xc5000.c 31.0 KB
Newer Older
1 2 3 4
/*
 *  Driver for Xceive XC5000 "QAM/8VSB single chip tuner"
 *
 *  Copyright (c) 2007 Xceive Corporation
5
 *  Copyright (c) 2007 Steven Toth <stoth@linuxtv.org>
6
 *  Copyright (c) 2009 Devin Heitmueller <dheitmueller@kernellabs.com>
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/module.h>
#include <linux/moduleparam.h>
26
#include <linux/videodev2.h>
27 28 29 30 31 32 33
#include <linux/delay.h>
#include <linux/dvb/frontend.h>
#include <linux/i2c.h>

#include "dvb_frontend.h"

#include "xc5000.h"
34
#include "tuner-i2c.h"
35 36 37 38 39

static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");

40 41 42 43 44 45
static int no_poweroff;
module_param(no_poweroff, int, 0644);
MODULE_PARM_DESC(no_poweroff, "0 (default) powers device off when not used.\n"
	"\t\t1 keep device energized and with tuner ready all the times.\n"
	"\t\tFaster, but consumes more power and keeps the device hotter");

46 47 48
static DEFINE_MUTEX(xc5000_list_mutex);
static LIST_HEAD(hybrid_tuner_instance_list);

49
#define dprintk(level, fmt, arg...) if (debug >= level) \
50 51
	printk(KERN_INFO "%s: " fmt, "xc5000", ## arg)

52 53
#define XC5000_DEFAULT_FIRMWARE "dvb-fe-xc5000-1.6.114.fw"
#define XC5000_DEFAULT_FIRMWARE_SIZE 12401
54

55
struct xc5000_priv {
56 57
	struct tuner_i2c_props i2c_props;
	struct list_head hybrid_tuner_instance_list;
58

59
	u32 if_khz;
60 61 62 63
	u32 freq_hz;
	u32 bandwidth;
	u8  video_standard;
	u8  rf_mode;
64
	u8  radio_input;
65 66
};

67
/* Misc Defines */
68
#define MAX_TV_STANDARD			24
69 70 71 72 73 74 75 76 77 78 79 80 81
#define XC_MAX_I2C_WRITE_LENGTH		64

/* Signal Types */
#define XC_RF_MODE_AIR			0
#define XC_RF_MODE_CABLE		1

/* Result codes */
#define XC_RESULT_SUCCESS		0
#define XC_RESULT_RESET_FAILURE		1
#define XC_RESULT_I2C_WRITE_FAILURE	2
#define XC_RESULT_I2C_READ_FAILURE	3
#define XC_RESULT_OUT_OF_RANGE		5

82 83 84 85
/* Product id */
#define XC_PRODUCT_ID_FW_NOT_LOADED	0x2000
#define XC_PRODUCT_ID_FW_LOADED 	0x1388

86 87 88 89 90 91 92 93
/* Registers */
#define XREG_INIT         0x00
#define XREG_VIDEO_MODE   0x01
#define XREG_AUDIO_MODE   0x02
#define XREG_RF_FREQ      0x03
#define XREG_D_CODE       0x04
#define XREG_IF_OUT       0x05
#define XREG_SEEK_MODE    0x07
94
#define XREG_POWER_DOWN   0x0A /* Obsolete */
95 96
/* Set the output amplitude - SIF for analog, DTVP/DTVN for digital */
#define XREG_OUTPUT_AMP   0x0B
97 98 99
#define XREG_SIGNALSOURCE 0x0D /* 0=Air, 1=Cable */
#define XREG_SMOOTHEDCVBS 0x0E
#define XREG_XTALFREQ     0x0F
100
#define XREG_FINERFREQ    0x10
101 102 103 104 105 106 107 108 109 110 111 112
#define XREG_DDIMODE      0x11

#define XREG_ADC_ENV      0x00
#define XREG_QUALITY      0x01
#define XREG_FRAME_LINES  0x02
#define XREG_HSYNC_FREQ   0x03
#define XREG_LOCK         0x04
#define XREG_FREQ_ERROR   0x05
#define XREG_SNR          0x06
#define XREG_VERSION      0x07
#define XREG_PRODUCT_ID   0x08
#define XREG_BUSY         0x09
113
#define XREG_BUILD        0x0D
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

/*
   Basic firmware description. This will remain with
   the driver for documentation purposes.

   This represents an I2C firmware file encoded as a
   string of unsigned char. Format is as follows:

   char[0  ]=len0_MSB  -> len = len_MSB * 256 + len_LSB
   char[1  ]=len0_LSB  -> length of first write transaction
   char[2  ]=data0 -> first byte to be sent
   char[3  ]=data1
   char[4  ]=data2
   char[   ]=...
   char[M  ]=dataN  -> last byte to be sent
   char[M+1]=len1_MSB  -> len = len_MSB * 256 + len_LSB
   char[M+2]=len1_LSB  -> length of second write transaction
   char[M+3]=data0
   char[M+4]=data1
   ...
   etc.

   The [len] value should be interpreted as follows:

   len= len_MSB _ len_LSB
   len=1111_1111_1111_1111   : End of I2C_SEQUENCE
   len=0000_0000_0000_0000   : Reset command: Do hardware reset
   len=0NNN_NNNN_NNNN_NNNN   : Normal transaction: number of bytes = {1:32767)
   len=1WWW_WWWW_WWWW_WWWW   : Wait command: wait for {1:32767} ms

   For the RESET and WAIT commands, the two following bytes will contain
   immediately the length of the following transaction.

