipelined receives.
56
 */
57
#define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
58

59
static inline u8 *efx_rx_buf_va(struct efx_rx_buffer *buf)
60
{
61
	return page_address(buf->page) + buf->page_offset;
62 63
}

64
static inline u32 efx_rx_buf_hash(struct efx_nic *efx, const u8 *eh)
65
{
66 67
#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
	return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_hash_offset));
68
#else
69
	const u8 *data = eh + efx->rx_packet_hash_offset;
70 71 72 73
	return (u32)data[0]	  |
	       (u32)data[1] << 8  |
	       (u32)data[2] << 16 |
	       (u32)data[3] << 24;
74 75 76
#endif
}

77 78 79 80 81 82 83 84 85
static inline struct efx_rx_buffer *
efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf)
{
	if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask)))
		return efx_rx_buffer(rx_queue, 0);
	else
		return rx_buf + 1;
}

86 87 88 89 90 91 92 93
static inline void efx_sync_rx_buffer(struct efx_nic *efx,
				      struct efx_rx_buffer *rx_buf,
				      unsigned int len)
{
	dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, len,
				DMA_FROM_DEVICE);
}

94 95
void efx_rx_config_page_split(struct efx_nic *efx)
{
96
	efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + NET_IP_ALIGN,
97
				      EFX_RX_BUF_ALIGNMENT);
98 99 100 101 102 103 104 105 106
	efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
		((PAGE_SIZE - sizeof(struct efx_rx_page_state)) /
		 efx->rx_page_buf_step);
	efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
		efx->rx_bufs_per_page;
	efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH,
					       efx->rx_bufs_per_page);
}

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
/* Check the RX page recycle ring for a page that can be reused. */
static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue)
{
	struct efx_nic *efx = rx_queue->efx;
	struct page *page;
	struct efx_rx_page_state *state;
	unsigned index;

	index = rx_queue->page_remove & rx_queue->page_ptr_mask;
	page = rx_queue->page_ring[index];
	if (page == NULL)
		return NULL;

	rx_queue->page_ring[index] = NULL;
	/* page_remove cannot exceed page_add. */
	if (rx_queue->page_remove != rx_queue->page_add)
		++rx_queue->page_remove;

	/* If page_count is 1 then we hold the only reference to this page. */
	if (page_count(page) == 1) {
		++rx_queue->page_recycle_count;
		return page;
	} else {
		state = page_address(page);
		dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
			       PAGE_SIZE << efx->rx_buffer_order,
			       DMA_FROM_DEVICE);
		put_page(page);
		++rx_queue->page_recycle_failed;
	}

	return NULL;
}

141
/**
142
 * efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
143 144 145
 *
 * @rx_queue:		Efx RX queue
 *
146 147 148 149
 * This allocates a batch of pages, maps them for DMA, and populates
 * struct efx_rx_buffers for each one. Return a negative error code or
 * 0 on success. If a single page can be used for multiple buffers,
 * then the page will either be inserted fully, or not at all.
150
 */
151
static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue)
152 153
{
	struct efx_nic *efx = rx_queue->efx;
154 155
	struct efx_rx_buffer *rx_buf;
	struct page *page;
156
	unsigned int page_offset;
157
	struct efx_rx_page_state *state;
158 159 160
	dma_addr_t dma_addr;
	unsigned index, count;

161 162
	count = 0;
	do {
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
		page = efx_reuse_page(rx_queue);
		if (page == NULL) {
			page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
					   efx->rx_buffer_order);
			if (unlikely(page == NULL))
				return -ENOMEM;
			dma_addr =
				dma_map_page(&efx->pci_dev->dev, page, 0,
					     PAGE_SIZE << efx->rx_buffer_order,
					     DMA_FROM_DEVICE);
			if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
						       dma_addr))) {
				__free_pages(page, efx->rx_buffer_order);
				return -EIO;
			}
			state = page_address(page);
			state->dma_addr = dma_addr;
		} else {
			state = page_address(page);
			dma_addr = state->dma_addr;
183
		}
184 185

		dma_addr += sizeof(struct efx_rx_page_state);
186
		page_offset = sizeof(struct efx_rx_page_state);
187

