book3s_pr.c 43.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *    Paul Mackerras <paulus@samba.org>
 *
 * Description:
 * Functions relating to running KVM on Book 3S processors where
 * we don't have access to hypervisor mode, and we run the guest
 * in problem state (user mode).
 *
 * This file is derived from arch/powerpc/kvm/44x.c,
 * by Hollis Blanchard <hollisb@us.ibm.com>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
23
#include <linux/export.h>
24 25 26 27 28 29 30 31 32 33 34 35
#include <linux/err.h>
#include <linux/slab.h>

#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
36
#include <asm/switch_to.h>
37
#include <asm/firmware.h>
38
#include <asm/hvcall.h>
39 40 41 42
#include <linux/gfp.h>
#include <linux/sched.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
43
#include <linux/module.h>
44
#include <linux/miscdevice.h>
45

46
#include "book3s.h"
47 48 49

#define CREATE_TRACE_POINTS
#include "trace_pr.h"
50 51 52 53 54 55

/* #define EXIT_DEBUG */
/* #define DEBUG_EXT */

static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
			     ulong msr);
56
static void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac);
57 58 59 60 61 62 63 64

/* Some compatibility defines */
#ifdef CONFIG_PPC_BOOK3S_32
#define MSR_USER32 MSR_USER
#define MSR_USER64 MSR_USER
#define HW_PAGE_SIZE PAGE_SIZE
#endif

65
static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu)
66 67
{
#ifdef CONFIG_PPC_BOOK3S_64
68 69 70
	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
	memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
	svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
71
	svcpu->in_use = 0;
72
	svcpu_put(svcpu);
73
#endif
74 75 76 77 78 79

	/* Disable AIL if supported */
	if (cpu_has_feature(CPU_FTR_HVMODE) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_AIL);

80
	vcpu->cpu = smp_processor_id();
81
#ifdef CONFIG_PPC_BOOK3S_32
82
	current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu;
83 84 85
#endif
}

86
static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu)
87 88
{
#ifdef CONFIG_PPC_BOOK3S_64
89
	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
90 91 92
	if (svcpu->in_use) {
		kvmppc_copy_from_svcpu(vcpu, svcpu);
	}
93 94 95
	memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
	to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
	svcpu_put(svcpu);
96 97
#endif

98
	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
99
	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
100 101 102 103 104 105

	/* Enable AIL if supported */
	if (cpu_has_feature(CPU_FTR_HVMODE) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_AIL_3);

106
	vcpu->cpu = -1;
107 108
}

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
/* Copy data needed by real-mode code from vcpu to shadow vcpu */
void kvmppc_copy_to_svcpu(struct kvmppc_book3s_shadow_vcpu *svcpu,
			  struct kvm_vcpu *vcpu)
{
	svcpu->gpr[0] = vcpu->arch.gpr[0];
	svcpu->gpr[1] = vcpu->arch.gpr[1];
	svcpu->gpr[2] = vcpu->arch.gpr[2];
	svcpu->gpr[3] = vcpu->arch.gpr[3];
	svcpu->gpr[4] = vcpu->arch.gpr[4];
	svcpu->gpr[5] = vcpu->arch.gpr[5];
	svcpu->gpr[6] = vcpu->arch.gpr[6];
	svcpu->gpr[7] = vcpu->arch.gpr[7];
	svcpu->gpr[8] = vcpu->arch.gpr[8];
	svcpu->gpr[9] = vcpu->arch.gpr[9];
	svcpu->gpr[10] = vcpu->arch.gpr[10];
	svcpu->gpr[11] = vcpu->arch.gpr[11];
	svcpu->gpr[12] = vcpu->arch.gpr[12];
	svcpu->gpr[13] = vcpu->arch.gpr[13];
	svcpu->cr  = vcpu->arch.cr;
	svcpu->xer = vcpu->arch.xer;
	svcpu->ctr = vcpu->arch.ctr;
	svcpu->lr  = vcpu->arch.lr;
	svcpu->pc  = vcpu->arch.pc;
132 133 134
#ifdef CONFIG_PPC_BOOK3S_64
	svcpu->shadow_fscr = vcpu->arch.shadow_fscr;
#endif
135 136 137 138 139
	/*
	 * Now also save the current time base value. We use this
	 * to find the guest purr and spurr value.
	 */
	vcpu->arch.entry_tb = get_tb();
140
	vcpu->arch.entry_vtb = get_vtb();
141 142
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		vcpu->arch.entry_ic = mfspr(SPRN_IC);
143
	svcpu->in_use = true;
144 145 146 147 148 149
}

/* Copy data touched by real-mode code from shadow vcpu back to vcpu */
void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu,
			    struct kvmppc_book3s_shadow_vcpu *svcpu)
{
150 151 152 153 154 155 156 157 158 159 160 161 162
	/*
	 * vcpu_put would just call us again because in_use hasn't
	 * been updated yet.
	 */
	preempt_disable();

	/*
	 * Maybe we were already preempted and synced the svcpu from
	 * our preempt notifiers. Don't bother touching this svcpu then.
	 */
	if (!svcpu->in_use)
		goto out;

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
	vcpu->arch.gpr[0] = svcpu->gpr[0];
	vcpu->arch.gpr[1] = svcpu->gpr[1];
	vcpu->arch.gpr[2] = svcpu->gpr[2];
	vcpu->arch.gpr[3] = svcpu->gpr[3];
	vcpu->arch.gpr[4] = svcpu->gpr[4];
	vcpu->arch.gpr[5] = svcpu->gpr[5];
	vcpu->arch.gpr[6] = svcpu->gpr[6];
	vcpu->arch.gpr[7] = svcpu->gpr[7];
	vcpu->arch.gpr[8] = svcpu->gpr[8];
	vcpu->arch.gpr[9] = svcpu->gpr[9];
	vcpu->arch.gpr[10] = svcpu->gpr[10];
	vcpu->arch.gpr[11] = svcpu->gpr[11];
	vcpu->arch.gpr[12] = svcpu->gpr[12];
	vcpu->arch.gpr[13] = svcpu->gpr[13];
	vcpu->arch.cr  = svcpu->cr;
	vcpu->arch.xer = svcpu->xer;
	vcpu->arch.ctr = svcpu->ctr;
	vcpu->arch.lr  = svcpu->lr;
	vcpu->arch.pc  = svcpu->pc;
	vcpu->arch.shadow_srr1 = svcpu->shadow_srr1;
	vcpu->arch.fault_dar   = svcpu->fault_dar;
	vcpu->arch.fault_dsisr = svcpu->fault_dsisr;
	vcpu->arch.last_inst   = svcpu->last_inst;
186 187 188
#ifdef CONFIG_PPC_BOOK3S_64
	vcpu->arch.shadow_fscr = svcpu->shadow_fscr;
#endif
189 190 191 192 193
	/*
	 * Update purr and spurr using time base on exit.
	 */
	vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb;
	vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb;
194
	vcpu->arch.vtb += get_vtb() - vcpu->arch.entry_vtb;
195 196
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic;
197 198 199 200
	svcpu->in_use = false;

out:
	preempt_enable();
201 202
}

203
static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu)
204
{
205 206
	int r = 1; /* Indicate we want to get back into the guest */