*/
148
struct XC_TV_STANDARD {
149
	char *Name;
150 151
	u16 AudioMode;
	u16 VideoMode;
152
};
153 154

/* Tuner standards */
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
#define MN_NTSC_PAL_BTSC	0
#define MN_NTSC_PAL_A2		1
#define MN_NTSC_PAL_EIAJ	2
#define MN_NTSC_PAL_Mono	3
#define BG_PAL_A2		4
#define BG_PAL_NICAM		5
#define BG_PAL_MONO		6
#define I_PAL_NICAM		7
#define I_PAL_NICAM_MONO	8
#define DK_PAL_A2		9
#define DK_PAL_NICAM		10
#define DK_PAL_MONO		11
#define DK_SECAM_A2DK1		12
#define DK_SECAM_A2LDK3 	13
#define DK_SECAM_A2MONO 	14
#define L_SECAM_NICAM		15
#define LC_SECAM_NICAM		16
#define DTV6			17
#define DTV8			18
#define DTV7_8			19
#define DTV7			20
#define FM_Radio_INPUT2 	21
#define FM_Radio_INPUT1 	22
178
#define FM_Radio_INPUT1_MONO	23
179

180
static struct XC_TV_STANDARD XC5000_Standard[MAX_TV_STANDARD] = {
181 182 183 184 185 186 187 188 189 190 191 192 193
	{"M/N-NTSC/PAL-BTSC", 0x0400, 0x8020},
	{"M/N-NTSC/PAL-A2",   0x0600, 0x8020},
	{"M/N-NTSC/PAL-EIAJ", 0x0440, 0x8020},
	{"M/N-NTSC/PAL-Mono", 0x0478, 0x8020},
	{"B/G-PAL-A2",        0x0A00, 0x8049},
	{"B/G-PAL-NICAM",     0x0C04, 0x8049},
	{"B/G-PAL-MONO",      0x0878, 0x8059},
	{"I-PAL-NICAM",       0x1080, 0x8009},
	{"I-PAL-NICAM-MONO",  0x0E78, 0x8009},
	{"D/K-PAL-A2",        0x1600, 0x8009},
	{"D/K-PAL-NICAM",     0x0E80, 0x8009},
	{"D/K-PAL-MONO",      0x1478, 0x8009},
	{"D/K-SECAM-A2 DK1",  0x1200, 0x8009},
194
	{"D/K-SECAM-A2 L/DK3", 0x0E00, 0x8009},
195 196 197 198 199 200 201 202
	{"D/K-SECAM-A2 MONO", 0x1478, 0x8009},
	{"L-SECAM-NICAM",     0x8E82, 0x0009},
	{"L'-SECAM-NICAM",    0x8E82, 0x4009},
	{"DTV6",              0x00C0, 0x8002},
	{"DTV8",              0x00C0, 0x800B},
	{"DTV7/8",            0x00C0, 0x801B},
	{"DTV7",              0x00C0, 0x8007},
	{"FM Radio-INPUT2",   0x9802, 0x9002},
203 204
	{"FM Radio-INPUT1",   0x0208, 0x9002},
	{"FM Radio-INPUT1_MONO", 0x0278, 0x9002}
205 206
};

207
static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe);
208
static int xc5000_is_firmware_loaded(struct dvb_frontend *fe);
209
static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val);
210
static int xc5000_TunerReset(struct dvb_frontend *fe);
211

212
static int xc_send_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
213
{
214 215 216 217 218 219 220 221
	struct i2c_msg msg = { .addr = priv->i2c_props.addr,
			       .flags = 0, .buf = buf, .len = len };

	if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
		printk(KERN_ERR "xc5000: I2C write failed (len=%i)\n", len);
		return XC_RESULT_I2C_WRITE_FAILURE;
	}
	return XC_RESULT_SUCCESS;
222 223
}

224
#if 0
225 226 227
/* This routine is never used because the only time we read data from the
   i2c bus is when we read registers, and we want that to be an atomic i2c
   transaction in case we are on a multi-master bus */
228
static int xc_read_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
229
{
230 231 232 233 234 235 236 237
	struct i2c_msg msg = { .addr = priv->i2c_props.addr,
		.flags = I2C_M_RD, .buf = buf, .len = len };

	if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
		printk(KERN_ERR "xc5000 I2C read failed (len=%i)\n", len);
		return -EREMOTEIO;
	}
	return 0;
238
}
239
#endif
240

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val)
{
	u8 buf[2] = { reg >> 8, reg & 0xff };
	u8 bval[2] = { 0, 0 };
	struct i2c_msg msg[2] = {
		{ .addr = priv->i2c_props.addr,
			.flags = 0, .buf = &buf[0], .len = 2 },
		{ .addr = priv->i2c_props.addr,
			.flags = I2C_M_RD, .buf = &bval[0], .len = 2 },
	};

	if (i2c_transfer(priv->i2c_props.adap, msg, 2) != 2) {
		printk(KERN_WARNING "xc5000: I2C read failed\n");
		return -EREMOTEIO;
	}

	*val = (bval[0] << 8) | bval[1];
	return XC_RESULT_SUCCESS;
}

261
static void xc_wait(int wait_ms)
262
{
263
	msleep(wait_ms);
264 265
}

266
static int xc5000_TunerReset(struct dvb_frontend *fe)
267 268 269 270
{
	struct xc5000_priv *priv = fe->tuner_priv;
	int ret;

271
	dprintk(1, "%s()\n", __func__);
272

273 274
	if (fe->callback) {
		ret = fe->callback(((fe->dvb) && (fe->dvb->priv)) ?
275 276
					   fe->dvb->priv :
					   priv->i2c_props.adap->algo_data,
277
					   DVB_FRONTEND_COMPONENT_TUNER,
278
					   XC5000_TUNER_RESET, 0);
279
		if (ret) {
280
			printk(KERN_ERR "xc5000: reset failed\n");
281 282 283
			return XC_RESULT_RESET_FAILURE;
		}
	} else {
284
		printk(KERN_ERR "xc5000: no tuner reset callback function, fatal\n");
285 286 287
		return XC_RESULT_RESET_FAILURE;
	}
	return XC_RESULT_SUCCESS;
288 289
}