188 189 190
		do {
			index = rx_queue->added_count & rx_queue->ptr_mask;
			rx_buf = efx_rx_buffer(rx_queue, index);
191
			rx_buf->dma_addr = dma_addr + NET_IP_ALIGN;
192
			rx_buf->page = page;
193
			rx_buf->page_offset = page_offset + NET_IP_ALIGN;
194
			rx_buf->len = efx->rx_dma_len;
195
			rx_buf->flags = 0;
196 197 198 199 200
			++rx_queue->added_count;
			get_page(page);
			dma_addr += efx->rx_page_buf_step;
			page_offset += efx->rx_page_buf_step;
		} while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
201 202

		rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE;
203
	} while (++count < efx->rx_pages_per_batch);
204 205 206 207

	return 0;
}

208 209 210
/* Unmap a DMA-mapped page.  This function is only called for the final RX
 * buffer in a page.
 */
211
static void efx_unmap_rx_buffer(struct efx_nic *efx,
212
				struct efx_rx_buffer *rx_buf)
213
{
214 215 216 217 218 219 220 221
	struct page *page = rx_buf->page;

	if (page) {
		struct efx_rx_page_state *state = page_address(page);
		dma_unmap_page(&efx->pci_dev->dev,
			       state->dma_addr,
			       PAGE_SIZE << efx->rx_buffer_order,
			       DMA_FROM_DEVICE);
222 223 224
	}
}

225
static void efx_free_rx_buffer(struct efx_rx_buffer *rx_buf)
226
{
227
	if (rx_buf->page) {
228
		put_page(rx_buf->page);
229
		rx_buf->page = NULL;
230 231 232
	}
}

233 234 235 236 237 238
/* Attempt to recycle the page if there is an RX recycle ring; the page can
 * only be added if this is the final RX buffer, to prevent pages being used in
 * the descriptor ring and appearing in the recycle ring simultaneously.
 */
static void efx_recycle_rx_page(struct efx_channel *channel,
				struct efx_rx_buffer *rx_buf)
239
{
240 241 242 243
	struct page *page = rx_buf->page;
	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
	struct efx_nic *efx = rx_queue->efx;
	unsigned index;
244

245
	/* Only recycle the page after processing the final buffer. */
246
	if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE))
247
		return;
248

249 250 251 252
	index = rx_queue->page_add & rx_queue->page_ptr_mask;
	if (rx_queue->page_ring[index] == NULL) {
		unsigned read_index = rx_queue->page_remove &
			rx_queue->page_ptr_mask;
253

254 255 256 257 258 259 260 261 262 263 264 265 266
		/* The next slot in the recycle ring is available, but
		 * increment page_remove if the read pointer currently
		 * points here.
		 */
		if (read_index == index)
			++rx_queue->page_remove;
		rx_queue->page_ring[index] = page;
		++rx_queue->page_add;
		return;
	}
	++rx_queue->page_recycle_full;
	efx_unmap_rx_buffer(efx, rx_buf);
	put_page(rx_buf->page);
267 268
}

269 270 271 272 273 274 275 276
static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
			       struct efx_rx_buffer *rx_buf)
{
	/* Release the page reference we hold for the buffer. */
	if (rx_buf->page)
		put_page(rx_buf->page);

	/* If this is the last buffer in a page, unmap and free it. */
277
	if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) {
278 279 280 281 282 283 284
		efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
		efx_free_rx_buffer(rx_buf);
	}
	rx_buf->page = NULL;
}

/* Recycle the pages that are used by buffers that have just been received. */
285 286 287
static void efx_recycle_rx_pages(struct efx_channel *channel,
				 struct efx_rx_buffer *rx_buf,
				 unsigned int n_frags)
288
{
289
	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
290

291
	do {
292
		efx_recycle_rx_page(channel, rx_buf);
293 294
		rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
	} while (--n_frags);
295 296
}

297 298 299 300 301 302 303 304 305 306 307 308 309 310
static void efx_discard_rx_packet(struct efx_channel *channel,
				  struct efx_rx_buffer *rx_buf,
				  unsigned int n_frags)
{
	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);

	efx_recycle_rx_pages(channel, rx_buf, n_frags);

	do {
		efx_free_rx_buffer(rx_buf);
		rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
	} while (--n_frags);
}

