rx.c 17.2 KB
Newer Older
1 2 3
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2011 Solarflare Communications Inc.
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/socket.h>
#include <linux/in.h>
13
#include <linux/slab.h>
14 15 16
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/udp.h>
17
#include <linux/prefetch.h>
18
#include <linux/moduleparam.h>
19 20 21 22
#include <net/ip.h>
#include <net/checksum.h>
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
23
#include "nic.h"
24
#include "selftest.h"
25 26 27 28 29
#include "workarounds.h"

/* Number of RX descriptors pushed at once. */
#define EFX_RX_BATCH  8

30 31 32
/* Maximum length for an RX descriptor sharing a page */
#define EFX_RX_HALF_PAGE ((PAGE_SIZE >> 1) - sizeof(struct efx_rx_page_state) \
			  - EFX_PAGE_IP_ALIGN)
33

34 35 36 37 38 39
/* Size of buffer allocated for skb header area. */
#define EFX_SKB_HEADERS  64u

/* This is the percentage fill level below which new RX descriptors
 * will be added to the RX descriptor ring.
 */
40
static unsigned int rx_refill_threshold;
41 42 43 44 45

/*
 * RX maximum head room required.
 *
 * This must be at least 1 to prevent overflow and at least 2 to allow
46
 * pipelined receives.
47
 */
48
#define EFX_RXD_HEAD_ROOM 2
49

50
static inline u8 *efx_rx_buf_va(struct efx_rx_buffer *buf)
51
{
52
	return page_address(buf->page) + buf->page_offset;
53 54 55 56 57
}

static inline u32 efx_rx_buf_hash(const u8 *eh)
{
	/* The ethernet header is always directly after any hash. */
58
#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || NET_IP_ALIGN % 4 == 0
59
	return __le32_to_cpup((const __le32 *)(eh - 4));
60
#else
61
	const u8 *data = eh - 4;
62 63 64 65
	return (u32)data[0]	  |
	       (u32)data[1] << 8  |
	       (u32)data[2] << 16 |
	       (u32)data[3] << 24;
66 67 68
#endif
}

69
/**
70
 * efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
71 72 73
 *
 * @rx_queue:		Efx RX queue
 *
74 75 76 77
 * This allocates memory for EFX_RX_BATCH receive buffers, maps them for DMA,
 * and populates struct efx_rx_buffers for each one. Return a negative error
 * code or 0 on success. If a single page can be split between two buffers,
 * then the page will either be inserted fully, or not at at all.
78
 */
79
static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue)
80 81
{
	struct efx_nic *efx = rx_queue->efx;
82 83
	struct efx_rx_buffer *rx_buf;
	struct page *page;
84
	unsigned int page_offset;
85
	struct efx_rx_page_state *state;
86 87 88 89 90 91 92 93 94 95
	dma_addr_t dma_addr;
	unsigned index, count;

	/* We can split a page between two buffers */
	BUILD_BUG_ON(EFX_RX_BATCH & 1);

	for (count = 0; count < EFX_RX_BATCH; ++count) {
		page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
				   efx->rx_buffer_order);
		if (unlikely(page == NULL))
96
			return -ENOMEM;
97
		dma_addr = dma_map_page(&efx->pci_dev->dev, page, 0,
98
					PAGE_SIZE << efx->rx_buffer_order,
99 100
					DMA_FROM_DEVICE);
		if (unlikely(dma_mapping_error(&efx->pci_dev->dev, dma_addr))) {
101
			__free_pages(page, efx->rx_buffer_order);
102 103
			return -EIO;
		}
104
		state = page_address(page);
105 106 107 108
		state->refcnt = 0;
		state->dma_addr = dma_addr;

		dma_addr += sizeof(struct efx_rx_page_state);
109
		page_offset = sizeof(struct efx_rx_page_state);
110 111

	split:
112
		index = rx_queue->added_count & rx_queue->ptr_mask;
113
		rx_buf = efx_rx_buffer(rx_queue, index);
114
		rx_buf->dma_addr = dma_addr + EFX_PAGE_IP_ALIGN;
115
		rx_buf->page = page;
116
		rx_buf->page_offset = page_offset + EFX_PAGE_IP_ALIGN;
117
		rx_buf->len = efx->rx_dma_len;
118
		rx_buf->flags = 0;
119
		++rx_queue->added_count;
120
		++state->refcnt;
121

