book3s_pr.c 42.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *    Paul Mackerras <paulus@samba.org>
 *
 * Description:
 * Functions relating to running KVM on Book 3S processors where
 * we don't have access to hypervisor mode, and we run the guest
 * in problem state (user mode).
 *
 * This file is derived from arch/powerpc/kvm/44x.c,
 * by Hollis Blanchard <hollisb@us.ibm.com>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
23
#include <linux/export.h>
24 25 26 27 28 29 30 31 32 33 34 35
#include <linux/err.h>
#include <linux/slab.h>

#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
36
#include <asm/switch_to.h>
37
#include <asm/firmware.h>
38
#include <asm/hvcall.h>
39 40 41 42
#include <linux/gfp.h>
#include <linux/sched.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
43
#include <linux/module.h>
44
#include <linux/miscdevice.h>
45

46
#include "book3s.h"
47 48 49

#define CREATE_TRACE_POINTS
#include "trace_pr.h"
50 51 52 53 54 55

/* #define EXIT_DEBUG */
/* #define DEBUG_EXT */

static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
			     ulong msr);
56
static void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac);
57 58 59 60 61 62 63 64

/* Some compatibility defines */
#ifdef CONFIG_PPC_BOOK3S_32
#define MSR_USER32 MSR_USER
#define MSR_USER64 MSR_USER
#define HW_PAGE_SIZE PAGE_SIZE
#endif

65
static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu)
66 67
{
#ifdef CONFIG_PPC_BOOK3S_64
68 69 70
	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
	memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
	svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
71
	svcpu->in_use = 0;
72
	svcpu_put(svcpu);
73
#endif
74
	vcpu->cpu = smp_processor_id();
75
#ifdef CONFIG_PPC_BOOK3S_32
76
	current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu;
77 78 79
#endif
}

80
static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu)
81 82
{
#ifdef CONFIG_PPC_BOOK3S_64
83
	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
84 85 86
	if (svcpu->in_use) {
		kvmppc_copy_from_svcpu(vcpu, svcpu);
	}
87 88 89
	memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
	to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
	svcpu_put(svcpu);
90 91
#endif

92
	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
93
	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
94
	vcpu->cpu = -1;
95 96
}

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
/* Copy data needed by real-mode code from vcpu to shadow vcpu */
void kvmppc_copy_to_svcpu(struct kvmppc_book3s_shadow_vcpu *svcpu,
			  struct kvm_vcpu *vcpu)
{
	svcpu->gpr[0] = vcpu->arch.gpr[0];
	svcpu->gpr[1] = vcpu->arch.gpr[1];
	svcpu->gpr[2] = vcpu->arch.gpr[2];
	svcpu->gpr[3] = vcpu->arch.gpr[3];
	svcpu->gpr[4] = vcpu->arch.gpr[4];
	svcpu->gpr[5] = vcpu->arch.gpr[5];
	svcpu->gpr[6] = vcpu->arch.gpr[6];
	svcpu->gpr[7] = vcpu->arch.gpr[7];
	svcpu->gpr[8] = vcpu->arch.gpr[8];
	svcpu->gpr[9] = vcpu->arch.gpr[9];
	svcpu->gpr[10] = vcpu->arch.gpr[10];
	svcpu->gpr[11] = vcpu->arch.gpr[11];
	svcpu->gpr[12] = vcpu->arch.gpr[12];
	svcpu->gpr[13] = vcpu->arch.gpr[13];
	svcpu->cr  = vcpu->arch.cr;
	svcpu->xer = vcpu->arch.xer;
	svcpu->ctr = vcpu->arch.ctr;
	svcpu->lr  = vcpu->arch.lr;
	svcpu->pc  = vcpu->arch.pc;
120 121 122
#ifdef CONFIG_PPC_BOOK3S_64
	svcpu->shadow_fscr = vcpu->arch.shadow_fscr;
#endif
123
	svcpu->in_use = true;
124 125 126 127 128 129
}

/* Copy data touched by real-mode code from shadow vcpu back to vcpu */
void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu,
			    struct kvmppc_book3s_shadow_vcpu *svcpu)
{
130 131 132 133 134 135 136 137 138 139 140 141 142
	/*
	 * vcpu_put would just call us again because in_use hasn't
	 * been updated yet.
	 */
	preempt_disable();

	/*
	 * Maybe we were already preempted and synced the svcpu from
	 * our preempt notifiers. Don't bother touching this svcpu then.
	 */
	if (!svcpu->in_use)
		goto out;