290
static int xc_write_reg(struct xc5000_priv *priv, u16 regAddr, u16 i2cData)
291
{
292
	u8 buf[4];
293
	int WatchDogTimer = 100;
294 295 296 297 298 299 300
	int result;

	buf[0] = (regAddr >> 8) & 0xFF;
	buf[1] = regAddr & 0xFF;
	buf[2] = (i2cData >> 8) & 0xFF;
	buf[3] = i2cData & 0xFF;
	result = xc_send_i2c_data(priv, buf, 4);
301
	if (result == XC_RESULT_SUCCESS) {
302 303
		/* wait for busy flag to clear */
		while ((WatchDogTimer > 0) && (result == XC_RESULT_SUCCESS)) {
304
			result = xc5000_readreg(priv, XREG_BUSY, (u16 *)buf);
305
			if (result == XC_RESULT_SUCCESS) {
306 307
				if ((buf[0] == 0) && (buf[1] == 0)) {
					/* busy flag cleared */
308
					break;
309 310 311
				} else {
					xc_wait(5); /* wait 5 ms */
					WatchDogTimer--;
312 313 314 315 316 317 318 319 320 321
				}
			}
		}
	}
	if (WatchDogTimer < 0)
		result = XC_RESULT_I2C_WRITE_FAILURE;

	return result;
}

322
static int xc_load_i2c_sequence(struct dvb_frontend *fe, const u8 *i2c_sequence)
323 324 325 326 327
{
	struct xc5000_priv *priv = fe->tuner_priv;

	int i, nbytes_to_send, result;
	unsigned int len, pos, index;
328
	u8 buf[XC_MAX_I2C_WRITE_LENGTH];
329

330 331 332 333
	index = 0;
	while ((i2c_sequence[index] != 0xFF) ||
		(i2c_sequence[index + 1] != 0xFF)) {
		len = i2c_sequence[index] * 256 + i2c_sequence[index+1];
334
		if (len == 0x0000) {
335
			/* RESET command */
336
			result = xc5000_TunerReset(fe);
337
			index += 2;
338
			if (result != XC_RESULT_SUCCESS)
339 340 341 342 343 344 345 346 347 348 349 350 351 352
				return result;
		} else if (len & 0x8000) {
			/* WAIT command */
			xc_wait(len & 0x7FFF);
			index += 2;
		} else {
			/* Send i2c data whilst ensuring individual transactions
			 * do not exceed XC_MAX_I2C_WRITE_LENGTH bytes.
			 */
			index += 2;
			buf[0] = i2c_sequence[index];
			buf[1] = i2c_sequence[index + 1];
			pos = 2;
			while (pos < len) {
353 354 355 356
				if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2)
					nbytes_to_send =
						XC_MAX_I2C_WRITE_LENGTH;
				else
357
					nbytes_to_send = (len - pos + 2);
358 359 360
				for (i = 2; i < nbytes_to_send; i++) {
					buf[i] = i2c_sequence[index + pos +
						i - 2];
361
				}
362 363
				result = xc_send_i2c_data(priv, buf,
					nbytes_to_send);
364

365
				if (result != XC_RESULT_SUCCESS)
366 367 368 369 370 371 372 373 374 375
					return result;

				pos += nbytes_to_send - 2;
			}
			index += len;
		}
	}
	return XC_RESULT_SUCCESS;
}

376
static int xc_initialize(struct xc5000_priv *priv)
377
{
378
	dprintk(1, "%s()\n", __func__);
379 380 381
	return xc_write_reg(priv, XREG_INIT, 0);
}

382 383
static int xc_SetTVStandard(struct xc5000_priv *priv,
	u16 VideoMode, u16 AudioMode)
384 385
{
	int ret;
386
	dprintk(1, "%s(0x%04x,0x%04x)\n", __func__, VideoMode, AudioMode);
387
	dprintk(1, "%s() Standard = %s\n",
388
		__func__,
389 390 391 392 393 394 395 396 397
		XC5000_Standard[priv->video_standard].Name);

	ret = xc_write_reg(priv, XREG_VIDEO_MODE, VideoMode);
	if (ret == XC_RESULT_SUCCESS)
		ret = xc_write_reg(priv, XREG_AUDIO_MODE, AudioMode);

	return ret;
}

398
static int xc_SetSignalSource(struct xc5000_priv *priv, u16 rf_mode)
399
{
400
	dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode,
401 402
		rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE");

403
	if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE)) {
404 405 406
		rf_mode = XC_RF_MODE_CABLE;
		printk(KERN_ERR
			"%s(), Invalid mode, defaulting to CABLE",
407
			__func__);
408 409 410 411
	}
	return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode);
}

412
static const struct dvb_tuner_ops xc5000_tuner_ops;
413

414 415 416
static int xc_set_RF_frequency(struct xc5000_priv *priv, u32 freq_hz)
{
	u16 freq_code;
417

418
	dprintk(1, "%s(%u)\n", __func__, freq_hz);
419

420 421
	if ((freq_hz > xc5000_tuner_ops.info.frequency_max) ||
		(freq_hz < xc5000_tuner_ops.info.frequency_min))
422 423
		return XC_RESULT_OUT_OF_RANGE;

424 425
	freq_code = (u16)(freq_hz / 15625);

426 427 428 429
	/* Starting in firmware version 1.1.44, Xceive recommends using the
	   FINERFREQ for all normal tuning (the doc indicates reg 0x03 should
	   only be used for fast scanning for channel lock) */
	return xc_write_reg(priv, XREG_FINERFREQ, freq_code);
430 431 432
}