311 312 313
/**
 * efx_fast_push_rx_descriptors - push new RX descriptors quickly
 * @rx_queue:		RX descriptor queue
314
 *
315
 * This will aim to fill the RX descriptor queue up to
316
 * @rx_queue->@max_fill. If there is insufficient atomic
317 318 319 320 321
 * memory to do so, a slow fill will be scheduled.
 *
 * The caller must provide serialisation (none is used here). In practise,
 * this means this function must run from the NAPI handler, or be called
 * when NAPI is disabled.
322
 */
323
void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
324
{
325 326
	struct efx_nic *efx = rx_queue->efx;
	unsigned int fill_level, batch_size;
327
	int space, rc = 0;
328

329 330 331
	if (!rx_queue->refill_enabled)
		return;

332
	/* Calculate current fill level, and exit if we don't need to fill */
333
	fill_level = (rx_queue->added_count - rx_queue->removed_count);
334
	EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries);
335
	if (fill_level >= rx_queue->fast_fill_trigger)
336
		goto out;
337 338

	/* Record minimum fill level */
339
	if (unlikely(fill_level < rx_queue->min_fill)) {
340 341
		if (fill_level)
			rx_queue->min_fill = fill_level;
342
	}
343

344
	batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
345
	space = rx_queue->max_fill - fill_level;
346
	EFX_BUG_ON_PARANOID(space < batch_size);
347

348 349
	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
		   "RX queue %d fast-filling descriptor ring from"
350
		   " level %d to level %d\n",
351
		   efx_rx_queue_index(rx_queue), fill_level,
352 353
		   rx_queue->max_fill);

354 355

	do {
356
		rc = efx_init_rx_buffers(rx_queue);
357 358 359 360 361
		if (unlikely(rc)) {
			/* Ensure that we don't leave the rx queue empty */
			if (rx_queue->added_count == rx_queue->removed_count)
				efx_schedule_slow_fill(rx_queue);
			goto out;
362
		}
363
	} while ((space -= batch_size) >= batch_size);
364

365 366
	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
		   "RX queue %d fast-filled descriptor ring "
367
		   "to level %d\n", efx_rx_queue_index(rx_queue),
368
		   rx_queue->added_count - rx_queue->removed_count);
369 370

 out:
371 372
	if (rx_queue->notified_count != rx_queue->added_count)
		efx_nic_notify_rx_desc(rx_queue);
373 374
}

375
void efx_rx_slow_fill(unsigned long context)
376
{
377
	struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context;
378

379
	/* Post an event to cause NAPI to run and refill the queue */
380
	efx_nic_generate_fill_event(rx_queue);
381 382 383
	++rx_queue->slow_fill_count;
}

384 385
static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
				     struct efx_rx_buffer *rx_buf,
386
				     int len)
387 388 389 390 391 392 393 394 395 396
{
	struct efx_nic *efx = rx_queue->efx;
	unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;

	if (likely(len <= max_len))
		return;

	/* The packet must be discarded, but this is only a fatal error
	 * if the caller indicated it was
	 */
397
	rx_buf->flags |= EFX_RX_PKT_DISCARD;
398 399

	if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
400 401 402 403
		if (net_ratelimit())
			netif_err(efx, rx_err, efx->net_dev,
				  " RX queue %d seriously overlength "
				  "RX event (0x%x > 0x%x+0x%x). Leaking\n",
404
				  efx_rx_queue_index(rx_queue), len, max_len,
405
				  efx->type->rx_buffer_padding);
406 407
		efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
	} else {
408 409 410 411
		if (net_ratelimit())
			netif_err(efx, rx_err, efx->net_dev,
				  " RX queue %d overlength RX event "
				  "(0x%x > 0x%x)\n",
412
				  efx_rx_queue_index(rx_queue), len, max_len);
413 414
	}

415
	efx_rx_queue_channel(rx_queue)->n_rx_overlength++;
416 417
}

418 419
/* Pass a received packet up through GRO.  GRO can handle pages
 * regardless of checksum state and skbs with a good checksum.
420
 */
421 422 423
static void
efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf,
		  unsigned int n_frags, u8 *eh)
424
{
H
Herbert Xu 已提交
425
	struct napi_struct *napi = &channel->napi_str;
426
	gro_result_t gro_result;
427 428
	struct efx_nic *efx = channel->efx;
	struct sk_buff *skb;
429

430
	skb = napi_get_frags(napi);
431 432 433 434 435 436
	if (unlikely(!skb)) {
		while (n_frags--) {
			put_page(rx_buf->page);
			rx_buf->page = NULL;
			rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
		}
437 438
		return;
	}
439