207 208 209 210
	/* We misuse TLB_FLUSH to indicate that we want to clear
	   all shadow cache entries */
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
		kvmppc_mmu_pte_flush(vcpu, 0, 0);
211 212

	return r;
213 214
}

215
/************* MMU Notifiers *************/
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
static void do_kvm_unmap_hva(struct kvm *kvm, unsigned long start,
			     unsigned long end)
{
	long i;
	struct kvm_vcpu *vcpu;
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots) {
		unsigned long hva_start, hva_end;
		gfn_t gfn, gfn_end;

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;
		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
		 * {gfn, gfn+1, ..., gfn_end-1}.
		 */
		gfn = hva_to_gfn_memslot(hva_start, memslot);
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
		kvm_for_each_vcpu(i, vcpu, kvm)
			kvmppc_mmu_pte_pflush(vcpu, gfn << PAGE_SHIFT,
					      gfn_end << PAGE_SHIFT);
	}
}
245

246
static int kvm_unmap_hva_pr(struct kvm *kvm, unsigned long hva)
247 248 249
{
	trace_kvm_unmap_hva(hva);

250
	do_kvm_unmap_hva(kvm, hva, hva + PAGE_SIZE);
251 252 253 254

	return 0;
}

255 256
static int kvm_unmap_hva_range_pr(struct kvm *kvm, unsigned long start,
				  unsigned long end)
257
{
258
	do_kvm_unmap_hva(kvm, start, end);
259 260 261 262

	return 0;
}

263
static int kvm_age_hva_pr(struct kvm *kvm, unsigned long hva)
264 265 266 267 268
{
	/* XXX could be more clever ;) */
	return 0;
}

269
static int kvm_test_age_hva_pr(struct kvm *kvm, unsigned long hva)
270 271 272 273 274
{
	/* XXX could be more clever ;) */
	return 0;
}

275
static void kvm_set_spte_hva_pr(struct kvm *kvm, unsigned long hva, pte_t pte)
276 277
{
	/* The page will get remapped properly on its next fault */
278
	do_kvm_unmap_hva(kvm, hva, hva + PAGE_SIZE);
279 280 281 282
}

/*****************************************/

283 284
static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
{
285 286
	ulong guest_msr = kvmppc_get_msr(vcpu);
	ulong smsr = guest_msr;
287 288

	/* Guest MSR values */
289
	smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE;
290 291 292
	/* Process MSR values */
	smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
	/* External providers the guest reserved */
293
	smsr |= (guest_msr & vcpu->arch.guest_owned_ext);
294 295 296 297 298 299 300
	/* 64-bit Process MSR values */
#ifdef CONFIG_PPC_BOOK3S_64
	smsr |= MSR_ISF | MSR_HV;
#endif
	vcpu->arch.shadow_msr = smsr;
}

301
static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr)
302
{
303
	ulong old_msr = kvmppc_get_msr(vcpu);
304 305 306 307 308 309

#ifdef EXIT_DEBUG
	printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
#endif

	msr &= to_book3s(vcpu)->msr_mask;
310
	kvmppc_set_msr_fast(vcpu, msr);
311 312 313 314 315
	kvmppc_recalc_shadow_msr(vcpu);

	if (msr & MSR_POW) {
		if (!vcpu->arch.pending_exceptions) {
			kvm_vcpu_block(vcpu);
316
			clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
317 318 319 320
			vcpu->stat.halt_wakeup++;

			/* Unset POW bit after we woke up */
			msr &= ~MSR_POW;
321
			kvmppc_set_msr_fast(vcpu, msr);
322 323 324
		}
	}

325
	if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) !=
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
		   (old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
		kvmppc_mmu_flush_segments(vcpu);
		kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));

		/* Preload magic page segment when in kernel mode */
		if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
			struct kvm_vcpu_arch *a = &vcpu->arch;

			if (msr & MSR_DR)
				kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
			else
				kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
		}
	}

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
	/*
	 * When switching from 32 to 64-bit, we may have a stale 32-bit
	 * magic page around, we need to flush it. Typically 32-bit magic
	 * page will be instanciated when calling into RTAS. Note: We
	 * assume that such transition only happens while in kernel mode,
	 * ie, we never transition from user 32-bit to kernel 64-bit with
	 * a 32-bit magic page around.
	 */
	if (vcpu->arch.magic_page_pa &&
	    !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
		/* going from RTAS to normal kernel code */
		kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
				     ~0xFFFUL);
	}

356
	/* Preload FPU if it's enabled */
357
	if (kvmppc_get_msr(vcpu) & MSR_FP)
358 359 360
		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
}

361
void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr)
362 363 364 365 366 367 368 369
{
	u32 host_pvr;

	vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
	vcpu->arch.pvr = pvr;
#ifdef CONFIG_PPC_BOOK3S_64
	if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
		kvmppc_mmu_book3s_64_init(vcpu);
370 371
		if (!to_book3s(vcpu)->hior_explicit)
			to_book3s(vcpu)->hior = 0xfff00000;
372
		to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
373
		vcpu->arch.cpu_type = KVM_CPU_3S_64;
374 375 376 377
	} else
#endif
	{
		kvmppc_mmu_book3s_32_init(vcpu);
378 379
		if (!to_book3s(vcpu)->hior_explicit)
			to_book3s(vcpu)->hior = 0;
380
		to_book3s(vcpu)->msr_mask = 0xffffffffULL;
381
		vcpu->arch.cpu_type = KVM_CPU_3S_32;
382 383
	}

384 385
	kvmppc_sanity_check(vcpu);

386 387 388 389 390 391 392 393 394 395 396 397
	/* If we are in hypervisor level on 970, we can tell the CPU to
	 * treat DCBZ as 32 bytes store */
	vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
	if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
	    !strcmp(cur_cpu_spec->platform, "ppc970"))
		vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;

	/* Cell performs badly if MSR_FEx are set. So let's hope nobody
	   really needs them in a VM on Cell and force disable them. */
	if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
		to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
	/*
	 * If they're asking for POWER6 or later, set the flag
	 * indicating that we can do multiple large page sizes
	 * and 1TB segments.
	 * Also set the flag that indicates that tlbie has the large
	 * page bit in the RB operand instead of the instruction.
	 */
	switch (PVR_VER(pvr)) {
	case PVR_POWER6:
	case PVR_POWER7:
	case PVR_POWER7p:
	case PVR_POWER8:
		vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE |
			BOOK3S_HFLAG_NEW_TLBIE;
		break;
	}

415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
#ifdef CONFIG_PPC_BOOK3S_32
	/* 32 bit Book3S always has 32 byte dcbz */
	vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
#endif