433 434 435 436
static int xc_set_IF_frequency(struct xc5000_priv *priv, u32 freq_khz)
{
	u32 freq_code = (freq_khz * 1024)/1000;
	dprintk(1, "%s(freq_khz = %d) freq_code = 0x%x\n",
437
		__func__, freq_khz, freq_code);
438

439
	return xc_write_reg(priv, XREG_IF_OUT, freq_code);
440 441 442
}


443
static int xc_get_ADC_Envelope(struct xc5000_priv *priv, u16 *adc_envelope)
444
{
445
	return xc5000_readreg(priv, XREG_ADC_ENV, adc_envelope);
446 447
}

448
static int xc_get_frequency_error(struct xc5000_priv *priv, u32 *freq_error_hz)
449 450
{
	int result;
451
	u16 regData;
452 453
	u32 tmp;

454
	result = xc5000_readreg(priv, XREG_FREQ_ERROR, &regData);
455
	if (result != XC_RESULT_SUCCESS)
456 457 458
		return result;

	tmp = (u32)regData;
459
	(*freq_error_hz) = (tmp * 15625) / 1000;
460 461 462
	return result;
}

463
static int xc_get_lock_status(struct xc5000_priv *priv, u16 *lock_status)
464
{
465
	return xc5000_readreg(priv, XREG_LOCK, lock_status);
466 467
}

468 469 470
static int xc_get_version(struct xc5000_priv *priv,
	u8 *hw_majorversion, u8 *hw_minorversion,
	u8 *fw_majorversion, u8 *fw_minorversion)
471
{
472
	u16 data;
473 474
	int result;

475
	result = xc5000_readreg(priv, XREG_VERSION, &data);
476
	if (result != XC_RESULT_SUCCESS)
477 478
		return result;

479 480 481 482
	(*hw_majorversion) = (data >> 12) & 0x0F;
	(*hw_minorversion) = (data >>  8) & 0x0F;
	(*fw_majorversion) = (data >>  4) & 0x0F;
	(*fw_minorversion) = data & 0x0F;
483 484 485 486

	return 0;
}

487 488 489 490 491
static int xc_get_buildversion(struct xc5000_priv *priv, u16 *buildrev)
{
	return xc5000_readreg(priv, XREG_BUILD, buildrev);
}

492
static int xc_get_hsync_freq(struct xc5000_priv *priv, u32 *hsync_freq_hz)
493
{
494
	u16 regData;
495 496
	int result;

497
	result = xc5000_readreg(priv, XREG_HSYNC_FREQ, &regData);
498
	if (result != XC_RESULT_SUCCESS)
499 500 501 502 503 504
		return result;

	(*hsync_freq_hz) = ((regData & 0x0fff) * 763)/100;
	return result;
}

505
static int xc_get_frame_lines(struct xc5000_priv *priv, u16 *frame_lines)
506
{
507
	return xc5000_readreg(priv, XREG_FRAME_LINES, frame_lines);
508 509
}

510
static int xc_get_quality(struct xc5000_priv *priv, u16 *quality)
511
{
512
	return xc5000_readreg(priv, XREG_QUALITY, quality);
513 514
}

515
static u16 WaitForLock(struct xc5000_priv *priv)
516
{
517
	u16 lockState = 0;
518
	int watchDogCount = 40;
519 520

	while ((lockState == 0) && (watchDogCount > 0)) {
521
		xc_get_lock_status(priv, &lockState);
522
		if (lockState != 1) {
523 524 525 526 527 528 529
			xc_wait(5);
			watchDogCount--;
		}
	}
	return lockState;
}

530 531 532
#define XC_TUNE_ANALOG  0
#define XC_TUNE_DIGITAL 1
static int xc_tune_channel(struct xc5000_priv *priv, u32 freq_hz, int mode)
533 534 535
{
	int found = 0;

536
	dprintk(1, "%s(%u)\n", __func__, freq_hz);
537

538
	if (xc_set_RF_frequency(priv, freq_hz) != XC_RESULT_SUCCESS)
539 540
		return 0;

541 542 543 544
	if (mode == XC_TUNE_ANALOG) {
		if (WaitForLock(priv) == 1)
			found = 1;
	}
545 546 547 548 549

	return found;
}


550
static int xc5000_fwupload(struct dvb_frontend *fe)
551 552 553 554 555
{
	struct xc5000_priv *priv = fe->tuner_priv;
	const struct firmware *fw;
	int ret;

556 557 558 559
	/* request the firmware, this will block and timeout */
	printk(KERN_INFO "xc5000: waiting for firmware upload (%s)...\n",
		XC5000_DEFAULT_FIRMWARE);

560
	ret = request_firmware(&fw, XC5000_DEFAULT_FIRMWARE,
561
		priv->i2c_props.adap->dev.parent);
562 563 564
	if (ret) {
		printk(KERN_ERR "xc5000: Upload failed. (file not found?)\n");
		ret = XC_RESULT_RESET_FAILURE;
565
		goto out;
566
	} else {
567
		printk(KERN_DEBUG "xc5000: firmware read %Zu bytes.\n",
568
		       fw->size);
569 570 571
		ret = XC_RESULT_SUCCESS;
	}

572
	if (fw->size != XC5000_DEFAULT_FIRMWARE_SIZE) {
573 574 575
		printk(KERN_ERR "xc5000: firmware incorrect size\n");
		ret = XC_RESULT_RESET_FAILURE;
	} else {
576
		printk(KERN_INFO "xc5000: firmware uploading...\n");
577
		ret = xc_load_i2c_sequence(fe,  fw->data);
578
		printk(KERN_INFO "xc5000: firmware upload complete...\n");
579 580
	}