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
	vcpu->arch.gpr[0] = svcpu->gpr[0];
	vcpu->arch.gpr[1] = svcpu->gpr[1];
	vcpu->arch.gpr[2] = svcpu->gpr[2];
	vcpu->arch.gpr[3] = svcpu->gpr[3];
	vcpu->arch.gpr[4] = svcpu->gpr[4];
	vcpu->arch.gpr[5] = svcpu->gpr[5];
	vcpu->arch.gpr[6] = svcpu->gpr[6];
	vcpu->arch.gpr[7] = svcpu->gpr[7];
	vcpu->arch.gpr[8] = svcpu->gpr[8];
	vcpu->arch.gpr[9] = svcpu->gpr[9];
	vcpu->arch.gpr[10] = svcpu->gpr[10];
	vcpu->arch.gpr[11] = svcpu->gpr[11];
	vcpu->arch.gpr[12] = svcpu->gpr[12];
	vcpu->arch.gpr[13] = svcpu->gpr[13];
	vcpu->arch.cr  = svcpu->cr;
	vcpu->arch.xer = svcpu->xer;
	vcpu->arch.ctr = svcpu->ctr;
	vcpu->arch.lr  = svcpu->lr;
	vcpu->arch.pc  = svcpu->pc;
	vcpu->arch.shadow_srr1 = svcpu->shadow_srr1;
	vcpu->arch.fault_dar   = svcpu->fault_dar;
	vcpu->arch.fault_dsisr = svcpu->fault_dsisr;
	vcpu->arch.last_inst   = svcpu->last_inst;
166 167 168
#ifdef CONFIG_PPC_BOOK3S_64
	vcpu->arch.shadow_fscr = svcpu->shadow_fscr;
#endif
169 170 171 172
	svcpu->in_use = false;

out:
	preempt_enable();
173 174
}

175
static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu)
176
{
177 178
	int r = 1; /* Indicate we want to get back into the guest */

179 180 181 182
	/* We misuse TLB_FLUSH to indicate that we want to clear
	   all shadow cache entries */
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
		kvmppc_mmu_pte_flush(vcpu, 0, 0);
183 184

	return r;
185 186
}

187
/************* MMU Notifiers *************/
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
static void do_kvm_unmap_hva(struct kvm *kvm, unsigned long start,
			     unsigned long end)
{
	long i;
	struct kvm_vcpu *vcpu;
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots) {
		unsigned long hva_start, hva_end;
		gfn_t gfn, gfn_end;

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;
		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
		 * {gfn, gfn+1, ..., gfn_end-1}.
		 */
		gfn = hva_to_gfn_memslot(hva_start, memslot);
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
		kvm_for_each_vcpu(i, vcpu, kvm)
			kvmppc_mmu_pte_pflush(vcpu, gfn << PAGE_SHIFT,
					      gfn_end << PAGE_SHIFT);
	}
}
217

218
static int kvm_unmap_hva_pr(struct kvm *kvm, unsigned long hva)
219 220 221
{
	trace_kvm_unmap_hva(hva);

222
	do_kvm_unmap_hva(kvm, hva, hva + PAGE_SIZE);
223 224 225 226

	return 0;
}

227 228
static int kvm_unmap_hva_range_pr(struct kvm *kvm, unsigned long start,
				  unsigned long end)
229
{
230
	do_kvm_unmap_hva(kvm, start, end);
231 232 233 234

	return 0;
}

235
static int kvm_age_hva_pr(struct kvm *kvm, unsigned long hva)
236 237 238 239 240
{
	/* XXX could be more clever ;) */
	return 0;
}

241
static int kvm_test_age_hva_pr(struct kvm *kvm, unsigned long hva)
242 243 244 245 246
{
	/* XXX could be more clever ;) */
	return 0;
}

247
static void kvm_set_spte_hva_pr(struct kvm *kvm, unsigned long hva, pte_t pte)
248 249
{
	/* The page will get remapped properly on its next fault */
250
	do_kvm_unmap_hva(kvm, hva, hva + PAGE_SIZE);
251 252 253 254
}

/*****************************************/

255 256
static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
{
257 258
	ulong guest_msr = kvmppc_get_msr(vcpu);
	ulong smsr = guest_msr;
259 260

	/* Guest MSR values */
261
	smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE;
262 263 264
	/* Process MSR values */
	smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
	/* External providers the guest reserved */
265
	smsr |= (guest_msr & vcpu->arch.guest_owned_ext);
266 267 268 269 270 271 272
	/* 64-bit Process MSR values */
#ifdef CONFIG_PPC_BOOK3S_64
	smsr |= MSR_ISF | MSR_HV;
#endif
	vcpu->arch.shadow_msr = smsr;
}

273
static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr)
274
{
275
	ulong old_msr = kvmppc_get_msr(vcpu);
276 277 278 279 280 281

#ifdef EXIT_DEBUG
	printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
#endif

	msr &= to_book3s(vcpu)->msr_mask;
282
	kvmppc_set_msr_fast(vcpu, msr);
283 284 285 286 287
	kvmppc_recalc_shadow_msr(vcpu);

	if (msr & MSR_POW) {
		if (!vcpu->arch.pending_exceptions) {
			kvm_vcpu_block(vcpu);
288
			clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
289 290 291 292
			vcpu->stat.halt_wakeup++;

			/* Unset POW bit after we woke up */
			msr &= ~MSR_POW;
293
			kvmppc_set_msr_fast(vcpu, msr);
294 295 296
		}
	}

297
	if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) !=
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
		   (old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
		kvmppc_mmu_flush_segments(vcpu);
		kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));

		/* Preload magic page segment when in kernel mode */
		if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
			struct kvm_vcpu_arch *a = &vcpu->arch;

			if (msr & MSR_DR)
				kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
			else
				kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
		}
	}