122
		if ((~count & 1) && (efx->rx_dma_len <= EFX_RX_HALF_PAGE)) {
123 124 125
			/* Use the second half of the page */
			get_page(page);
			dma_addr += (PAGE_SIZE >> 1);
126
			page_offset += (PAGE_SIZE >> 1);
127 128
			++count;
			goto split;
129 130 131 132 133 134
		}
	}

	return 0;
}

135
static void efx_unmap_rx_buffer(struct efx_nic *efx,
136 137
				struct efx_rx_buffer *rx_buf,
				unsigned int used_len)
138
{
139
	if (rx_buf->page) {
140 141
		struct efx_rx_page_state *state;

142
		state = page_address(rx_buf->page);
143
		if (--state->refcnt == 0) {
144
			dma_unmap_page(&efx->pci_dev->dev,
145
				       state->dma_addr,
146
				       PAGE_SIZE << efx->rx_buffer_order,
147
				       DMA_FROM_DEVICE);
148 149 150 151
		} else if (used_len) {
			dma_sync_single_for_cpu(&efx->pci_dev->dev,
						rx_buf->dma_addr, used_len,
						DMA_FROM_DEVICE);
152 153 154 155
		}
	}
}

156 157
static void efx_free_rx_buffer(struct efx_nic *efx,
			       struct efx_rx_buffer *rx_buf)
158
{
159 160 161
	if (rx_buf->page) {
		__free_pages(rx_buf->page, efx->rx_buffer_order);
		rx_buf->page = NULL;
162 163 164
	}
}

165 166
static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
			       struct efx_rx_buffer *rx_buf)
167
{
168
	efx_unmap_rx_buffer(rx_queue->efx, rx_buf, 0);
169 170 171
	efx_free_rx_buffer(rx_queue->efx, rx_buf);
}

172 173 174 175 176
/* Attempt to resurrect the other receive buffer that used to share this page,
 * which had previously been passed up to the kernel and freed. */
static void efx_resurrect_rx_buffer(struct efx_rx_queue *rx_queue,
				    struct efx_rx_buffer *rx_buf)
{
177
	struct efx_rx_page_state *state = page_address(rx_buf->page);
178
	struct efx_rx_buffer *new_buf;
179 180 181 182 183 184
	unsigned fill_level, index;

	/* +1 because efx_rx_packet() incremented removed_count. +1 because
	 * we'd like to insert an additional descriptor whilst leaving
	 * EFX_RXD_HEAD_ROOM for the non-recycle path */
	fill_level = (rx_queue->added_count - rx_queue->removed_count + 2);
185
	if (unlikely(fill_level > rx_queue->max_fill)) {
186 187 188 189
		/* We could place "state" on a list, and drain the list in
		 * efx_fast_push_rx_descriptors(). For now, this will do. */
		return;
	}
190

191
	++state->refcnt;
192
	get_page(rx_buf->page);
193

194
	index = rx_queue->added_count & rx_queue->ptr_mask;
195
	new_buf = efx_rx_buffer(rx_queue, index);
196
	new_buf->dma_addr = rx_buf->dma_addr ^ (PAGE_SIZE >> 1);
197
	new_buf->page = rx_buf->page;
198 199 200 201 202 203 204 205 206 207
	new_buf->len = rx_buf->len;
	++rx_queue->added_count;
}

/* Recycle the given rx buffer directly back into the rx_queue. There is
 * always room to add this buffer, because we've just popped a buffer. */
static void efx_recycle_rx_buffer(struct efx_channel *channel,
				  struct efx_rx_buffer *rx_buf)
{
	struct efx_nic *efx = channel->efx;
208
	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
209 210 211
	struct efx_rx_buffer *new_buf;
	unsigned index;

212
	rx_buf->flags = 0;
213

214
	if (efx->rx_dma_len <= EFX_RX_HALF_PAGE &&
215
	    page_count(rx_buf->page) == 1)
216
		efx_resurrect_rx_buffer(rx_queue, rx_buf);
217

218
	index = rx_queue->added_count & rx_queue->ptr_mask;
219 220 221
	new_buf = efx_rx_buffer(rx_queue, index);

	memcpy(new_buf, rx_buf, sizeof(*new_buf));
222
	rx_buf->page = NULL;
223 224 225
	++rx_queue->added_count;
}

226 227 228
/**
 * efx_fast_push_rx_descriptors - push new RX descriptors quickly
 * @rx_queue:		RX descriptor queue
229
 *
230
 * This will aim to fill the RX descriptor queue up to
231
 * @rx_queue->@max_fill. If there is insufficient atomic
232 233 234 235 236
 * memory to do so, a slow fill will be scheduled.
 *
 * The caller must provide serialisation (none is used here). In practise,
 * this means this function must run from the NAPI handler, or be called
 * when NAPI is disabled.
237
 */
238
void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
239
{
240 241
	unsigned fill_level;
	int space, rc = 0;
242