581
out:
582 583 584 585
	release_firmware(fw);
	return ret;
}

586
static void xc_debug_dump(struct xc5000_priv *priv)
587
{
588 589 590 591 592 593 594 595
	u16 adc_envelope;
	u32 freq_error_hz = 0;
	u16 lock_status;
	u32 hsync_freq_hz = 0;
	u16 frame_lines;
	u16 quality;
	u8 hw_majorversion = 0, hw_minorversion = 0;
	u8 fw_majorversion = 0, fw_minorversion = 0;
596
	u16 fw_buildversion = 0;
597 598 599 600 601

	/* Wait for stats to stabilize.
	 * Frame Lines needs two frame times after initial lock
	 * before it is valid.
	 */
602
	xc_wait(100);
603

604 605
	xc_get_ADC_Envelope(priv,  &adc_envelope);
	dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope);
606

607 608
	xc_get_frequency_error(priv, &freq_error_hz);
	dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz);
609

610 611
	xc_get_lock_status(priv,  &lock_status);
	dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n",
612 613 614
		lock_status);

	xc_get_version(priv,  &hw_majorversion, &hw_minorversion,
615
		&fw_majorversion, &fw_minorversion);
616 617
	xc_get_buildversion(priv,  &fw_buildversion);
	dprintk(1, "*** HW: V%02x.%02x, FW: V%02x.%02x.%04x\n",
618
		hw_majorversion, hw_minorversion,
619
		fw_majorversion, fw_minorversion, fw_buildversion);
620

621 622
	xc_get_hsync_freq(priv,  &hsync_freq_hz);
	dprintk(1, "*** Horizontal sync frequency = %d Hz\n", hsync_freq_hz);
623

624 625
	xc_get_frame_lines(priv,  &frame_lines);
	dprintk(1, "*** Frame lines = %d\n", frame_lines);
626

627 628
	xc_get_quality(priv,  &quality);
	dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality);
629 630 631 632 633 634
}

static int xc5000_set_params(struct dvb_frontend *fe,
	struct dvb_frontend_parameters *params)
{
	struct xc5000_priv *priv = fe->tuner_priv;
635
	int ret;
636
	u32 bw;
637

638 639 640 641 642 643
	if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) {
		if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) {
			dprintk(1, "Unable to load firmware and init tuner\n");
			return -EINVAL;
		}
	}
644

645
	dprintk(1, "%s() frequency=%d (Hz)\n", __func__, params->frequency);
646

647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
	if (fe->ops.info.type == FE_ATSC) {
		dprintk(1, "%s() ATSC\n", __func__);
		switch (params->u.vsb.modulation) {
		case VSB_8:
		case VSB_16:
			dprintk(1, "%s() VSB modulation\n", __func__);
			priv->rf_mode = XC_RF_MODE_AIR;
			priv->freq_hz = params->frequency - 1750000;
			priv->bandwidth = BANDWIDTH_6_MHZ;
			priv->video_standard = DTV6;
			break;
		case QAM_64:
		case QAM_256:
		case QAM_AUTO:
			dprintk(1, "%s() QAM modulation\n", __func__);
			priv->rf_mode = XC_RF_MODE_CABLE;
			priv->freq_hz = params->frequency - 1750000;
			priv->bandwidth = BANDWIDTH_6_MHZ;
			priv->video_standard = DTV6;
			break;
		default:
			return -EINVAL;
		}
	} else if (fe->ops.info.type == FE_OFDM) {
		dprintk(1, "%s() OFDM\n", __func__);
		switch (params->u.ofdm.bandwidth) {
		case BANDWIDTH_6_MHZ:
			priv->bandwidth = BANDWIDTH_6_MHZ;
			priv->video_standard = DTV6;
			priv->freq_hz = params->frequency - 1750000;
			break;
		case BANDWIDTH_7_MHZ:
			printk(KERN_ERR "xc5000 bandwidth 7MHz not supported\n");
			return -EINVAL;
		case BANDWIDTH_8_MHZ:
			priv->bandwidth = BANDWIDTH_8_MHZ;
			priv->video_standard = DTV8;
			priv->freq_hz = params->frequency - 2750000;
			break;
		default:
			printk(KERN_ERR "xc5000 bandwidth not set!\n");
			return -EINVAL;
		}
690
		priv->rf_mode = XC_RF_MODE_AIR;
691 692
	} else if (fe->ops.info.type == FE_QAM) {
		switch (params->u.qam.modulation) {
693 694
		case QAM_256:
		case QAM_AUTO:
695 696 697 698 699 700
		case QAM_16:
		case QAM_32:
		case QAM_64:
		case QAM_128:
			dprintk(1, "%s() QAM modulation\n", __func__);
			priv->rf_mode = XC_RF_MODE_CABLE;
701
			/*
702 703 704 705 706 707 708
			 * Using a higher bandwidth at the tuner filter may
			 * allow inter-carrier interference.
			 * So, determine the minimal channel spacing, in order
			 * to better adjust the tuner filter.
			 * According with ITU-T J.83, the bandwidth is given by:
			 * bw = Simbol Rate * (1 + roll_off), where the roll_off
			 * is equal to 0.15 for Annex A, and 0.13 for annex C
709
			 */
710 711 712 713 714
			if (fe->dtv_property_cache.rolloff == ROLLOFF_13)
				bw = (params->u.qam.symbol_rate * 13) / 10;
			else
				bw = (params->u.qam.symbol_rate * 15) / 10;
			if (bw <= 6000000) {
715 716 717 718 719 720 721 722
				priv->bandwidth = BANDWIDTH_6_MHZ;
				priv->video_standard = DTV6;
				priv->freq_hz = params->frequency - 1750000;
			} else {
				priv->bandwidth = BANDWIDTH_8_MHZ;
				priv->video_standard = DTV7_8;
				priv->freq_hz = params->frequency - 2750000;
			}
723 724
			break;
		default:
725
			dprintk(1, "%s() Unsupported QAM type\n", __func__);
726 727
			return -EINVAL;
		}
728 729
	} else {
		printk(KERN_ERR "xc5000 modulation type not supported!\n");
730 731 732 733
		return -EINVAL;
	}

	dprintk(1, "%s() frequency=%d (compensated)\n",
734
		__func__, priv->freq_hz);
735