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
	/*
	 * When switching from 32 to 64-bit, we may have a stale 32-bit
	 * magic page around, we need to flush it. Typically 32-bit magic
	 * page will be instanciated when calling into RTAS. Note: We
	 * assume that such transition only happens while in kernel mode,
	 * ie, we never transition from user 32-bit to kernel 64-bit with
	 * a 32-bit magic page around.
	 */
	if (vcpu->arch.magic_page_pa &&
	    !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
		/* going from RTAS to normal kernel code */
		kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
				     ~0xFFFUL);
	}

328
	/* Preload FPU if it's enabled */
329
	if (kvmppc_get_msr(vcpu) & MSR_FP)
330 331 332
		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
}

333
void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr)
334 335 336 337 338 339 340 341
{
	u32 host_pvr;

	vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
	vcpu->arch.pvr = pvr;
#ifdef CONFIG_PPC_BOOK3S_64
	if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
		kvmppc_mmu_book3s_64_init(vcpu);
342 343
		if (!to_book3s(vcpu)->hior_explicit)
			to_book3s(vcpu)->hior = 0xfff00000;
344
		to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
345
		vcpu->arch.cpu_type = KVM_CPU_3S_64;
346 347 348 349
	} else
#endif
	{
		kvmppc_mmu_book3s_32_init(vcpu);
350 351
		if (!to_book3s(vcpu)->hior_explicit)
			to_book3s(vcpu)->hior = 0;
352
		to_book3s(vcpu)->msr_mask = 0xffffffffULL;
353
		vcpu->arch.cpu_type = KVM_CPU_3S_32;
354 355
	}

356 357
	kvmppc_sanity_check(vcpu);

358 359 360 361 362 363 364 365 366 367 368 369
	/* If we are in hypervisor level on 970, we can tell the CPU to
	 * treat DCBZ as 32 bytes store */
	vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
	if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
	    !strcmp(cur_cpu_spec->platform, "ppc970"))
		vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;

	/* Cell performs badly if MSR_FEx are set. So let's hope nobody
	   really needs them in a VM on Cell and force disable them. */
	if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
		to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
	/*
	 * If they're asking for POWER6 or later, set the flag
	 * indicating that we can do multiple large page sizes
	 * and 1TB segments.
	 * Also set the flag that indicates that tlbie has the large
	 * page bit in the RB operand instead of the instruction.
	 */
	switch (PVR_VER(pvr)) {
	case PVR_POWER6:
	case PVR_POWER7:
	case PVR_POWER7p:
	case PVR_POWER8:
		vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE |
			BOOK3S_HFLAG_NEW_TLBIE;
		break;
	}

387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
#ifdef CONFIG_PPC_BOOK3S_32
	/* 32 bit Book3S always has 32 byte dcbz */
	vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
#endif

	/* On some CPUs we can execute paired single operations natively */
	asm ( "mfpvr %0" : "=r"(host_pvr));
	switch (host_pvr) {
	case 0x00080200:	/* lonestar 2.0 */
	case 0x00088202:	/* lonestar 2.2 */
	case 0x70000100:	/* gekko 1.0 */
	case 0x00080100:	/* gekko 2.0 */
	case 0x00083203:	/* gekko 2.3a */
	case 0x00083213:	/* gekko 2.3b */
	case 0x00083204:	/* gekko 2.4 */
	case 0x00083214:	/* gekko 2.4e (8SE) - retail HW2 */
	case 0x00087200:	/* broadway */
		vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
		/* Enable HID2.PSE - in case we need it later */
		mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
	}
}

/* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
 * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
 * emulate 32 bytes dcbz length.
 *
 * The Book3s_64 inventors also realized this case and implemented a special bit
 * in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
 *
 * My approach here is to patch the dcbz instruction on executing pages.
 */
static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
{
	struct page *hpage;
	u64 hpage_offset;
	u32 *page;
	int i;

	hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
427
	if (is_error_page(hpage))
428 429 430 431 432 433 434
		return;

	hpage_offset = pte->raddr & ~PAGE_MASK;
	hpage_offset &= ~0xFFFULL;
	hpage_offset /= 4;

	get_page(hpage);
435
	page = kmap_atomic(hpage);
436 437 438

	/* patch dcbz into reserved instruction, so we trap */
	for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
439 440
		if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ)
			page[i] &= cpu_to_be32(0xfffffff7);
441

442
	kunmap_atomic(page);
443 444 445 446 447 448 449
	put_page(hpage);
}

static int kvmppc_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
{
	ulong mp_pa = vcpu->arch.magic_page_pa;

450
	if (!(kvmppc_get_msr(vcpu) & MSR_SF))
451 452
		mp_pa = (uint32_t)mp_pa;

453 454 455 456 457 458 459 460 461 462 463 464
	if (unlikely(mp_pa) &&
	    unlikely((mp_pa & KVM_PAM) >> PAGE_SHIFT == gfn)) {
		return 1;
	}

	return kvm_is_visible_gfn(vcpu->kvm, gfn);
}

int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu,
			    ulong eaddr, int vec)
{
	bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
465
	bool iswrite = false;
466 467 468 469 470
	int r = RESUME_GUEST;
	int relocated;
	int page_found = 0;
	struct kvmppc_pte pte;
	bool is_mmio = false;
471 472
	bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false;
	bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false;
473 474 475
	u64 vsid;

	relocated = data ? dr : ir;
476 477
	if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE))
		iswrite = true;
478 479 480