243
	/* Calculate current fill level, and exit if we don't need to fill */
244
	fill_level = (rx_queue->added_count - rx_queue->removed_count);
245
	EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries);
246
	if (fill_level >= rx_queue->fast_fill_trigger)
247
		goto out;
248 249

	/* Record minimum fill level */
250
	if (unlikely(fill_level < rx_queue->min_fill)) {
251 252
		if (fill_level)
			rx_queue->min_fill = fill_level;
253
	}
254

255
	space = rx_queue->max_fill - fill_level;
256
	EFX_BUG_ON_PARANOID(space < EFX_RX_BATCH);
257

258 259
	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
		   "RX queue %d fast-filling descriptor ring from"
260
		   " level %d to level %d\n",
261
		   efx_rx_queue_index(rx_queue), fill_level,
262 263
		   rx_queue->max_fill);

264 265

	do {
266
		rc = efx_init_rx_buffers(rx_queue);
267 268 269 270 271
		if (unlikely(rc)) {
			/* Ensure that we don't leave the rx queue empty */
			if (rx_queue->added_count == rx_queue->removed_count)
				efx_schedule_slow_fill(rx_queue);
			goto out;
272 273 274
		}
	} while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH);

275 276
	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
		   "RX queue %d fast-filled descriptor ring "
277
		   "to level %d\n", efx_rx_queue_index(rx_queue),
278
		   rx_queue->added_count - rx_queue->removed_count);
279 280

 out:
281 282
	if (rx_queue->notified_count != rx_queue->added_count)
		efx_nic_notify_rx_desc(rx_queue);
283 284
}

285
void efx_rx_slow_fill(unsigned long context)
286
{
287
	struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context;
288

289
	/* Post an event to cause NAPI to run and refill the queue */
290
	efx_nic_generate_fill_event(rx_queue);
291 292 293
	++rx_queue->slow_fill_count;
}

294 295
static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
				     struct efx_rx_buffer *rx_buf,
296
				     int len)
297 298 299 300 301 302 303 304 305 306
{
	struct efx_nic *efx = rx_queue->efx;
	unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;

	if (likely(len <= max_len))
		return;

	/* The packet must be discarded, but this is only a fatal error
	 * if the caller indicated it was
	 */
307
	rx_buf->flags |= EFX_RX_PKT_DISCARD;
308 309

	if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
310 311 312 313
		if (net_ratelimit())
			netif_err(efx, rx_err, efx->net_dev,
				  " RX queue %d seriously overlength "
				  "RX event (0x%x > 0x%x+0x%x). Leaking\n",
314
				  efx_rx_queue_index(rx_queue), len, max_len,
315
				  efx->type->rx_buffer_padding);
316 317
		efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
	} else {
318 319 320 321
		if (net_ratelimit())
			netif_err(efx, rx_err, efx->net_dev,
				  " RX queue %d overlength RX event "
				  "(0x%x > 0x%x)\n",
322
				  efx_rx_queue_index(rx_queue), len, max_len);
323 324
	}

325
	efx_rx_queue_channel(rx_queue)->n_rx_overlength++;
326 327
}

328 329
/* Pass a received packet up through GRO.  GRO can handle pages
 * regardless of checksum state and skbs with a good checksum.
330
 */
331
static void efx_rx_packet_gro(struct efx_channel *channel,
332
			      struct efx_rx_buffer *rx_buf,
333
			      const u8 *eh)
334
{
H
Herbert Xu 已提交
335
	struct napi_struct *napi = &channel->napi_str;
336
	gro_result_t gro_result;
337 338 339
	struct efx_nic *efx = channel->efx;
	struct page *page = rx_buf->page;
	struct sk_buff *skb;
340

341
	rx_buf->page = NULL;
342

343 344 345 346 347
	skb = napi_get_frags(napi);
	if (!skb) {
		put_page(page);
		return;
	}
348

349 350
	if (efx->net_dev->features & NETIF_F_RXHASH)
		skb->rxhash = efx_rx_buf_hash(eh);
351

352
	skb_fill_page_desc(skb, 0, page, rx_buf->page_offset, rx_buf->len);
353

354 355 356 357 358
	skb->len = rx_buf->len;
	skb->data_len = rx_buf->len;
	skb->truesize += rx_buf->len;
	skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
			  CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
359