440
	if (efx->net_dev->features & NETIF_F_RXHASH)
441
		skb->rxhash = efx_rx_buf_hash(efx, eh);
442 443
	skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
			  CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
444

445 446 447 448 449 450 451 452
	for (;;) {
		skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
				   rx_buf->page, rx_buf->page_offset,
				   rx_buf->len);
		rx_buf->page = NULL;
		skb->len += rx_buf->len;
		if (skb_shinfo(skb)->nr_frags == n_frags)
			break;
453

454 455 456 457 458 459 460
		rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
	}

	skb->data_len = skb->len;
	skb->truesize += n_frags * efx->rx_buffer_truesize;

	skb_record_rx_queue(skb, channel->rx_queue.core_index);
461

462
	gro_result = napi_gro_frags(napi);
463 464 465
	if (gro_result != GRO_DROP)
		channel->irq_mod_score += 2;
}
466

467
/* Allocate and construct an SKB around page fragments */
468 469
static struct sk_buff *efx_rx_mk_skb(struct efx_channel *channel,
				     struct efx_rx_buffer *rx_buf,
470
				     unsigned int n_frags,
471 472 473 474
				     u8 *eh, int hdr_len)
{
	struct efx_nic *efx = channel->efx;
	struct sk_buff *skb;
475

476 477 478 479 480 481 482 483
	/* Allocate an SKB to store the headers */
	skb = netdev_alloc_skb(efx->net_dev, hdr_len + EFX_PAGE_SKB_ALIGN);
	if (unlikely(skb == NULL))
		return NULL;

	EFX_BUG_ON_PARANOID(rx_buf->len < hdr_len);

	skb_reserve(skb, EFX_PAGE_SKB_ALIGN);
484
	memcpy(__skb_put(skb, hdr_len), eh, hdr_len);
485

486
	/* Append the remaining page(s) onto the frag list */
487
	if (rx_buf->len > hdr_len) {
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
		rx_buf->page_offset += hdr_len;
		rx_buf->len -= hdr_len;

		for (;;) {
			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
					   rx_buf->page, rx_buf->page_offset,
					   rx_buf->len);
			rx_buf->page = NULL;
			skb->len += rx_buf->len;
			skb->data_len += rx_buf->len;
			if (skb_shinfo(skb)->nr_frags == n_frags)
				break;

			rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
		}
503 504
	} else {
		__free_pages(rx_buf->page, efx->rx_buffer_order);
505 506
		rx_buf->page = NULL;
		n_frags = 0;
507
	}
508

509
	skb->truesize += n_frags * efx->rx_buffer_truesize;
510 511 512 513 514

	/* Move past the ethernet header */
	skb->protocol = eth_type_trans(skb, efx->net_dev);

	return skb;
515 516 517
}

void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
518
		   unsigned int n_frags, unsigned int len, u16 flags)
519 520
{
	struct efx_nic *efx = rx_queue->efx;
521
	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
522 523 524
	struct efx_rx_buffer *rx_buf;

	rx_buf = efx_rx_buffer(rx_queue, index);
525
	rx_buf->flags |= flags;
526

527 528
	/* Validate the number of fragments and completed length */
	if (n_frags == 1) {
529 530
		if (!(flags & EFX_RX_PKT_PREFIX_LEN))
			efx_rx_packet__check_len(rx_queue, rx_buf, len);
531 532 533 534 535 536 537 538 539 540
	} else if (unlikely(n_frags > EFX_RX_MAX_FRAGS) ||
		   unlikely(len <= (n_frags - 1) * EFX_RX_USR_BUF_SIZE) ||
		   unlikely(len > n_frags * EFX_RX_USR_BUF_SIZE) ||
		   unlikely(!efx->rx_scatter)) {
		/* If this isn't an explicit discard request, either
		 * the hardware or the driver is broken.
		 */
		WARN_ON(!(len == 0 && rx_buf->flags & EFX_RX_PKT_DISCARD));
		rx_buf->flags |= EFX_RX_PKT_DISCARD;
	}
541

542
	netif_vdbg(efx, rx_status, efx->net_dev,
543
		   "RX queue %d received ids %x-%x len %d %s%s\n",
544
		   efx_rx_queue_index(rx_queue), index,
545
		   (index + n_frags - 1) & rx_queue->ptr_mask, len,
546 547
		   (rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
		   (rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : "");
548