	/* Resolve real address if translation turned on */
	if (relocated) {
481
		page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite);
482 483 484 485 486 487 488
	} else {
		pte.may_execute = true;
		pte.may_read = true;
		pte.may_write = true;
		pte.raddr = eaddr & KVM_PAM;
		pte.eaddr = eaddr;
		pte.vpage = eaddr >> 12;
489
		pte.page_size = MMU_PAGE_64K;
490 491
	}

492
	switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) {
493 494 495 496 497 498 499
	case 0:
		pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
		break;
	case MSR_DR:
	case MSR_IR:
		vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);

500
		if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR)
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
			pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
		else
			pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
		pte.vpage |= vsid;

		if (vsid == -1)
			page_found = -EINVAL;
		break;
	}

	if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
	   (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
		/*
		 * If we do the dcbz hack, we have to NX on every execution,
		 * so we can patch the executing code. This renders our guest
		 * NX-less.
		 */
		pte.may_execute = !data;
	}

	if (page_found == -ENOENT) {
		/* Page not found in guest PTE entries */
523 524 525 526 527
		u64 ssrr1 = vcpu->arch.shadow_srr1;
		u64 msr = kvmppc_get_msr(vcpu);
		kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
		kvmppc_set_dsisr(vcpu, vcpu->arch.fault_dsisr);
		kvmppc_set_msr_fast(vcpu, msr | (ssrr1 & 0xf8000000ULL));
528 529 530
		kvmppc_book3s_queue_irqprio(vcpu, vec);
	} else if (page_found == -EPERM) {
		/* Storage protection */
531 532 533 534 535 536 537
		u32 dsisr = vcpu->arch.fault_dsisr;
		u64 ssrr1 = vcpu->arch.shadow_srr1;
		u64 msr = kvmppc_get_msr(vcpu);
		kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
		dsisr = (dsisr & ~DSISR_NOHPTE) | DSISR_PROTFAULT;
		kvmppc_set_dsisr(vcpu, dsisr);
		kvmppc_set_msr_fast(vcpu, msr | (ssrr1 & 0xf8000000ULL));
538 539 540
		kvmppc_book3s_queue_irqprio(vcpu, vec);
	} else if (page_found == -EINVAL) {
		/* Page not found in guest SLB */
541
		kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
542 543 544
		kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
	} else if (!is_mmio &&
		   kvmppc_visible_gfn(vcpu, pte.raddr >> PAGE_SHIFT)) {
545 546 547 548 549 550 551 552
		if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) {
			/*
			 * There is already a host HPTE there, presumably
			 * a read-only one for a page the guest thinks
			 * is writable, so get rid of it first.
			 */
			kvmppc_mmu_unmap_page(vcpu, &pte);
		}
553
		/* The guest's PTE is not mapped yet. Map on the host */
554
		kvmppc_mmu_map_page(vcpu, &pte, iswrite);
555 556 557
		if (data)
			vcpu->stat.sp_storage++;
		else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
558
			 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
559 560 561 562 563
			kvmppc_patch_dcbz(vcpu, &pte);
	} else {
		/* MMIO */
		vcpu->stat.mmio_exits++;
		vcpu->arch.paddr_accessed = pte.raddr;
564
		vcpu->arch.vaddr_accessed = pte.eaddr;
565 566 567 568 569 570 571 572 573 574
		r = kvmppc_emulate_mmio(run, vcpu);
		if ( r == RESUME_HOST_NV )
			r = RESUME_HOST;
	}

	return r;
}

static inline int get_fpr_index(int i)
{
575
	return i * TS_FPRWIDTH;
576 577 578 579 580 581 582
}

/* Give up external provider (FPU, Altivec, VSX) */
void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
{
	struct thread_struct *t = &current->thread;

583 584 585 586 587 588 589 590 591
	/*
	 * VSX instructions can access FP and vector registers, so if
	 * we are giving up VSX, make sure we give up FP and VMX as well.
	 */
	if (msr & MSR_VSX)
		msr |= MSR_FP | MSR_VEC;

	msr &= vcpu->arch.guest_owned_ext;
	if (!msr)
592 593 594 595 596 597
		return;

#ifdef DEBUG_EXT
	printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
#endif

598 599 600 601
	if (msr & MSR_FP) {
		/*
		 * Note that on CPUs with VSX, giveup_fpu stores
		 * both the traditional FP registers and the added VSX
602
		 * registers into thread.fp_state.fpr[].
603
		 */
604
		if (t->regs->msr & MSR_FP)
605
			giveup_fpu(current);
606
		t->fp_save_area = NULL;
607 608
	}

609
#ifdef CONFIG_ALTIVEC
610
	if (msr & MSR_VEC) {
611 612
		if (current->thread.regs->msr & MSR_VEC)
			giveup_altivec(current);
613
		t->vr_save_area = NULL;
614
	}
615
#endif
616