736 737 738 739 740 741 742
	ret = xc_SetSignalSource(priv, priv->rf_mode);
	if (ret != XC_RESULT_SUCCESS) {
		printk(KERN_ERR
			"xc5000: xc_SetSignalSource(%d) failed\n",
			priv->rf_mode);
		return -EREMOTEIO;
	}
743

744
	ret = xc_SetTVStandard(priv,
745 746
		XC5000_Standard[priv->video_standard].VideoMode,
		XC5000_Standard[priv->video_standard].AudioMode);
747 748 749 750 751
	if (ret != XC_RESULT_SUCCESS) {
		printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
		return -EREMOTEIO;
	}

752
	ret = xc_set_IF_frequency(priv, priv->if_khz);
753 754
	if (ret != XC_RESULT_SUCCESS) {
		printk(KERN_ERR "xc5000: xc_Set_IF_frequency(%d) failed\n",
755
		       priv->if_khz);
756 757 758
		return -EIO;
	}

759 760
	xc_write_reg(priv, XREG_OUTPUT_AMP, 0x8a);

761
	xc_tune_channel(priv, priv->freq_hz, XC_TUNE_DIGITAL);
762

763 764
	if (debug)
		xc_debug_dump(priv);
765 766 767 768

	return 0;
}

769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
static int xc5000_is_firmware_loaded(struct dvb_frontend *fe)
{
	struct xc5000_priv *priv = fe->tuner_priv;
	int ret;
	u16 id;

	ret = xc5000_readreg(priv, XREG_PRODUCT_ID, &id);
	if (ret == XC_RESULT_SUCCESS) {
		if (id == XC_PRODUCT_ID_FW_NOT_LOADED)
			ret = XC_RESULT_RESET_FAILURE;
		else
			ret = XC_RESULT_SUCCESS;
	}

	dprintk(1, "%s() returns %s id = 0x%x\n", __func__,
		ret == XC_RESULT_SUCCESS ? "True" : "False", id);
	return ret;
}

788
static int xc5000_set_tv_freq(struct dvb_frontend *fe,
789 790 791 792 793 794
	struct analog_parameters *params)
{
	struct xc5000_priv *priv = fe->tuner_priv;
	int ret;

	dprintk(1, "%s() frequency=%d (in units of 62.5khz)\n",
795
		__func__, params->frequency);
796

797 798 799 800
	/* Fix me: it could be air. */
	priv->rf_mode = params->mode;
	if (params->mode > XC_RF_MODE_CABLE)
		priv->rf_mode = XC_RF_MODE_CABLE;
801 802 803 804 805 806 807

	/* params->frequency is in units of 62.5khz */
	priv->freq_hz = params->frequency * 62500;

	/* FIX ME: Some video standards may have several possible audio
		   standards. We simply default to one of them here.
	 */
808
	if (params->std & V4L2_STD_MN) {
809 810 811 812 813
		/* default to BTSC audio standard */
		priv->video_standard = MN_NTSC_PAL_BTSC;
		goto tune_channel;
	}

814
	if (params->std & V4L2_STD_PAL_BG) {
815 816 817 818 819
		/* default to NICAM audio standard */
		priv->video_standard = BG_PAL_NICAM;
		goto tune_channel;
	}

820
	if (params->std & V4L2_STD_PAL_I) {
821 822 823 824 825
		/* default to NICAM audio standard */
		priv->video_standard = I_PAL_NICAM;
		goto tune_channel;
	}

826
	if (params->std & V4L2_STD_PAL_DK) {
827 828 829 830 831
		/* default to NICAM audio standard */
		priv->video_standard = DK_PAL_NICAM;
		goto tune_channel;
	}

832
	if (params->std & V4L2_STD_SECAM_DK) {
833 834 835 836 837
		/* default to A2 DK1 audio standard */
		priv->video_standard = DK_SECAM_A2DK1;
		goto tune_channel;
	}

838
	if (params->std & V4L2_STD_SECAM_L) {
839 840 841 842
		priv->video_standard = L_SECAM_NICAM;
		goto tune_channel;
	}

843
	if (params->std & V4L2_STD_SECAM_LC) {
844 845 846 847 848 849 850
		priv->video_standard = LC_SECAM_NICAM;
		goto tune_channel;
	}

tune_channel:
	ret = xc_SetSignalSource(priv, priv->rf_mode);
	if (ret != XC_RESULT_SUCCESS) {
851
		printk(KERN_ERR
852 853 854 855 856 857 858 859 860 861 862 863 864
			"xc5000: xc_SetSignalSource(%d) failed\n",
			priv->rf_mode);
		return -EREMOTEIO;
	}

	ret = xc_SetTVStandard(priv,
		XC5000_Standard[priv->video_standard].VideoMode,
		XC5000_Standard[priv->video_standard].AudioMode);
	if (ret != XC_RESULT_SUCCESS) {
		printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
		return -EREMOTEIO;
	}

865 866
	xc_write_reg(priv, XREG_OUTPUT_AMP, 0x09);

867
	xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG);
868 869 870 871 872 873 874

	if (debug)
		xc_debug_dump(priv);

	return 0;
}

875 876 877 878 879
static int xc5000_set_radio_freq(struct dvb_frontend *fe,
	struct analog_parameters *params)
{
	struct xc5000_priv *priv = fe->tuner_priv;
	int ret = -EINVAL;
880
	u8 radio_input;
881 882 883 884

	dprintk(1, "%s() frequency=%d (in units of khz)\n",
		__func__, params->frequency);