549 550 551
	/* Discard packet, if instructed to do so.  Process the
	 * previous receive first.
	 */
552
	if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) {
553
		efx_rx_flush_packet(channel);
554
		efx_discard_rx_packet(channel, rx_buf, n_frags);
555
		return;
556 557
	}

558
	if (n_frags == 1 && !(flags & EFX_RX_PKT_PREFIX_LEN))
559 560
		rx_buf->len = len;

561 562
	/* Release and/or sync the DMA mapping - assumes all RX buffers
	 * consumed in-order per RX queue.
563
	 */
564
	efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
565 566 567 568

	/* Prefetch nice and early so data will (hopefully) be in cache by
	 * the time we look at it.
	 */
569
	prefetch(efx_rx_buf_va(rx_buf));
570

571 572
	rx_buf->page_offset += efx->rx_prefix_size;
	rx_buf->len -= efx->rx_prefix_size;
573 574 575 576 577 578 579 580 581 582 583

	if (n_frags > 1) {
		/* Release/sync DMA mapping for additional fragments.
		 * Fix length for last fragment.
		 */
		unsigned int tail_frags = n_frags - 1;

		for (;;) {
			rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
			if (--tail_frags == 0)
				break;
584
			efx_sync_rx_buffer(efx, rx_buf, EFX_RX_USR_BUF_SIZE);
585 586
		}
		rx_buf->len = len - (n_frags - 1) * EFX_RX_USR_BUF_SIZE;
587
		efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
588
	}
589

590
	/* All fragments have been DMA-synced, so recycle pages. */
591
	rx_buf = efx_rx_buffer(rx_queue, index);
592
	efx_recycle_rx_pages(channel, rx_buf, n_frags);
593

594 595 596
	/* Pipeline receives so that we give time for packet headers to be
	 * prefetched into cache.
	 */
597
	efx_rx_flush_packet(channel);
598 599
	channel->rx_pkt_n_frags = n_frags;
	channel->rx_pkt_index = index;
600 601
}

602
static void efx_rx_deliver(struct efx_channel *channel, u8 *eh,
603 604
			   struct efx_rx_buffer *rx_buf,
			   unsigned int n_frags)
605 606
{
	struct sk_buff *skb;
607
	u16 hdr_len = min_t(u16, rx_buf->len, EFX_SKB_HEADERS);
608

609
	skb = efx_rx_mk_skb(channel, rx_buf, n_frags, eh, hdr_len);
610
	if (unlikely(skb == NULL)) {
611
		efx_free_rx_buffer(rx_buf);
612 613 614
		return;
	}
	skb_record_rx_queue(skb, channel->rx_queue.core_index);
615 616 617

	/* Set the SKB flags */
	skb_checksum_none_assert(skb);
618 619
	if (likely(rx_buf->flags & EFX_RX_PKT_CSUMMED))
		skb->ip_summed = CHECKSUM_UNNECESSARY;
620

621
	if (channel->type->receive_skb)
622
		if (channel->type->receive_skb(channel, skb))
623
			return;
624 625 626

	/* Pass the packet up */
	netif_receive_skb(skb);
627 628
}

629
/* Handle a received packet.  Second half: Touches packet payload. */
630
void __efx_rx_packet(struct efx_channel *channel)
631 632
{
	struct efx_nic *efx = channel->efx;
633 634
	struct efx_rx_buffer *rx_buf =
		efx_rx_buffer(&channel->rx_queue, channel->rx_pkt_index);
635
	u8 *eh = efx_rx_buf_va(rx_buf);
636

637 638 639 640 641 642 643
	/* Read length from the prefix if necessary.  This already
	 * excludes the length of the prefix itself.
	 */
	if (rx_buf->flags & EFX_RX_PKT_PREFIX_LEN)
		rx_buf->len = le16_to_cpup((__le16 *)
					   (eh + efx->rx_packet_len_offset));

644 645 646 647
	/* If we're in loopback test, then pass the packet directly to the
	 * loopback layer, and free the rx_buf here
	 */
	if (unlikely(efx->loopback_selftest)) {
648
		efx_loopback_rx_packet(efx, eh, rx_buf->len);
649
		efx_free_rx_buffer(rx_buf);
650
		goto out;
651 652
	}

653
	if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
654
		rx_buf->flags &= ~EFX_RX_PKT_CSUMMED;
655