617
	vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX);
618 619 620
	kvmppc_recalc_shadow_msr(vcpu);
}

621 622 623 624 625 626 627 628
/* Give up facility (TAR / EBB / DSCR) */
static void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac)
{
#ifdef CONFIG_PPC_BOOK3S_64
	if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) {
		/* Facility not available to the guest, ignore giveup request*/
		return;
	}
629 630 631 632 633 634 635 636

	switch (fac) {
	case FSCR_TAR_LG:
		vcpu->arch.tar = mfspr(SPRN_TAR);
		mtspr(SPRN_TAR, current->thread.tar);
		vcpu->arch.shadow_fscr &= ~FSCR_TAR;
		break;
	}
637 638 639
#endif
}

640 641 642 643 644 645 646 647
static int kvmppc_read_inst(struct kvm_vcpu *vcpu)
{
	ulong srr0 = kvmppc_get_pc(vcpu);
	u32 last_inst = kvmppc_get_last_inst(vcpu);
	int ret;

	ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false);
	if (ret == -ENOENT) {
648
		ulong msr = kvmppc_get_msr(vcpu);
649 650 651

		msr = kvmppc_set_field(msr, 33, 33, 1);
		msr = kvmppc_set_field(msr, 34, 36, 0);
652 653
		msr = kvmppc_set_field(msr, 42, 47, 0);
		kvmppc_set_msr_fast(vcpu, msr);
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
		kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_INST_STORAGE);
		return EMULATE_AGAIN;
	}

	return EMULATE_DONE;
}

static int kvmppc_check_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr)
{

	/* Need to do paired single emulation? */
	if (!(vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE))
		return EMULATE_DONE;

	/* Read out the instruction */
	if (kvmppc_read_inst(vcpu) == EMULATE_DONE)
		/* Need to emulate */
		return EMULATE_FAIL;

	return EMULATE_AGAIN;
}

/* Handle external providers (FPU, Altivec, VSX) */
static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
			     ulong msr)
{
	struct thread_struct *t = &current->thread;

	/* When we have paired singles, we emulate in software */
	if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
		return RESUME_GUEST;

686
	if (!(kvmppc_get_msr(vcpu) & msr)) {
687 688 689 690
		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
		return RESUME_GUEST;
	}

691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
	if (msr == MSR_VSX) {
		/* No VSX?  Give an illegal instruction interrupt */
#ifdef CONFIG_VSX
		if (!cpu_has_feature(CPU_FTR_VSX))
#endif
		{
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			return RESUME_GUEST;
		}

		/*
		 * We have to load up all the FP and VMX registers before
		 * we can let the guest use VSX instructions.
		 */
		msr = MSR_FP | MSR_VEC | MSR_VSX;
706 707
	}

708 709 710 711 712
	/* See if we already own all the ext(s) needed */
	msr &= ~vcpu->arch.guest_owned_ext;
	if (!msr)
		return RESUME_GUEST;

713 714 715 716
#ifdef DEBUG_EXT
	printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
#endif

717
	if (msr & MSR_FP) {
718
		preempt_disable();
719
		enable_kernel_fp();
720 721
		load_fp_state(&vcpu->arch.fp);
		t->fp_save_area = &vcpu->arch.fp;
722
		preempt_enable();
723 724 725
	}

	if (msr & MSR_VEC) {
726
#ifdef CONFIG_ALTIVEC
727
		preempt_disable();
728
		enable_kernel_altivec();
729 730
		load_vr_state(&vcpu->arch.vr);
		t->vr_save_area = &vcpu->arch.vr;
731
		preempt_enable();
732 733 734
#endif
	}

735
	t->regs->msr |= msr;
736 737 738 739 740 741
	vcpu->arch.guest_owned_ext |= msr;
	kvmppc_recalc_shadow_msr(vcpu);

	return RESUME_GUEST;
}

742 743 744 745 746 747 748 749 750 751 752 753
/*
 * Kernel code using FP or VMX could have flushed guest state to
 * the thread_struct; if so, get it back now.
 */
static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu)
{
	unsigned long lost_ext;

	lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr;
	if (!lost_ext)
		return;

754
	if (lost_ext & MSR_FP) {
755
		preempt_disable();
756
		enable_kernel_fp();
757
		load_fp_state(&vcpu->arch.fp);
758
		preempt_enable();
759
	}
760
#ifdef CONFIG_ALTIVEC
761
	if (lost_ext & MSR_VEC) {
762
		preempt_disable();
763
		enable_kernel_altivec();
764
		load_vr_state(&vcpu->arch.vr);
765
		preempt_enable();
766
	}
767
#endif
768 769 770
	current->thread.regs->msr |= lost_ext;
}

771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
#ifdef CONFIG_PPC_BOOK3S_64

static void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac)
{
	/* Inject the Interrupt Cause field and trigger a guest interrupt */
	vcpu->arch.fscr &= ~(0xffULL << 56);
	vcpu->arch.fscr |= (fac << 56);
	kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL);
}

static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac)
{
	enum emulation_result er = EMULATE_FAIL;

	if (!(kvmppc_get_msr(vcpu) & MSR_PR))
		er = kvmppc_emulate_instruction(vcpu->run, vcpu);

	if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) {
		/* Couldn't emulate, trigger interrupt in guest */
		kvmppc_trigger_fac_interrupt(vcpu, fac);
	}
}