885 886 887 888 889 890 891 892 893
	if (priv->radio_input == XC5000_RADIO_NOT_CONFIGURED) {
		dprintk(1, "%s() radio input not configured\n", __func__);
		return -EINVAL;
	}

	if (priv->radio_input == XC5000_RADIO_FM1)
		radio_input = FM_Radio_INPUT1;
	else if  (priv->radio_input == XC5000_RADIO_FM2)
		radio_input = FM_Radio_INPUT2;
894 895
	else if  (priv->radio_input == XC5000_RADIO_FM1_MONO)
		radio_input = FM_Radio_INPUT1_MONO;
896 897 898 899 900 901
	else {
		dprintk(1, "%s() unknown radio input %d\n", __func__,
			priv->radio_input);
		return -EINVAL;
	}

902 903 904 905
	priv->freq_hz = params->frequency * 125 / 2;

	priv->rf_mode = XC_RF_MODE_AIR;

906 907
	ret = xc_SetTVStandard(priv, XC5000_Standard[radio_input].VideoMode,
			       XC5000_Standard[radio_input].AudioMode);
908 909 910 911 912 913 914 915 916 917 918 919 920 921

	if (ret != XC_RESULT_SUCCESS) {
		printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
		return -EREMOTEIO;
	}

	ret = xc_SetSignalSource(priv, priv->rf_mode);
	if (ret != XC_RESULT_SUCCESS) {
		printk(KERN_ERR
			"xc5000: xc_SetSignalSource(%d) failed\n",
			priv->rf_mode);
		return -EREMOTEIO;
	}

922 923 924 925 926 927
	if ((priv->radio_input == XC5000_RADIO_FM1) ||
				(priv->radio_input == XC5000_RADIO_FM2))
		xc_write_reg(priv, XREG_OUTPUT_AMP, 0x09);
	else if  (priv->radio_input == XC5000_RADIO_FM1_MONO)
		xc_write_reg(priv, XREG_OUTPUT_AMP, 0x06);

928 929 930 931 932 933 934 935 936 937 938 939 940 941
	xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG);

	return 0;
}

static int xc5000_set_analog_params(struct dvb_frontend *fe,
			     struct analog_parameters *params)
{
	struct xc5000_priv *priv = fe->tuner_priv;
	int ret = -EINVAL;

	if (priv->i2c_props.adap == NULL)
		return -EINVAL;

942 943 944 945 946 947
	if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) {
		if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) {
			dprintk(1, "Unable to load firmware and init tuner\n");
			return -EINVAL;
		}
	}
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962

	switch (params->mode) {
	case V4L2_TUNER_RADIO:
		ret = xc5000_set_radio_freq(fe, params);
		break;
	case V4L2_TUNER_ANALOG_TV:
	case V4L2_TUNER_DIGITAL_TV:
		ret = xc5000_set_tv_freq(fe, params);
		break;
	}

	return ret;
}


963 964 965
static int xc5000_get_frequency(struct dvb_frontend *fe, u32 *freq)
{
	struct xc5000_priv *priv = fe->tuner_priv;
966
	dprintk(1, "%s()\n", __func__);
967
	*freq = priv->freq_hz;
968 969 970
	return 0;
}

971 972 973 974 975 976 977 978
static int xc5000_get_if_frequency(struct dvb_frontend *fe, u32 *freq)
{
	struct xc5000_priv *priv = fe->tuner_priv;
	dprintk(1, "%s()\n", __func__);
	*freq = priv->if_khz * 1000;
	return 0;
}

979 980 981
static int xc5000_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
{
	struct xc5000_priv *priv = fe->tuner_priv;
982
	dprintk(1, "%s()\n", __func__);
983

984 985 986 987 988 989 990
	*bw = priv->bandwidth;
	return 0;
}

static int xc5000_get_status(struct dvb_frontend *fe, u32 *status)
{
	struct xc5000_priv *priv = fe->tuner_priv;
991
	u16 lock_status = 0;
992 993 994

	xc_get_lock_status(priv, &lock_status);

995
	dprintk(1, "%s() lock_status = 0x%08x\n", __func__, lock_status);
996 997 998 999 1000 1001

	*status = lock_status;

	return 0;
}

1002
static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe)
1003 1004
{
	struct xc5000_priv *priv = fe->tuner_priv;
1005
	int ret = 0;
1006

1007
	if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) {
1008
		ret = xc5000_fwupload(fe);
1009 1010
		if (ret != XC_RESULT_SUCCESS)
			return ret;
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
	}

	/* Start the tuner self-calibration process */
	ret |= xc_initialize(priv);

	/* Wait for calibration to complete.
	 * We could continue but XC5000 will clock stretch subsequent
	 * I2C transactions until calibration is complete.  This way we
	 * don't have to rely on clock stretching working.
	 */
1021
	xc_wait(100);
1022 1023 1024 1025 1026 1027 1028

	/* Default to "CABLE" mode */
	ret |= xc_write_reg(priv, XREG_SIGNALSOURCE, XC_RF_MODE_CABLE);

	return ret;
}

1029 1030
static int xc5000_sleep(struct dvb_frontend *fe)
{
1031 1032
	int ret;

1033
	dprintk(1, "%s()\n", __func__);
1034

1035 1036 1037 1038
	/* Avoid firmware reload on slow devices */
	if (no_poweroff)
		return 0;

1039 1040 1041 1042
	/* According to Xceive technical support, the "powerdown" register
	   was removed in newer versions of the firmware.  The "supported"
	   way to sleep the tuner is to pull the reset pin low for 10ms */
	ret = xc5000_TunerReset(fe);
1043
	if (ret != XC_RESULT_SUCCESS) {
1044 1045
		printk(KERN_ERR
			"xc5000: %s() unable to shutdown tuner\n",
1046
			__func__);
1047
		return -EREMOTEIO;
1048
	} else
1049
		return XC_RESULT_SUCCESS;
1050 1051
}