656
	if ((rx_buf->flags & EFX_RX_PKT_TCP) && !channel->type->receive_skb)
657
		efx_rx_packet_gro(channel, rx_buf, channel->rx_pkt_n_frags, eh);
658
	else
659 660 661
		efx_rx_deliver(channel, eh, rx_buf, channel->rx_pkt_n_frags);
out:
	channel->rx_pkt_n_frags = 0;
662 663 664 665 666
}

int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
{
	struct efx_nic *efx = rx_queue->efx;
667
	unsigned int entries;
668 669
	int rc;

670 671 672 673 674
	/* Create the smallest power-of-two aligned ring */
	entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
	EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
	rx_queue->ptr_mask = entries - 1;

675
	netif_dbg(efx, probe, efx->net_dev,
676 677 678
		  "creating RX queue %d size %#x mask %#x\n",
		  efx_rx_queue_index(rx_queue), efx->rxq_entries,
		  rx_queue->ptr_mask);
679 680

	/* Allocate RX buffers */
681
	rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
682
				   GFP_KERNEL);
683 684
	if (!rx_queue->buffer)
		return -ENOMEM;
685

686
	rc = efx_nic_probe_rx(rx_queue);
687 688 689 690
	if (rc) {
		kfree(rx_queue->buffer);
		rx_queue->buffer = NULL;
	}
691

692 693 694
	return rc;
}

695 696
static void efx_init_rx_recycle_ring(struct efx_nic *efx,
				     struct efx_rx_queue *rx_queue)
697 698 699 700 701 702 703
{
	unsigned int bufs_in_recycle_ring, page_ring_size;

	/* Set the RX recycle ring size */
#ifdef CONFIG_PPC64
	bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
#else
704
	if (iommu_present(&pci_bus_type))
705 706 707 708 709 710 711 712 713 714 715 716
		bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
	else
		bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_NOIOMMU;
#endif /* CONFIG_PPC64 */

	page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
					    efx->rx_bufs_per_page);
	rx_queue->page_ring = kcalloc(page_ring_size,
				      sizeof(*rx_queue->page_ring), GFP_KERNEL);
	rx_queue->page_ptr_mask = page_ring_size - 1;
}

717
void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
718
{
719
	struct efx_nic *efx = rx_queue->efx;
720
	unsigned int max_fill, trigger, max_trigger;
721

722
	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
723
		  "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
724 725 726 727 728 729

	/* Initialise ptr fields */
	rx_queue->added_count = 0;
	rx_queue->notified_count = 0;
	rx_queue->removed_count = 0;
	rx_queue->min_fill = -1U;
730 731 732 733 734 735 736
	efx_init_rx_recycle_ring(efx, rx_queue);

	rx_queue->page_remove = 0;
	rx_queue->page_add = rx_queue->page_ptr_mask + 1;
	rx_queue->page_recycle_count = 0;
	rx_queue->page_recycle_failed = 0;
	rx_queue->page_recycle_full = 0;
737 738

	/* Initialise limit fields */
739
	max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
740 741
	max_trigger =
		max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
742 743 744 745 746 747 748
	if (rx_refill_threshold != 0) {
		trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
		if (trigger > max_trigger)
			trigger = max_trigger;
	} else {
		trigger = max_trigger;
	}
749 750 751

	rx_queue->max_fill = max_fill;
	rx_queue->fast_fill_trigger = trigger;
752
	rx_queue->refill_enabled = true;
753 754

	/* Set up RX descriptor ring */
755
	efx_nic_init_rx(rx_queue);
756 757 758 759 760
}

void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
{
	int i;
761
	struct efx_nic *efx = rx_queue->efx;
762 763
	struct efx_rx_buffer *rx_buf;

764
	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
765
		  "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
766

767
	del_timer_sync(&rx_queue->slow_fill);
768

769
	/* Release RX buffers from the current read ptr to the write ptr */
770
	if (rx_queue->buffer) {
771 772 773 774
		for (i = rx_queue->removed_count; i < rx_queue->added_count;
		     i++) {
			unsigned index = i & rx_queue->ptr_mask;
			rx_buf = efx_rx_buffer(rx_queue, index);
775 776 777
			efx_fini_rx_buffer(rx_queue, rx_buf);
		}
	}
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794