/* Enable facilities (TAR, EBB, DSCR) for the guest */
static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac)
{
797
	bool guest_fac_enabled;
798 799
	BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S));

800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
	/*
	 * Not every facility is enabled by FSCR bits, check whether the
	 * guest has this facility enabled at all.
	 */
	switch (fac) {
	case FSCR_TAR_LG:
	case FSCR_EBB_LG:
		guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac));
		break;
	case FSCR_TM_LG:
		guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM;
		break;
	default:
		guest_fac_enabled = false;
		break;
	}

	if (!guest_fac_enabled) {
818 819 820 821 822 823
		/* Facility not enabled by the guest */
		kvmppc_trigger_fac_interrupt(vcpu, fac);
		return RESUME_GUEST;
	}

	switch (fac) {
824 825 826 827 828 829
	case FSCR_TAR_LG:
		/* TAR switching isn't lazy in Linux yet */
		current->thread.tar = mfspr(SPRN_TAR);
		mtspr(SPRN_TAR, vcpu->arch.tar);
		vcpu->arch.shadow_fscr |= FSCR_TAR;
		break;
830 831 832 833 834 835 836 837 838
	default:
		kvmppc_emulate_fac(vcpu, fac);
		break;
	}

	return RESUME_GUEST;
}
#endif

839 840
int kvmppc_handle_exit_pr(struct kvm_run *run, struct kvm_vcpu *vcpu,
			  unsigned int exit_nr)
841 842
{
	int r = RESUME_HOST;
843
	int s;
844 845 846 847 848 849

	vcpu->stat.sum_exits++;

	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;

850
	/* We get here with MSR.EE=1 */
851

852
	trace_kvm_exit(exit_nr, vcpu);
853
	kvm_guest_exit();
854

855 856
	switch (exit_nr) {
	case BOOK3S_INTERRUPT_INST_STORAGE:
857
	{
858
		ulong shadow_srr1 = vcpu->arch.shadow_srr1;
859 860 861 862 863
		vcpu->stat.pf_instruc++;

#ifdef CONFIG_PPC_BOOK3S_32
		/* We set segments as unused segments when invalidating them. So
		 * treat the respective fault as segment fault. */
864 865 866 867 868 869
		{
			struct kvmppc_book3s_shadow_vcpu *svcpu;
			u32 sr;

			svcpu = svcpu_get(vcpu);
			sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT];
870
			svcpu_put(svcpu);
871 872 873 874 875
			if (sr == SR_INVALID) {
				kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
				r = RESUME_GUEST;
				break;
			}
876 877 878 879
		}
#endif

		/* only care about PTEG not found errors, but leave NX alone */
880
		if (shadow_srr1 & 0x40000000) {
881
			int idx = srcu_read_lock(&vcpu->kvm->srcu);
882
			r = kvmppc_handle_pagefault(run, vcpu, kvmppc_get_pc(vcpu), exit_nr);
883
			srcu_read_unlock(&vcpu->kvm->srcu, idx);
884 885 886 887 888 889 890 891 892 893 894
			vcpu->stat.sp_instruc++;
		} else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
			  (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
			/*
			 * XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
			 *     so we can't use the NX bit inside the guest. Let's cross our fingers,
			 *     that no guest that needs the dcbz hack does NX.
			 */
			kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
			r = RESUME_GUEST;
		} else {
895 896 897
			u64 msr = kvmppc_get_msr(vcpu);
			msr |= shadow_srr1 & 0x58000000;
			kvmppc_set_msr_fast(vcpu, msr);
898 899 900 901
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
			r = RESUME_GUEST;
		}
		break;
902
	}
903 904 905
	case BOOK3S_INTERRUPT_DATA_STORAGE:
	{
		ulong dar = kvmppc_get_fault_dar(vcpu);
906
		u32 fault_dsisr = vcpu->arch.fault_dsisr;
907 908 909 910 911
		vcpu->stat.pf_storage++;

#ifdef CONFIG_PPC_BOOK3S_32
		/* We set segments as unused segments when invalidating them. So
		 * treat the respective fault as segment fault. */
912 913 914 915 916 917
		{
			struct kvmppc_book3s_shadow_vcpu *svcpu;
			u32 sr;

			svcpu = svcpu_get(vcpu);
			sr = svcpu->sr[dar >> SID_SHIFT];
918
			svcpu_put(svcpu);
919 920 921 922 923
			if (sr == SR_INVALID) {
				kvmppc_mmu_map_segment(vcpu, dar);
				r = RESUME_GUEST;
				break;
			}
924 925 926
		}
#endif