	/* On some CPUs we can execute paired single operations natively */
	asm ( "mfpvr %0" : "=r"(host_pvr));
	switch (host_pvr) {
	case 0x00080200:	/* lonestar 2.0 */
	case 0x00088202:	/* lonestar 2.2 */
	case 0x70000100:	/* gekko 1.0 */
	case 0x00080100:	/* gekko 2.0 */
	case 0x00083203:	/* gekko 2.3a */
	case 0x00083213:	/* gekko 2.3b */
	case 0x00083204:	/* gekko 2.4 */
	case 0x00083214:	/* gekko 2.4e (8SE) - retail HW2 */
	case 0x00087200:	/* broadway */
		vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
		/* Enable HID2.PSE - in case we need it later */
		mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
	}
}

/* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
 * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
 * emulate 32 bytes dcbz length.
 *
 * The Book3s_64 inventors also realized this case and implemented a special bit
 * in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
 *
 * My approach here is to patch the dcbz instruction on executing pages.
 */
static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
{
	struct page *hpage;
	u64 hpage_offset;
	u32 *page;
	int i;

	hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
455
	if (is_error_page(hpage))
456 457 458 459 460 461 462
		return;

	hpage_offset = pte->raddr & ~PAGE_MASK;
	hpage_offset &= ~0xFFFULL;
	hpage_offset /= 4;

	get_page(hpage);
463
	page = kmap_atomic(hpage);
464 465 466

	/* patch dcbz into reserved instruction, so we trap */
	for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
467 468
		if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ)
			page[i] &= cpu_to_be32(0xfffffff7);
469

470
	kunmap_atomic(page);
471 472 473 474 475 476 477
	put_page(hpage);
}

static int kvmppc_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
{
	ulong mp_pa = vcpu->arch.magic_page_pa;

478
	if (!(kvmppc_get_msr(vcpu) & MSR_SF))
479 480
		mp_pa = (uint32_t)mp_pa;

481 482 483 484 485 486 487 488 489 490 491 492
	if (unlikely(mp_pa) &&
	    unlikely((mp_pa & KVM_PAM) >> PAGE_SHIFT == gfn)) {
		return 1;
	}

	return kvm_is_visible_gfn(vcpu->kvm, gfn);
}

int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu,
			    ulong eaddr, int vec)
{
	bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
493
	bool iswrite = false;
494 495 496 497 498
	int r = RESUME_GUEST;
	int relocated;
	int page_found = 0;
	struct kvmppc_pte pte;
	bool is_mmio = false;
499 500
	bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false;
	bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false;
501 502 503
	u64 vsid;

	relocated = data ? dr : ir;
504 505
	if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE))
		iswrite = true;
506 507 508

	/* Resolve real address if translation turned on */
	if (relocated) {
509
		page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite);
510 511 512 513 514 515 516
	} else {
		pte.may_execute = true;
		pte.may_read = true;
		pte.may_write = true;
		pte.raddr = eaddr & KVM_PAM;
		pte.eaddr = eaddr;
		pte.vpage = eaddr >> 12;
517
		pte.page_size = MMU_PAGE_64K;
518 519
	}

520
	switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) {
521 522 523 524 525 526 527
	case 0:
		pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
		break;
	case MSR_DR:
	case MSR_IR:
		vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);

528
		if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR)
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
			pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
		else
			pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
		pte.vpage |= vsid;

		if (vsid == -1)
			page_found = -EINVAL;
		break;
	}

	if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
	   (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
		/*
		 * If we do the dcbz hack, we have to NX on every execution,
		 * so we can patch the executing code. This renders our guest
		 * NX-less.
		 */
		pte.may_execute = !data;
	}

	if (page_found == -ENOENT) {
		/* Page not found in guest PTE entries */
551 552 553 554 555
		u64 ssrr1 = vcpu->arch.shadow_srr1;
		u64 msr = kvmppc_get_msr(vcpu);
		kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
		kvmppc_set_dsisr(vcpu, vcpu->arch.fault_dsisr);
		kvmppc_set_msr_fast(vcpu, msr | (ssrr1 & 0xf8000000ULL));
556 557 558
		kvmppc_book3s_queue_irqprio(vcpu, vec);
	} else if (page_found == -EPERM) {
		/* Storage protection */
559 560 561 562 563 564 565
		u32 dsisr = vcpu->arch.fault_dsisr;
		u64 ssrr1 = vcpu->arch.shadow_srr1;
		u64 msr = kvmppc_get_msr(vcpu);
		kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
		dsisr = (dsisr & ~DSISR_NOHPTE) | DSISR_PROTFAULT;
		kvmppc_set_dsisr(vcpu, dsisr);
		kvmppc_set_msr_fast(vcpu, msr | (ssrr1 & 0xf8000000ULL));
566 567 568
		kvmppc_book3s_queue_irqprio(vcpu, vec);
	} else if (page_found == -EINVAL) {
		/* Page not found in guest SLB */
569
		kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
570 571 572
		kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
	} else if (!is_mmio &&
		   kvmppc_visible_gfn(vcpu, pte.raddr >> PAGE_SHIFT)) {
573 574 575 576 577 578 579 580
		if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) {
			/*
			 * There is already a host HPTE there, presumably
			 * a read-only one for a page the guest thinks
			 * is writable, so get rid of it first.
			 */
			kvmppc_mmu_unmap_page(vcpu, &pte);
		}
581
		/* The guest's PTE is not mapped yet. Map on the host */
582
		kvmppc_mmu_map_page(vcpu, &pte, iswrite);
583 584 585
		if (data)
			vcpu->stat.sp_storage++;
		else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
586
			 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
587 588 589 590 591
			kvmppc_patch_dcbz(vcpu, &pte);
	} else {
		/* MMIO */
		vcpu->stat.mmio_exits++;
		vcpu->arch.paddr_accessed = pte.raddr;
592
		vcpu->arch.vaddr_accessed = pte.eaddr;
593 594 595 596 597 598 599 600 601 602
		r = kvmppc_emulate_mmio(run, vcpu);
		if ( r == RESUME_HOST_NV )
			r = RESUME_HOST;
	}

	return r;
}

static inline int get_fpr_index(int i)
{
603
	return i * TS_FPRWIDTH;
604 605 606 607 608 609 610
}

/* Give up external provider (FPU, Altivec, VSX) */
void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
{
	struct thread_struct *t = &current->thread;

611 612 613 614 615 616 617 618 619
	/*
	 * VSX instructions can access FP and vector registers, so if
	 * we are giving up VSX, make sure we give up FP and VMX as well.
	 */
	if (msr & MSR_VSX)
		msr |= MSR_FP | MSR_VEC;

	msr &= vcpu->arch.guest_owned_ext;
	if (!msr)
620 621 622 623 624 625
		return;

#ifdef DEBUG_EXT
	printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
#endif

626 627 628 629
	if (msr & MSR_FP) {
		/*
		 * Note that on CPUs with VSX, giveup_fpu stores
		 * both the traditional FP registers and the added VSX
630
		 * registers into thread.fp_state.fpr[].
631
		 */
632
		if (t->regs->msr & MSR_FP)
633
			giveup_fpu(current);
634
		t->fp_save_area = NULL;
635 636
	}