360
	skb_record_rx_queue(skb, channel->rx_queue.core_index);
361

362
		gro_result = napi_gro_frags(napi);
363

364 365 366
	if (gro_result != GRO_DROP)
		channel->irq_mod_score += 2;
}
367

368 369 370 371 372 373 374
/* Allocate and construct an SKB around a struct page.*/
static struct sk_buff *efx_rx_mk_skb(struct efx_channel *channel,
				     struct efx_rx_buffer *rx_buf,
				     u8 *eh, int hdr_len)
{
	struct efx_nic *efx = channel->efx;
	struct sk_buff *skb;
375

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
	/* Allocate an SKB to store the headers */
	skb = netdev_alloc_skb(efx->net_dev, hdr_len + EFX_PAGE_SKB_ALIGN);
	if (unlikely(skb == NULL))
		return NULL;

	EFX_BUG_ON_PARANOID(rx_buf->len < hdr_len);

	skb_reserve(skb, EFX_PAGE_SKB_ALIGN);

	skb->len = rx_buf->len;
	skb->truesize = rx_buf->len + sizeof(struct sk_buff);
	memcpy(skb->data, eh, hdr_len);
	skb->tail += hdr_len;

	/* Append the remaining page onto the frag list */
	if (rx_buf->len > hdr_len) {
		skb->data_len = skb->len - hdr_len;
		skb_fill_page_desc(skb, 0, rx_buf->page,
394
				   rx_buf->page_offset + hdr_len,
395 396 397 398
				   skb->data_len);
	} else {
		__free_pages(rx_buf->page, efx->rx_buffer_order);
		skb->data_len = 0;
399
	}
400 401 402 403 404 405 406 407

	/* Ownership has transferred from the rx_buf to skb */
	rx_buf->page = NULL;

	/* Move past the ethernet header */
	skb->protocol = eth_type_trans(skb, efx->net_dev);

	return skb;
408 409 410
}

void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
411
		   unsigned int len, u16 flags)
412 413
{
	struct efx_nic *efx = rx_queue->efx;
414
	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
415 416 417
	struct efx_rx_buffer *rx_buf;

	rx_buf = efx_rx_buffer(rx_queue, index);
418
	rx_buf->flags |= flags;
419 420 421 422 423 424 425 426

	/* This allows the refill path to post another buffer.
	 * EFX_RXD_HEAD_ROOM ensures that the slot we are using
	 * isn't overwritten yet.
	 */
	rx_queue->removed_count++;

	/* Validate the length encoded in the event vs the descriptor pushed */
427
	efx_rx_packet__check_len(rx_queue, rx_buf, len);
428

429 430
	netif_vdbg(efx, rx_status, efx->net_dev,
		   "RX queue %d received id %x at %llx+%x %s%s\n",
431
		   efx_rx_queue_index(rx_queue), index,
432
		   (unsigned long long)rx_buf->dma_addr, len,
433 434
		   (rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
		   (rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : "");
435 436

	/* Discard packet, if instructed to do so */
437
	if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) {
438
		efx_recycle_rx_buffer(channel, rx_buf);
439 440 441 442

		/* Don't hold off the previous receive */
		rx_buf = NULL;
		goto out;
443 444
	}

445 446
	/* Release and/or sync DMA mapping - assumes all RX buffers
	 * consumed in-order per RX queue
447
	 */
448
	efx_unmap_rx_buffer(efx, rx_buf, len);
449 450 451 452

	/* Prefetch nice and early so data will (hopefully) be in cache by
	 * the time we look at it.
	 */
453
	prefetch(efx_rx_buf_va(rx_buf));
454

455 456 457
	rx_buf->page_offset += efx->type->rx_buffer_hash_size;
	rx_buf->len = len - efx->type->rx_buffer_hash_size;

458 459 460
	/* Pipeline receives so that we give time for packet headers to be
	 * prefetched into cache.
	 */
461
out:
462
	efx_rx_flush_packet(channel);
463
	channel->rx_pkt = rx_buf;
464 465
}

466
static void efx_rx_deliver(struct efx_channel *channel, u8 *eh,
467 468 469
			   struct efx_rx_buffer *rx_buf)
{
	struct sk_buff *skb;
470
	u16 hdr_len = min_t(u16, rx_buf->len, EFX_SKB_HEADERS);
471

472 473 474 475 476 477
	skb = efx_rx_mk_skb(channel, rx_buf, eh, hdr_len);
	if (unlikely(skb == NULL)) {
		efx_free_rx_buffer(channel->efx, rx_buf);
		return;
	}
	skb_record_rx_queue(skb, channel->rx_queue.core_index);
478 479 480 481