927 928 929 930 931 932 933
		/*
		 * We need to handle missing shadow PTEs, and
		 * protection faults due to us mapping a page read-only
		 * when the guest thinks it is writable.
		 */
		if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) {
			int idx = srcu_read_lock(&vcpu->kvm->srcu);
934
			r = kvmppc_handle_pagefault(run, vcpu, dar, exit_nr);
935
			srcu_read_unlock(&vcpu->kvm->srcu, idx);
936
		} else {
937 938
			kvmppc_set_dar(vcpu, dar);
			kvmppc_set_dsisr(vcpu, fault_dsisr);
939 940 941 942 943 944 945
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
			r = RESUME_GUEST;
		}
		break;
	}
	case BOOK3S_INTERRUPT_DATA_SEGMENT:
		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
946
			kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
947 948 949 950 951 952 953 954 955 956 957 958 959 960
			kvmppc_book3s_queue_irqprio(vcpu,
				BOOK3S_INTERRUPT_DATA_SEGMENT);
		}
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_INST_SEGMENT:
		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
			kvmppc_book3s_queue_irqprio(vcpu,
				BOOK3S_INTERRUPT_INST_SEGMENT);
		}
		r = RESUME_GUEST;
		break;
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_DECREMENTER:
961
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
962
	case BOOK3S_INTERRUPT_DOORBELL:
963 964 965 966
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
967 968
	case BOOK3S_INTERRUPT_EXTERNAL_LEVEL:
	case BOOK3S_INTERRUPT_EXTERNAL_HV:
969 970 971 972 973 974 975
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PERFMON:
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PROGRAM:
976
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
977 978 979 980 981
	{
		enum emulation_result er;
		ulong flags;

program_interrupt:
982
		flags = vcpu->arch.shadow_srr1 & 0x1f0000ull;
983

984
		if (kvmppc_get_msr(vcpu) & MSR_PR) {
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
#ifdef EXIT_DEBUG
			printk(KERN_INFO "Userspace triggered 0x700 exception at 0x%lx (0x%x)\n", kvmppc_get_pc(vcpu), kvmppc_get_last_inst(vcpu));
#endif
			if ((kvmppc_get_last_inst(vcpu) & 0xff0007ff) !=
			    (INS_DCBZ & 0xfffffff7)) {
				kvmppc_core_queue_program(vcpu, flags);
				r = RESUME_GUEST;
				break;
			}
		}

		vcpu->stat.emulated_inst_exits++;
		er = kvmppc_emulate_instruction(run, vcpu);
		switch (er) {
		case EMULATE_DONE:
			r = RESUME_GUEST_NV;
			break;
		case EMULATE_AGAIN:
			r = RESUME_GUEST;
			break;
		case EMULATE_FAIL:
			printk(KERN_CRIT "%s: emulation at %lx failed (%08x)\n",
			       __func__, kvmppc_get_pc(vcpu), kvmppc_get_last_inst(vcpu));
			kvmppc_core_queue_program(vcpu, flags);
			r = RESUME_GUEST;
			break;
		case EMULATE_DO_MMIO:
			run->exit_reason = KVM_EXIT_MMIO;
			r = RESUME_HOST_NV;
			break;
1015
		case EMULATE_EXIT_USER:
1016 1017
			r = RESUME_HOST_NV;
			break;
1018 1019 1020 1021 1022 1023
		default:
			BUG();
		}
		break;
	}
	case BOOK3S_INTERRUPT_SYSCALL:
1024
		if (vcpu->arch.papr_enabled &&
1025
		    (kvmppc_get_last_sc(vcpu) == 0x44000022) &&
1026
		    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
1027 1028 1029 1030
			/* SC 1 papr hypercalls */
			ulong cmd = kvmppc_get_gpr(vcpu, 3);
			int i;

1031
#ifdef CONFIG_PPC_BOOK3S_64
1032 1033 1034 1035
			if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
				r = RESUME_GUEST;
				break;
			}
1036
#endif
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046

			run->papr_hcall.nr = cmd;
			for (i = 0; i < 9; ++i) {
				ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
				run->papr_hcall.args[i] = gpr;
			}
			run->exit_reason = KVM_EXIT_PAPR_HCALL;
			vcpu->arch.hcall_needed = 1;
			r = RESUME_HOST;
		} else if (vcpu->arch.osi_enabled &&
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
		    (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
		    (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
			/* MOL hypercalls */
			u64 *gprs = run->osi.gprs;
			int i;

			run->exit_reason = KVM_EXIT_OSI;
			for (i = 0; i < 32; i++)
				gprs[i] = kvmppc_get_gpr(vcpu, i);
			vcpu->arch.osi_needed = 1;
			r = RESUME_HOST_NV;
1058
		} else if (!(kvmppc_get_msr(vcpu) & MSR_PR) &&
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
		    (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
			/* KVM PV hypercalls */
			kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
			r = RESUME_GUEST;
		} else {
			/* Guest syscalls */
			vcpu->stat.syscall_exits++;
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
			r = RESUME_GUEST;
		}
		break;
	case BOOK3S_INTERRUPT_FP_UNAVAIL:
	case BOOK3S_INTERRUPT_ALTIVEC:
	case BOOK3S_INTERRUPT_VSX:
	{
		int ext_msr = 0;

		switch (exit_nr) {
		case BOOK3S_INTERRUPT_FP_UNAVAIL: ext_msr = MSR_FP;  break;
		case BOOK3S_INTERRUPT_ALTIVEC:    ext_msr = MSR_VEC; break;
		case BOOK3S_INTERRUPT_VSX:        ext_msr = MSR_VSX; break;
		}