	/* Unmap and release the pages in the recycle ring. Remove the ring. */
	for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
		struct page *page = rx_queue->page_ring[i];
		struct efx_rx_page_state *state;

		if (page == NULL)
			continue;

		state = page_address(page);
		dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
			       PAGE_SIZE << efx->rx_buffer_order,
			       DMA_FROM_DEVICE);
		put_page(page);
	}
	kfree(rx_queue->page_ring);
	rx_queue->page_ring = NULL;
795 796 797 798
}

void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
{
799
	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
800
		  "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
801

802
	efx_nic_remove_rx(rx_queue);
803 804 805 806 807 808 809 810

	kfree(rx_queue->buffer);
	rx_queue->buffer = NULL;
}


module_param(rx_refill_threshold, uint, 0444);
MODULE_PARM_DESC(rx_refill_threshold,
811
		 "RX descriptor ring refill threshold (%)");
812

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
#ifdef CONFIG_RFS_ACCEL

int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb,
		   u16 rxq_index, u32 flow_id)
{
	struct efx_nic *efx = netdev_priv(net_dev);
	struct efx_channel *channel;
	struct efx_filter_spec spec;
	const struct iphdr *ip;
	const __be16 *ports;
	int nhoff;
	int rc;

	nhoff = skb_network_offset(skb);

	if (skb->protocol == htons(ETH_P_8021Q)) {
		EFX_BUG_ON_PARANOID(skb_headlen(skb) <
				    nhoff + sizeof(struct vlan_hdr));
		if (((const struct vlan_hdr *)skb->data + nhoff)->
		    h_vlan_encapsulated_proto != htons(ETH_P_IP))
			return -EPROTONOSUPPORT;

		/* This is IP over 802.1q VLAN.  We can't filter on the
		 * IP 5-tuple and the vlan together, so just strip the
		 * vlan header and filter on the IP part.
		 */
		nhoff += sizeof(struct vlan_hdr);
	} else if (skb->protocol != htons(ETH_P_IP)) {
		return -EPROTONOSUPPORT;
	}

	/* RFS must validate the IP header length before calling us */
	EFX_BUG_ON_PARANOID(skb_headlen(skb) < nhoff + sizeof(*ip));
	ip = (const struct iphdr *)(skb->data + nhoff);
	if (ip_is_fragment(ip))
		return -EPROTONOSUPPORT;
	EFX_BUG_ON_PARANOID(skb_headlen(skb) < nhoff + 4 * ip->ihl + 4);
	ports = (const __be16 *)(skb->data + nhoff + 4 * ip->ihl);

	efx_filter_init_rx(&spec, EFX_FILTER_PRI_HINT,
			   efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0,
			   rxq_index);
	rc = efx_filter_set_ipv4_full(&spec, ip->protocol,
				      ip->daddr, ports[1], ip->saddr, ports[0]);
	if (rc)
		return rc;

	rc = efx->type->filter_rfs_insert(efx, &spec);
	if (rc < 0)
		return rc;

	/* Remember this so we can check whether to expire the filter later */
	efx->rps_flow_id[rc] = flow_id;
	channel = efx_get_channel(efx, skb_get_rx_queue(skb));
	++channel->rfs_filters_added;

	netif_info(efx, rx_status, efx->net_dev,
		   "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d]\n",
		   (ip->protocol == IPPROTO_TCP) ? "TCP" : "UDP",
		   &ip->saddr, ntohs(ports[0]), &ip->daddr, ntohs(ports[1]),
		   rxq_index, flow_id, rc);

	return rc;
}

bool __efx_filter_rfs_expire(struct efx_nic *efx, unsigned int quota)
{
	bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index);
	unsigned int index, size;
	u32 flow_id;

	if (!spin_trylock_bh(&efx->filter_lock))
		return false;

	expire_one = efx->type->filter_rfs_expire_one;
	index = efx->rps_expire_index;
	size = efx->type->max_rx_ip_filters;
	while (quota--) {
		flow_id = efx->rps_flow_id[index];
		if (expire_one(efx, flow_id, index))
			netif_info(efx, rx_status, efx->net_dev,
				   "expired filter %d [flow %u]\n",
				   index, flow_id);
		if (++index == size)
			index = 0;
	}
	efx->rps_expire_index = index;

	spin_unlock_bh(&efx->filter_lock);
	return true;
}

#endif /* CONFIG_RFS_ACCEL */