637
#ifdef CONFIG_ALTIVEC
638
	if (msr & MSR_VEC) {
639 640
		if (current->thread.regs->msr & MSR_VEC)
			giveup_altivec(current);
641
		t->vr_save_area = NULL;
642
	}
643
#endif
644

645
	vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX);
646 647 648
	kvmppc_recalc_shadow_msr(vcpu);
}

649 650 651 652 653 654 655 656
/* Give up facility (TAR / EBB / DSCR) */
static void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac)
{
#ifdef CONFIG_PPC_BOOK3S_64
	if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) {
		/* Facility not available to the guest, ignore giveup request*/
		return;
	}
657 658 659 660 661 662 663 664

	switch (fac) {
	case FSCR_TAR_LG:
		vcpu->arch.tar = mfspr(SPRN_TAR);
		mtspr(SPRN_TAR, current->thread.tar);
		vcpu->arch.shadow_fscr &= ~FSCR_TAR;
		break;
	}
665 666 667
#endif
}

668 669 670 671 672 673 674 675
static int kvmppc_read_inst(struct kvm_vcpu *vcpu)
{
	ulong srr0 = kvmppc_get_pc(vcpu);
	u32 last_inst = kvmppc_get_last_inst(vcpu);
	int ret;

	ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false);
	if (ret == -ENOENT) {
676
		ulong msr = kvmppc_get_msr(vcpu);
677 678 679

		msr = kvmppc_set_field(msr, 33, 33, 1);
		msr = kvmppc_set_field(msr, 34, 36, 0);
680 681
		msr = kvmppc_set_field(msr, 42, 47, 0);
		kvmppc_set_msr_fast(vcpu, msr);
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
		kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_INST_STORAGE);
		return EMULATE_AGAIN;
	}

	return EMULATE_DONE;
}

static int kvmppc_check_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr)
{

	/* Need to do paired single emulation? */
	if (!(vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE))
		return EMULATE_DONE;

	/* Read out the instruction */
	if (kvmppc_read_inst(vcpu) == EMULATE_DONE)
		/* Need to emulate */
		return EMULATE_FAIL;

	return EMULATE_AGAIN;
}

/* Handle external providers (FPU, Altivec, VSX) */
static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
			     ulong msr)
{
	struct thread_struct *t = &current->thread;

	/* When we have paired singles, we emulate in software */
	if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
		return RESUME_GUEST;

714
	if (!(kvmppc_get_msr(vcpu) & msr)) {
715 716 717 718
		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
		return RESUME_GUEST;
	}

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
	if (msr == MSR_VSX) {
		/* No VSX?  Give an illegal instruction interrupt */
#ifdef CONFIG_VSX
		if (!cpu_has_feature(CPU_FTR_VSX))
#endif
		{
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			return RESUME_GUEST;
		}

		/*
		 * We have to load up all the FP and VMX registers before
		 * we can let the guest use VSX instructions.
		 */
		msr = MSR_FP | MSR_VEC | MSR_VSX;
734 735
	}

736 737 738 739 740
	/* See if we already own all the ext(s) needed */
	msr &= ~vcpu->arch.guest_owned_ext;
	if (!msr)
		return RESUME_GUEST;

741 742 743 744
#ifdef DEBUG_EXT
	printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
#endif

745
	if (msr & MSR_FP) {
746
		preempt_disable();
747
		enable_kernel_fp();
748 749
		load_fp_state(&vcpu->arch.fp);
		t->fp_save_area = &vcpu->arch.fp;
750
		preempt_enable();
751 752 753
	}

	if (msr & MSR_VEC) {
754
#ifdef CONFIG_ALTIVEC
755
		preempt_disable();
756
		enable_kernel_altivec();
757 758
		load_vr_state(&vcpu->arch.vr);
		t->vr_save_area = &vcpu->arch.vr;
759
		preempt_enable();
760 761 762
#endif
	}

763
	t->regs->msr |= msr;
764 765 766 767 768 769
	vcpu->arch.guest_owned_ext |= msr;
	kvmppc_recalc_shadow_msr(vcpu);

	return RESUME_GUEST;
}

770 771 772 773 774 775 776 777 778 779 780 781
/*
 * Kernel code using FP or VMX could have flushed guest state to
 * the thread_struct; if so, get it back now.
 */
static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu)
{
	unsigned long lost_ext;

	lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr;
	if (!lost_ext)
		return;

782
	if (lost_ext & MSR_FP) {
783
		preempt_disable();
784
		enable_kernel_fp();
785
		load_fp_state(&vcpu->arch.fp);
786
		preempt_enable();
787
	}
788
#ifdef CONFIG_ALTIVEC
789
	if (lost_ext & MSR_VEC) {
790
		preempt_disable();
791
		enable_kernel_altivec();
792
		load_vr_state(&vcpu->arch.vr);
793
		preempt_enable();
794
	}
795
#endif
796 797 798
	current->thread.regs->msr |= lost_ext;
}

799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
#ifdef CONFIG_PPC_BOOK3S_64

static void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac)
{
	/* Inject the Interrupt Cause field and trigger a guest interrupt */
	vcpu->arch.fscr &= ~(0xffULL << 56);
	vcpu->arch.fscr |= (fac << 56);
	kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL);
}

static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac)
{
	enum emulation_result er = EMULATE_FAIL;

	if (!(kvmppc_get_msr(vcpu) & MSR_PR))
		er = kvmppc_emulate_instruction(vcpu->run, vcpu);

	if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) {
		/* Couldn't emulate, trigger interrupt in guest */
		kvmppc_trigger_fac_interrupt(vcpu, fac);
	}
}

/* Enable facilities (TAR, EBB, DSCR) for the guest */
static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac)
{
825
	bool guest_fac_enabled;
826 827
	BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S));

828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
	/*
	 * Not every facility is enabled by FSCR bits, check whether the
	 * guest has this facility enabled at all.
	 */
	switch (fac) {
	case FSCR_TAR_LG:
	case FSCR_EBB_LG:
		guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac));
		break;
	case FSCR_TM_LG:
		guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM;
		break;
	default:
		guest_fac_enabled = false;
		break;
	}

	if (!guest_fac_enabled) {
846 847 848 849 850 851
		/* Facility not enabled by the guest */
		kvmppc_trigger_fac_interrupt(vcpu, fac);
		return RESUME_GUEST;
	}

	switch (fac) {
852 853 854 855 856 857
	case FSCR_TAR_LG:
		/* TAR switching isn't lazy in Linux yet */
		current->thread.tar = mfspr(SPRN_TAR);
		mtspr(SPRN_TAR, vcpu->arch.tar);
		vcpu->arch.shadow_fscr |= FSCR_TAR;
		break;
858 859 860 861 862 863 864 865 866
	default:
		kvmppc_emulate_fac(vcpu, fac);
		break;
	}

	return RESUME_GUEST;
}
#endif

867 868
int kvmppc_handle_exit_pr(struct kvm_run *run, struct kvm_vcpu *vcpu,
			  unsigned int exit_nr)
869 870
{
	int r = RESUME_HOST;
871
	int s;
872 873 874 875 876 877

	vcpu->stat.sum_exits++;