	/* Set the SKB flags */
	skb_checksum_none_assert(skb);

482
	if (channel->type->receive_skb)
483
		if (channel->type->receive_skb(channel, skb))
484
			return;
485 486 487

	/* Pass the packet up */
	netif_receive_skb(skb);
488 489
}

490
/* Handle a received packet.  Second half: Touches packet payload. */
491
void __efx_rx_packet(struct efx_channel *channel, struct efx_rx_buffer *rx_buf)
492 493
{
	struct efx_nic *efx = channel->efx;
494
	u8 *eh = efx_rx_buf_va(rx_buf);
495

496 497 498 499
	/* If we're in loopback test, then pass the packet directly to the
	 * loopback layer, and free the rx_buf here
	 */
	if (unlikely(efx->loopback_selftest)) {
500
		efx_loopback_rx_packet(efx, eh, rx_buf->len);
501
		efx_free_rx_buffer(efx, rx_buf);
502
		return;
503 504
	}

505
	if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
506
		rx_buf->flags &= ~EFX_RX_PKT_CSUMMED;
507

508
	if (!channel->type->receive_skb)
509
		efx_rx_packet_gro(channel, rx_buf, eh);
510
	else
511
		efx_rx_deliver(channel, eh, rx_buf);
512 513 514 515 516
}

int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
{
	struct efx_nic *efx = rx_queue->efx;
517
	unsigned int entries;
518 519
	int rc;

520 521 522 523 524
	/* Create the smallest power-of-two aligned ring */
	entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
	EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
	rx_queue->ptr_mask = entries - 1;

525
	netif_dbg(efx, probe, efx->net_dev,
526 527 528
		  "creating RX queue %d size %#x mask %#x\n",
		  efx_rx_queue_index(rx_queue), efx->rxq_entries,
		  rx_queue->ptr_mask);
529 530

	/* Allocate RX buffers */
531
	rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
532
				   GFP_KERNEL);
533 534
	if (!rx_queue->buffer)
		return -ENOMEM;
535

536
	rc = efx_nic_probe_rx(rx_queue);
537 538 539 540
	if (rc) {
		kfree(rx_queue->buffer);
		rx_queue->buffer = NULL;
	}
541 542 543
	return rc;
}

544
void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
545
{
546
	struct efx_nic *efx = rx_queue->efx;
547
	unsigned int max_fill, trigger, max_trigger;
548

549
	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
550
		  "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
551 552 553 554 555 556 557 558

	/* Initialise ptr fields */
	rx_queue->added_count = 0;
	rx_queue->notified_count = 0;
	rx_queue->removed_count = 0;
	rx_queue->min_fill = -1U;

	/* Initialise limit fields */
559
	max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
560 561 562 563 564 565 566 567
	max_trigger = max_fill - EFX_RX_BATCH;
	if (rx_refill_threshold != 0) {
		trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
		if (trigger > max_trigger)
			trigger = max_trigger;
	} else {
		trigger = max_trigger;
	}
568 569 570 571 572

	rx_queue->max_fill = max_fill;
	rx_queue->fast_fill_trigger = trigger;

	/* Set up RX descriptor ring */
573
	rx_queue->enabled = true;
574
	efx_nic_init_rx(rx_queue);
575 576 577 578 579 580 581
}

void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
{
	int i;
	struct efx_rx_buffer *rx_buf;

582
	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
583
		  "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
584

585 586 587
	/* A flush failure might have left rx_queue->enabled */
	rx_queue->enabled = false;

588
	del_timer_sync(&rx_queue->slow_fill);
589
	efx_nic_fini_rx(rx_queue);
590 591 592

	/* Release RX buffers NB start at index 0 not current HW ptr */
	if (rx_queue->buffer) {
593
		for (i = 0; i <= rx_queue->ptr_mask; i++) {
594 595 596 597 598 599 600 601
			rx_buf = efx_rx_buffer(rx_queue, i);
			efx_fini_rx_buffer(rx_queue, rx_buf);
		}
	}
}

void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
{
602
	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
603
		  "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
604

605
	efx_nic_remove_rx(rx_queue);
606 607 608 609 610 611 612 613

	kfree(rx_queue->buffer);
	rx_queue->buffer = NULL;
}


module_param(rx_refill_threshold, uint, 0444);
MODULE_PARM_DESC(rx_refill_threshold,
614
		 "RX descriptor ring refill threshold (%)");
615