1052 1053 1054
static int xc5000_init(struct dvb_frontend *fe)
{
	struct xc5000_priv *priv = fe->tuner_priv;
1055
	dprintk(1, "%s()\n", __func__);
1056

1057 1058 1059 1060 1061 1062 1063
	if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) {
		printk(KERN_ERR "xc5000: Unable to initialise tuner\n");
		return -EREMOTEIO;
	}

	if (debug)
		xc_debug_dump(priv);
1064 1065 1066 1067 1068 1069

	return 0;
}

static int xc5000_release(struct dvb_frontend *fe)
{
1070 1071
	struct xc5000_priv *priv = fe->tuner_priv;

1072
	dprintk(1, "%s()\n", __func__);
1073 1074 1075 1076 1077 1078 1079 1080

	mutex_lock(&xc5000_list_mutex);

	if (priv)
		hybrid_tuner_release_state(priv);

	mutex_unlock(&xc5000_list_mutex);

1081
	fe->tuner_priv = NULL;
1082

1083 1084 1085
	return 0;
}

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
static int xc5000_set_config(struct dvb_frontend *fe, void *priv_cfg)
{
	struct xc5000_priv *priv = fe->tuner_priv;
	struct xc5000_config *p = priv_cfg;

	dprintk(1, "%s()\n", __func__);

	if (p->if_khz)
		priv->if_khz = p->if_khz;

	if (p->radio_input)
		priv->radio_input = p->radio_input;

	return 0;
}


1103 1104 1105 1106 1107 1108 1109 1110
static const struct dvb_tuner_ops xc5000_tuner_ops = {
	.info = {
		.name           = "Xceive XC5000",
		.frequency_min  =    1000000,
		.frequency_max  = 1023000000,
		.frequency_step =      50000,
	},

1111 1112 1113
	.release	   = xc5000_release,
	.init		   = xc5000_init,
	.sleep		   = xc5000_sleep,
1114

1115
	.set_config	   = xc5000_set_config,
1116 1117 1118
	.set_params	   = xc5000_set_params,
	.set_analog_params = xc5000_set_analog_params,
	.get_frequency	   = xc5000_get_frequency,
1119
	.get_if_frequency  = xc5000_get_if_frequency,
1120 1121
	.get_bandwidth	   = xc5000_get_bandwidth,
	.get_status	   = xc5000_get_status
1122 1123
};

1124 1125
struct dvb_frontend *xc5000_attach(struct dvb_frontend *fe,
				   struct i2c_adapter *i2c,
1126
				   const struct xc5000_config *cfg)
1127 1128
{
	struct xc5000_priv *priv = NULL;
1129
	int instance;
1130 1131
	u16 id = 0;

1132 1133 1134
	dprintk(1, "%s(%d-%04x)\n", __func__,
		i2c ? i2c_adapter_id(i2c) : -1,
		cfg ? cfg->i2c_address : -1);
1135

1136
	mutex_lock(&xc5000_list_mutex);
1137

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
	instance = hybrid_tuner_request_state(struct xc5000_priv, priv,
					      hybrid_tuner_instance_list,
					      i2c, cfg->i2c_address, "xc5000");
	switch (instance) {
	case 0:
		goto fail;
		break;
	case 1:
		/* new tuner instance */
		priv->bandwidth = BANDWIDTH_6_MHZ;
		fe->tuner_priv = priv;
		break;
	default:
		/* existing tuner instance */
		fe->tuner_priv = priv;
		break;
	}
1155

1156 1157 1158 1159 1160 1161 1162
	if (priv->if_khz == 0) {
		/* If the IF hasn't been set yet, use the value provided by
		   the caller (occurs in hybrid devices where the analog
		   call to xc5000_attach occurs before the digital side) */
		priv->if_khz = cfg->if_khz;
	}

1163 1164 1165
	if (priv->radio_input == 0)
		priv->radio_input = cfg->radio_input;

1166 1167 1168
	/* Check if firmware has been loaded. It is possible that another
	   instance of the driver has loaded the firmware.
	 */
1169
	if (xc5000_readreg(priv, XREG_PRODUCT_ID, &id) != XC_RESULT_SUCCESS)
1170
		goto fail;
1171

1172
	switch (id) {
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
	case XC_PRODUCT_ID_FW_LOADED:
		printk(KERN_INFO
			"xc5000: Successfully identified at address 0x%02x\n",
			cfg->i2c_address);
		printk(KERN_INFO
			"xc5000: Firmware has been loaded previously\n");
		break;
	case XC_PRODUCT_ID_FW_NOT_LOADED:
		printk(KERN_INFO
			"xc5000: Successfully identified at address 0x%02x\n",
			cfg->i2c_address);
		printk(KERN_INFO
			"xc5000: Firmware has not been loaded previously\n");
		break;
	default:
1188 1189 1190
		printk(KERN_ERR
			"xc5000: Device not found at addr 0x%02x (0x%x)\n",
			cfg->i2c_address, id);
1191
		goto fail;
1192 1193
	}

1194 1195
	mutex_unlock(&xc5000_list_mutex);

1196 1197 1198 1199
	memcpy(&fe->ops.tuner_ops, &xc5000_tuner_ops,
		sizeof(struct dvb_tuner_ops));

	return fe;
1200 1201 1202 1203 1204
fail:
	mutex_unlock(&xc5000_list_mutex);

	xc5000_release(fe);
	return NULL;
1205 1206 1207 1208
}
EXPORT_SYMBOL(xc5000_attach);

MODULE_AUTHOR("Steven Toth");
1209
MODULE_DESCRIPTION("Xceive xc5000 silicon tuner driver");
1210
MODULE_LICENSE("GPL");