	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;

878
	/* We get here with MSR.EE=1 */
879

880
	trace_kvm_exit(exit_nr, vcpu);
881
	kvm_guest_exit();
882

883 884
	switch (exit_nr) {
	case BOOK3S_INTERRUPT_INST_STORAGE:
885
	{
886
		ulong shadow_srr1 = vcpu->arch.shadow_srr1;
887 888 889 890 891
		vcpu->stat.pf_instruc++;

#ifdef CONFIG_PPC_BOOK3S_32
		/* We set segments as unused segments when invalidating them. So
		 * treat the respective fault as segment fault. */
892 893 894 895 896 897
		{
			struct kvmppc_book3s_shadow_vcpu *svcpu;
			u32 sr;

			svcpu = svcpu_get(vcpu);
			sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT];
898
			svcpu_put(svcpu);
899 900 901 902 903
			if (sr == SR_INVALID) {
				kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
				r = RESUME_GUEST;
				break;
			}
904 905 906 907
		}
#endif

		/* only care about PTEG not found errors, but leave NX alone */
908
		if (shadow_srr1 & 0x40000000) {
909
			int idx = srcu_read_lock(&vcpu->kvm->srcu);
910
			r = kvmppc_handle_pagefault(run, vcpu, kvmppc_get_pc(vcpu), exit_nr);
911
			srcu_read_unlock(&vcpu->kvm->srcu, idx);
912 913 914 915 916 917 918 919 920 921 922
			vcpu->stat.sp_instruc++;
		} else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
			  (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
			/*
			 * XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
			 *     so we can't use the NX bit inside the guest. Let's cross our fingers,
			 *     that no guest that needs the dcbz hack does NX.
			 */
			kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
			r = RESUME_GUEST;
		} else {
923 924 925
			u64 msr = kvmppc_get_msr(vcpu);
			msr |= shadow_srr1 & 0x58000000;
			kvmppc_set_msr_fast(vcpu, msr);
926 927 928 929
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
			r = RESUME_GUEST;
		}
		break;
930
	}
931 932 933
	case BOOK3S_INTERRUPT_DATA_STORAGE:
	{
		ulong dar = kvmppc_get_fault_dar(vcpu);
934
		u32 fault_dsisr = vcpu->arch.fault_dsisr;
935 936 937 938 939
		vcpu->stat.pf_storage++;

#ifdef CONFIG_PPC_BOOK3S_32
		/* We set segments as unused segments when invalidating them. So
		 * treat the respective fault as segment fault. */
940 941 942 943 944 945
		{
			struct kvmppc_book3s_shadow_vcpu *svcpu;
			u32 sr;

			svcpu = svcpu_get(vcpu);
			sr = svcpu->sr[dar >> SID_SHIFT];
946
			svcpu_put(svcpu);
947 948 949 950 951
			if (sr == SR_INVALID) {
				kvmppc_mmu_map_segment(vcpu, dar);
				r = RESUME_GUEST;
				break;
			}
952 953 954
		}
#endif

955 956 957 958 959 960 961
		/*
		 * We need to handle missing shadow PTEs, and
		 * protection faults due to us mapping a page read-only
		 * when the guest thinks it is writable.
		 */
		if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) {
			int idx = srcu_read_lock(&vcpu->kvm->srcu);
962
			r = kvmppc_handle_pagefault(run, vcpu, dar, exit_nr);
963
			srcu_read_unlock(&vcpu->kvm->srcu, idx);
964
		} else {
965 966
			kvmppc_set_dar(vcpu, dar);
			kvmppc_set_dsisr(vcpu, fault_dsisr);
967 968 969 970 971 972 973
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
			r = RESUME_GUEST;
		}
		break;
	}
	case BOOK3S_INTERRUPT_DATA_SEGMENT:
		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
974
			kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
975 976 977 978 979 980 981 982 983 984 985 986 987 988
			kvmppc_book3s_queue_irqprio(vcpu,
				BOOK3S_INTERRUPT_DATA_SEGMENT);
		}
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_INST_SEGMENT:
		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
			kvmppc_book3s_queue_irqprio(vcpu,
				BOOK3S_INTERRUPT_INST_SEGMENT);
		}
		r = RESUME_GUEST;
		break;
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_DECREMENTER:
989
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
990
	case BOOK3S_INTERRUPT_DOORBELL:
991
	case BOOK3S_INTERRUPT_H_DOORBELL:
992 993 994 995
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
996 997
	case BOOK3S_INTERRUPT_EXTERNAL_LEVEL:
	case BOOK3S_INTERRUPT_EXTERNAL_HV:
998 999 1000 1001 1002 1003 1004
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PERFMON:
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PROGRAM:
1005
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1006 1007 1008 1009 1010
	{
		enum emulation_result er;
		ulong flags;

program_interrupt:
1011
		flags = vcpu->arch.shadow_srr1 & 0x1f0000ull;
1012

1013
		if (kvmppc_get_msr(vcpu) & MSR_PR) {
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
#ifdef EXIT_DEBUG
			printk(KERN_INFO "Userspace triggered 0x700 exception at 0x%lx (0x%x)\n", kvmppc_get_pc(vcpu), kvmppc_get_last_inst(vcpu));
#endif
			if ((kvmppc_get_last_inst(vcpu) & 0xff0007ff) !=
			    (INS_DCBZ & 0xfffffff7)) {
				kvmppc_core_queue_program(vcpu, flags);
				r = RESUME_GUEST;
				break;
			}
		}

		vcpu->stat.emulated_inst_exits++;
		er = kvmppc_emulate_instruction(run, vcpu);
		switch (er) {
		case EMULATE_DONE:
			r = RESUME_GUEST_NV;
			break;
		case EMULATE_AGAIN:
			r = RESUME_GUEST;
			break;
		case EMULATE_FAIL:
			printk(KERN_CRIT "%s: emulation at %lx failed (%08x)\n",
			       __func__, kvmppc_get_pc(vcpu), kvmppc_get_last_inst(vcpu));
			kvmppc_core_queue_program(vcpu, flags);
			r = RESUME_GUEST;
			break;
		case EMULATE_DO_MMIO:
			run->exit_reason = KVM_EXIT_MMIO;
			r = RESUME_HOST_NV;
			break;
1044
		case EMULATE_EXIT_USER:
1045 1046
			r = RESUME_HOST_NV;
			break;
1047 1048 1049 1050 1051 1052
		default:
			BUG();
		}
		break;
	}
	case BOOK3S_INTERRUPT_SYSCALL:
1053
		if (vcpu->arch.papr_enabled &&
1054
		    (kvmppc_get_last_sc(vcpu) == 0x44000022) &&
1055
		    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
1056 1057 1058 1059
			/* SC 1 papr hypercalls */
			ulong cmd = kvmppc_get_gpr(vcpu, 3);
			int i;

1060
#ifdef CONFIG_PPC_BOOK3S_64
1061 1062 1063 1064
			if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
				r = RESUME_GUEST;
				break;
			}
1065
#endif
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075

			run->papr_hcall.nr = cmd;
			for (i = 0; i < 9; ++i) {
				ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
				run->papr_hcall.args[i] = gpr;
			}
			run->exit_reason = KVM_EXIT_PAPR_HCALL;
			vcpu->arch.hcall_needed = 1;
			r = RESUME_HOST;
		} else if (vcpu->arch.osi_enabled &&
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
		    (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
		    (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
			/* MOL hypercalls */
			u64 *gprs = run->osi.gprs;
			int i;

			run->exit_reason = KVM_EXIT_OSI;
			for (i = 0; i < 32; i++)
				gprs[i] = kvmppc_get_gpr(vcpu, i);
			vcpu->arch.osi_needed = 1;
			r = RESUME_HOST_NV;
1087
		} else if (!(kvmppc_get_msr(vcpu) & MSR_PR) &&
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
		    (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
			/* KVM PV hypercalls */
			kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
			r = RESUME_GUEST;
		} else {
			/* Guest syscalls */
			vcpu->stat.syscall_exits++;
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
			r = RESUME_GUEST;
		}
		break;
	case BOOK3S_INTERRUPT_FP_UNAVAIL:
	case BOOK3S_INTERRUPT_ALTIVEC:
	case BOOK3S_INTERRUPT_VSX:
	{
		int ext_msr = 0;

		switch (exit_nr) {
		case BOOK3S_INTERRUPT_FP_UNAVAIL: ext_msr = MSR_FP;  break;
		case BOOK3S_INTERRUPT_ALTIVEC:    ext_msr = MSR_VEC; break;
		case BOOK3S_INTERRUPT_VSX:        ext_msr = MSR_VSX; break;
		}

		switch (kvmppc_check_ext(vcpu, exit_nr)) {
		case EMULATE_DONE:
			/* everything ok - let's enable the ext */
			r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
			break;
		case EMULATE_FAIL:
			/* we need to emulate this instruction */
			goto program_interrupt;
			break;
		default:
			/* nothing to worry about - go again */
			break;
		}
		break;
	}
	case BOOK3S_INTERRUPT_ALIGNMENT:
		if (kvmppc_read_inst(vcpu) == EMULATE_DONE) {
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
			u32 last_inst = kvmppc_get_last_inst(vcpu);
			u32 dsisr;
			u64 dar;

			dsisr = kvmppc_alignment_dsisr(vcpu, last_inst);
			dar = kvmppc_alignment_dar(vcpu, last_inst);

			kvmppc_set_dsisr(vcpu, dsisr);
			kvmppc_set_dar(vcpu, dar);

1138 1139 1140 1141
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
		}
		r = RESUME_GUEST;
		break;
1142 1143 1144 1145 1146 1147
#ifdef CONFIG_PPC_BOOK3S_64
	case BOOK3S_INTERRUPT_FAC_UNAVAIL:
		kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56);
		r = RESUME_GUEST;
		break;
#endif
1148 1149 1150 1151 1152 1153
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
	case BOOK3S_INTERRUPT_TRACE:
		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
		r = RESUME_GUEST;
		break;
	default:
1154
	{
1155
		ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1156 1157
		/* Ugh - bork here! What did we get? */
		printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
1158
			exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
1159 1160 1161 1162
		r = RESUME_HOST;
		BUG();
		break;
	}
1163
	}
1164 1165 1166 1167 1168

	if (!(r & RESUME_HOST)) {
		/* To avoid clobbering exit_reason, only check for signals if
		 * we aren't already exiting to userspace for some other
		 * reason. */
1169 1170 1171 1172 1173 1174 1175

		/*
		 * Interrupts could be timers for the guest which we have to
		 * inject again, so let's postpone them until we're in the guest
		 * and if we really did time things so badly, then we just exit
		 * again due to a host external interrupt.
		 */
1176
		s = kvmppc_prepare_to_enter(vcpu);
S
Scott Wood 已提交
1177
		if (s <= 0)
1178
			r = s;
S
Scott Wood 已提交
1179 1180
		else {
			/* interrupts now hard-disabled */
1181
			kvmppc_fix_ee_before_entry();
1182
		}
S
Scott Wood 已提交
1183

1184
		kvmppc_handle_lost_ext(vcpu);
1185 1186 1187 1188 1189 1190 1191
	}

	trace_kvm_book3s_reenter(r, vcpu);

	return r;
}

1192 1193
static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
{
	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
	int i;

	sregs->pvr = vcpu->arch.pvr;

	sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
		for (i = 0; i < 64; i++) {
			sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
			sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
		}
	} else {
		for (i = 0; i < 16; i++)
1208
			sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i);
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218

		for (i = 0; i < 8; i++) {
			sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
			sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
		}
	}

	return 0;
}

1219 1220
static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1221 1222 1223 1224
{
	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
	int i;

1225
	kvmppc_set_pvr_pr(vcpu, sregs->pvr);
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254

	vcpu3s->sdr1 = sregs->u.s.sdr1;
	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
		for (i = 0; i < 64; i++) {
			vcpu->arch.mmu.slbmte(vcpu, sregs->u.s.ppc64.slb[i].slbv,
						    sregs->u.s.ppc64.slb[i].slbe);
		}
	} else {
		for (i = 0; i < 16; i++) {
			vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
		}
		for (i = 0; i < 8; i++) {
			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
				       (u32)sregs->u.s.ppc32.ibat[i]);
			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
				       (u32)(sregs->u.s.ppc32.ibat[i] >> 32));
			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
				       (u32)sregs->u.s.ppc32.dbat[i]);
			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
				       (u32)(sregs->u.s.ppc32.dbat[i] >> 32));
		}
	}

	/* Flush the MMU after messing with the segments */
	kvmppc_mmu_pte_flush(vcpu, 0, 0);

	return 0;
}

1255 1256
static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1257
{
1258
	int r = 0;
1259

1260
	switch (id) {
1261
	case KVM_REG_PPC_HIOR:
1262
		*val = get_reg_val(id, to_book3s(vcpu)->hior);
1263
		break;
1264 1265 1266 1267 1268 1269 1270 1271 1272
	case KVM_REG_PPC_LPCR:
		/*
		 * We are only interested in the LPCR_ILE bit
		 */
		if (vcpu->arch.intr_msr & MSR_LE)
			*val = get_reg_val(id, LPCR_ILE);
		else
			*val = get_reg_val(id, 0);
		break;
1273
	default:
1274
		r = -EINVAL;
1275 1276 1277 1278 1279 1280
		break;
	}

	return r;
}

1281 1282 1283 1284 1285 1286 1287 1288
static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr)
{
	if (new_lpcr & LPCR_ILE)
		vcpu->arch.intr_msr |= MSR_LE;
	else
		vcpu->arch.intr_msr &= ~MSR_LE;
}

1289 1290
static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1291
{
1292
	int r = 0;
1293

1294
	switch (id) {
1295
	case KVM_REG_PPC_HIOR:
1296 1297
		to_book3s(vcpu)->hior = set_reg_val(id, *val);
		to_book3s(vcpu)->hior_explicit = true;
1298
		break;
1299 1300 1301
	case KVM_REG_PPC_LPCR:
		kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val));
		break;
1302
	default:
1303
		r = -EINVAL;
1304 1305 1306 1307 1308 1309
		break;
	}

	return r;
}

1310 1311
static struct kvm_vcpu *kvmppc_core_vcpu_create_pr(struct kvm *kvm,
						   unsigned int id)
1312 1313 1314 1315 1316 1317
{
	struct kvmppc_vcpu_book3s *vcpu_book3s;
	struct kvm_vcpu *vcpu;
	int err = -ENOMEM;
	unsigned long p;

1318 1319
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu)
1320 1321 1322 1323 1324
		goto out;

	vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
	if (!vcpu_book3s)
		goto free_vcpu;
1325
	vcpu->arch.book3s = vcpu_book3s;
1326

1327
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1328 1329 1330 1331
	vcpu->arch.shadow_vcpu =
		kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL);
	if (!vcpu->arch.shadow_vcpu)
		goto free_vcpu3s;
1332
#endif
1333 1334 1335 1336 1337

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_shadow_vcpu;

1338
	err = -ENOMEM;
1339 1340 1341
	p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
	if (!p)
		goto uninit_vcpu;
1342 1343
	/* the real shared page fills the last 4k of our page */
	vcpu->arch.shared = (void *)(p + PAGE_SIZE - 4096);
1344
#ifdef CONFIG_PPC_BOOK3S_64
1345 1346 1347 1348 1349 1350 1351
	/* Always start the shared struct in native endian mode */
#ifdef __BIG_ENDIAN__
        vcpu->arch.shared_big_endian = true;
#else
        vcpu->arch.shared_big_endian = false;
#endif

1352 1353 1354 1355 1356
	/*
	 * Default to the same as the host if we're on sufficiently
	 * recent machine that we have 1TB segments;
	 * otherwise default to PPC970FX.
	 */
1357
	vcpu->arch.pvr = 0x3C0301;
1358 1359
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		vcpu->arch.pvr = mfspr(SPRN_PVR);
1360
	vcpu->arch.intr_msr = MSR_SF;
1361 1362 1363 1364
#else
	/* default to book3s_32 (750) */
	vcpu->arch.pvr = 0x84202;
#endif
1365
	kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr);
1366 1367
	vcpu->arch.slb_nr = 64;

1368
	vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE;
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378

	err = kvmppc_mmu_init(vcpu);
	if (err < 0)
		goto uninit_vcpu;

	return vcpu;

uninit_vcpu:
	kvm_vcpu_uninit(vcpu);
free_shadow_vcpu:
1379
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1380 1381
	kfree(vcpu->arch.shadow_vcpu);
free_vcpu3s:
1382
#endif
1383
	vfree(vcpu_book3s);
1384 1385
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1386 1387 1388 1389
out:
	return ERR_PTR(err);
}

1390
static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu)
1391 1392 1393 1394 1395
{
	struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);

	free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
	kvm_vcpu_uninit(vcpu);
1396
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1397 1398
	kfree(vcpu->arch.shadow_vcpu);
#endif
1399
	vfree(vcpu_book3s);
1400
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1401 1402
}

1403
static int kvmppc_vcpu_run_pr(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1404 1405 1406 1407 1408 1409
{
	int ret;
#ifdef CONFIG_ALTIVEC
	unsigned long uninitialized_var(vrsave);
#endif

1410 1411 1412
	/* Check if we can run the vcpu at all */
	if (!vcpu->arch.sane) {
		kvm_run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1413 1414
		ret = -EINVAL;
		goto out;
1415 1416
	}

1417 1418 1419 1420 1421 1422
	/*
	 * Interrupts could be timers for the guest which we have to inject
	 * again, so let's postpone them until we're in the guest and if we
	 * really did time things so badly, then we just exit again due to
	 * a host external interrupt.
	 */
1423
	ret = kvmppc_prepare_to_enter(vcpu);
S
Scott Wood 已提交
1424
	if (ret <= 0)
1425
		goto out;
S
Scott Wood 已提交
1426
	/* interrupts now hard-disabled */
1427

1428
	/* Save FPU state in thread_struct */
1429 1430 1431 1432
	if (current->thread.regs->msr & MSR_FP)
		giveup_fpu(current);

#ifdef CONFIG_ALTIVEC
1433 1434 1435
	/* Save Altivec state in thread_struct */
	if (current->thread.regs->msr & MSR_VEC)
		giveup_altivec(current);
1436 1437 1438
#endif

#ifdef CONFIG_VSX
1439 1440
	/* Save VSX state in thread_struct */
	if (current->thread.regs->msr & MSR_VSX)
1441
		__giveup_vsx(current);
1442 1443 1444
#endif

	/* Preload FPU if it's enabled */
1445
	if (kvmppc_get_msr(vcpu) & MSR_FP)
1446 1447
		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);

1448
	kvmppc_fix_ee_before_entry();
1449 1450 1451

	ret = __kvmppc_vcpu_run(kvm_run, vcpu);

1452 1453
	/* No need for kvm_guest_exit. It's done in handle_exit.
	   We also get here with interrupts enabled. */
1454 1455

	/* Make sure we save the guest FPU/Altivec/VSX state */
1456 1457
	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);

1458 1459 1460
	/* Make sure we save the guest TAR/EBB/DSCR state */
	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);

1461
out:
1462
	vcpu->mode = OUTSIDE_GUEST_MODE;
1463 1464 1465
	return ret;
}

1466 1467 1468
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
1469 1470
static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm,
					 struct kvm_dirty_log *log)
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
{
	struct kvm_memory_slot *memslot;
	struct kvm_vcpu *vcpu;
	ulong ga, ga_end;
	int is_dirty = 0;
	int r;
	unsigned long n;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* If nothing is dirty, don't bother messing with page tables. */
	if (is_dirty) {
		memslot = id_to_memslot(kvm->memslots, log->slot);

		ga = memslot->base_gfn << PAGE_SHIFT;
		ga_end = ga + (memslot->npages << PAGE_SHIFT);

		kvm_for_each_vcpu(n, vcpu, kvm)
			kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);

		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

1505 1506
static void kvmppc_core_flush_memslot_pr(struct kvm *kvm,
					 struct kvm_memory_slot *memslot)
1507
{
1508 1509
	return;
}
1510

1511 1512 1513 1514
static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm,
					struct kvm_memory_slot *memslot,
					struct kvm_userspace_memory_region *mem)
{
1515 1516 1517
	return 0;
}

1518 1519 1520
static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm,
				struct kvm_userspace_memory_region *mem,
				const struct kvm_memory_slot *old)
1521
{
1522
	return;
1523 1524
}

1525 1526
static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *free,
					struct kvm_memory_slot *dont)
1527
{
1528
	return;
1529 1530
}

1531 1532
static int kvmppc_core_create_memslot_pr(struct kvm_memory_slot *slot,
					 unsigned long npages)
1533 1534 1535 1536
{
	return 0;
}

1537

1538
#ifdef CONFIG_PPC64
1539 1540
static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
1541
{
1542 1543 1544 1545
	long int i;
	struct kvm_vcpu *vcpu;

	info->flags = 0;
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555

	/* SLB is always 64 entries */
	info->slb_size = 64;

	/* Standard 4k base page size segment */
	info->sps[0].page_shift = 12;
	info->sps[0].slb_enc = 0;
	info->sps[0].enc[0].page_shift = 12;
	info->sps[0].enc[0].pte_enc = 0;

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
	/*
	 * 64k large page size.
	 * We only want to put this in if the CPUs we're emulating
	 * support it, but unfortunately we don't have a vcpu easily
	 * to hand here to test.  Just pick the first vcpu, and if
	 * that doesn't exist yet, report the minimum capability,
	 * i.e., no 64k pages.
	 * 1T segment support goes along with 64k pages.
	 */
	i = 1;
	vcpu = kvm_get_vcpu(kvm, 0);
	if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) {
		info->flags = KVM_PPC_1T_SEGMENTS;
		info->sps[i].page_shift = 16;
		info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01;
		info->sps[i].enc[0].page_shift = 16;
		info->sps[i].enc[0].pte_enc = 1;
		++i;
	}

1576
	/* Standard 16M large page size segment */
1577 1578 1579 1580
	info->sps[i].page_shift = 24;
	info->sps[i].slb_enc = SLB_VSID_L;
	info->sps[i].enc[0].page_shift = 24;
	info->sps[i].enc[0].pte_enc = 0;
1581

1582 1583
	return 0;
}
1584 1585 1586
#else
static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
1587
{
1588 1589
	/* We should not get called */
	BUG();
1590
}
1591
#endif /* CONFIG_PPC64 */
1592

1593 1594 1595
static unsigned int kvm_global_user_count = 0;
static DEFINE_SPINLOCK(kvm_global_user_count_lock);

1596
static int kvmppc_core_init_vm_pr(struct kvm *kvm)
1597
{
1598
	mutex_init(&kvm->arch.hpt_mutex);
1599

1600 1601 1602 1603 1604
#ifdef CONFIG_PPC_BOOK3S_64
	/* Start out with the default set of hcalls enabled */
	kvmppc_pr_init_default_hcalls(kvm);
#endif

1605 1606 1607 1608 1609 1610
	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
		spin_lock(&kvm_global_user_count_lock);
		if (++kvm_global_user_count == 1)
			pSeries_disable_reloc_on_exc();
		spin_unlock(&kvm_global_user_count_lock);
	}
1611 1612 1613
	return 0;
}

1614
static void kvmppc_core_destroy_vm_pr(struct kvm *kvm)
1615
{
1616 1617 1618
#ifdef CONFIG_PPC64
	WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
#endif
1619 1620 1621 1622 1623 1624 1625 1626

	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
		spin_lock(&kvm_global_user_count_lock);
		BUG_ON(kvm_global_user_count == 0);
		if (--kvm_global_user_count == 0)
			pSeries_enable_reloc_on_exc();
		spin_unlock(&kvm_global_user_count_lock);
	}
1627 1628
}

1629
static int kvmppc_core_check_processor_compat_pr(void)
1630
{
1631 1632 1633
	/* we are always compatible */
	return 0;
}
1634

1635 1636 1637 1638 1639
static long kvm_arch_vm_ioctl_pr(struct file *filp,
				 unsigned int ioctl, unsigned long arg)
{
	return -ENOTTY;
}
1640

1641
static struct kvmppc_ops kvm_ops_pr = {
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr,
	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr,
	.get_one_reg = kvmppc_get_one_reg_pr,
	.set_one_reg = kvmppc_set_one_reg_pr,
	.vcpu_load   = kvmppc_core_vcpu_load_pr,
	.vcpu_put    = kvmppc_core_vcpu_put_pr,
	.set_msr     = kvmppc_set_msr_pr,
	.vcpu_run    = kvmppc_vcpu_run_pr,
	.vcpu_create = kvmppc_core_vcpu_create_pr,
	.vcpu_free   = kvmppc_core_vcpu_free_pr,
	.check_requests = kvmppc_core_check_requests_pr,
	.get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr,
	.flush_memslot = kvmppc_core_flush_memslot_pr,
	.prepare_memory_region = kvmppc_core_prepare_memory_region_pr,
	.commit_memory_region = kvmppc_core_commit_memory_region_pr,
	.unmap_hva = kvm_unmap_hva_pr,
	.unmap_hva_range = kvm_unmap_hva_range_pr,
	.age_hva  = kvm_age_hva_pr,
	.test_age_hva = kvm_test_age_hva_pr,
	.set_spte_hva = kvm_set_spte_hva_pr,
	.mmu_destroy  = kvmppc_mmu_destroy_pr,
	.free_memslot = kvmppc_core_free_memslot_pr,
	.create_memslot = kvmppc_core_create_memslot_pr,
	.init_vm = kvmppc_core_init_vm_pr,
	.destroy_vm = kvmppc_core_destroy_vm_pr,
	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr,
	.emulate_op = kvmppc_core_emulate_op_pr,
	.emulate_mtspr = kvmppc_core_emulate_mtspr_pr,
	.emulate_mfspr = kvmppc_core_emulate_mfspr_pr,
	.fast_vcpu_kick = kvm_vcpu_kick,
	.arch_vm_ioctl  = kvm_arch_vm_ioctl_pr,
1673 1674 1675
#ifdef CONFIG_PPC_BOOK3S_64
	.hcall_implemented = kvmppc_hcall_impl_pr,
#endif
1676 1677
};

1678 1679

int kvmppc_book3s_init_pr(void)
1680 1681 1682
{
	int r;

1683 1684
	r = kvmppc_core_check_processor_compat_pr();
	if (r < 0)
1685 1686
		return r;

1687 1688
	kvm_ops_pr.owner = THIS_MODULE;
	kvmppc_pr_ops = &kvm_ops_pr;
1689

1690
	r = kvmppc_mmu_hpte_sysinit();
1691 1692 1693
	return r;
}

1694
void kvmppc_book3s_exit_pr(void)
1695
{
1696
	kvmppc_pr_ops = NULL;
1697 1698 1699
	kvmppc_mmu_hpte_sysexit();
}

1700 1701 1702 1703 1704
/*
 * We only support separate modules for book3s 64
 */
#ifdef CONFIG_PPC_BOOK3S_64

1705 1706
module_init(kvmppc_book3s_init_pr);
module_exit(kvmppc_book3s_exit_pr);
1707 1708

MODULE_LICENSE("GPL");
1709 1710
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");
1711
#endif