		switch (kvmppc_check_ext(vcpu, exit_nr)) {
		case EMULATE_DONE:
			/* everything ok - let's enable the ext */
			r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
			break;
		case EMULATE_FAIL:
			/* we need to emulate this instruction */
			goto program_interrupt;
			break;
		default:
			/* nothing to worry about - go again */
			break;
		}
		break;
	}
	case BOOK3S_INTERRUPT_ALIGNMENT:
		if (kvmppc_read_inst(vcpu) == EMULATE_DONE) {
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
			u32 last_inst = kvmppc_get_last_inst(vcpu);
			u32 dsisr;
			u64 dar;

			dsisr = kvmppc_alignment_dsisr(vcpu, last_inst);
			dar = kvmppc_alignment_dar(vcpu, last_inst);

			kvmppc_set_dsisr(vcpu, dsisr);
			kvmppc_set_dar(vcpu, dar);

1109 1110 1111 1112
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
		}
		r = RESUME_GUEST;
		break;
1113 1114 1115 1116 1117 1118
#ifdef CONFIG_PPC_BOOK3S_64
	case BOOK3S_INTERRUPT_FAC_UNAVAIL:
		kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56);
		r = RESUME_GUEST;
		break;
#endif
1119 1120 1121 1122 1123 1124
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
	case BOOK3S_INTERRUPT_TRACE:
		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
		r = RESUME_GUEST;
		break;
	default:
1125
	{
1126
		ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1127 1128
		/* Ugh - bork here! What did we get? */
		printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
1129
			exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
1130 1131 1132 1133
		r = RESUME_HOST;
		BUG();
		break;
	}
1134
	}
1135 1136 1137 1138 1139

	if (!(r & RESUME_HOST)) {
		/* To avoid clobbering exit_reason, only check for signals if
		 * we aren't already exiting to userspace for some other
		 * reason. */
1140 1141 1142 1143 1144 1145 1146

		/*
		 * Interrupts could be timers for the guest which we have to
		 * inject again, so let's postpone them until we're in the guest
		 * and if we really did time things so badly, then we just exit
		 * again due to a host external interrupt.
		 */
1147
		s = kvmppc_prepare_to_enter(vcpu);
S
Scott Wood 已提交
1148
		if (s <= 0)
1149
			r = s;
S
Scott Wood 已提交
1150 1151
		else {
			/* interrupts now hard-disabled */
1152
			kvmppc_fix_ee_before_entry();
1153
		}
S
Scott Wood 已提交
1154

1155
		kvmppc_handle_lost_ext(vcpu);
1156 1157 1158 1159 1160 1161 1162
	}

	trace_kvm_book3s_reenter(r, vcpu);

	return r;
}

1163 1164
static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
{
	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
	int i;

	sregs->pvr = vcpu->arch.pvr;

	sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
		for (i = 0; i < 64; i++) {
			sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
			sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
		}
	} else {
		for (i = 0; i < 16; i++)
1179
			sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i);
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189

		for (i = 0; i < 8; i++) {
			sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
			sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
		}
	}

	return 0;
}

1190 1191
static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1192 1193 1194 1195
{
	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
	int i;

1196
	kvmppc_set_pvr_pr(vcpu, sregs->pvr);
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225

	vcpu3s->sdr1 = sregs->u.s.sdr1;
	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
		for (i = 0; i < 64; i++) {
			vcpu->arch.mmu.slbmte(vcpu, sregs->u.s.ppc64.slb[i].slbv,
						    sregs->u.s.ppc64.slb[i].slbe);
		}
	} else {
		for (i = 0; i < 16; i++) {
			vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
		}
		for (i = 0; i < 8; i++) {
			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
				       (u32)sregs->u.s.ppc32.ibat[i]);
			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
				       (u32)(sregs->u.s.ppc32.ibat[i] >> 32));
			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
				       (u32)sregs->u.s.ppc32.dbat[i]);
			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
				       (u32)(sregs->u.s.ppc32.dbat[i] >> 32));
		}
	}

	/* Flush the MMU after messing with the segments */
	kvmppc_mmu_pte_flush(vcpu, 0, 0);

	return 0;
}

1226 1227
static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1228
{
1229
	int r = 0;
1230

1231
	switch (id) {
1232
	case KVM_REG_PPC_HIOR:
1233
		*val = get_reg_val(id, to_book3s(vcpu)->hior);
1234
		break;
1235 1236 1237 1238 1239 1240 1241 1242 1243
	case KVM_REG_PPC_LPCR:
		/*
		 * We are only interested in the LPCR_ILE bit
		 */
		if (vcpu->arch.intr_msr & MSR_LE)
			*val = get_reg_val(id, LPCR_ILE);
		else
			*val = get_reg_val(id, 0);
		break;
1244
	default:
1245
		r = -EINVAL;
1246 1247 1248 1249 1250 1251
		break;
	}

	return r;
}

1252 1253 1254 1255 1256 1257 1258 1259
static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr)
{
	if (new_lpcr & LPCR_ILE)
		vcpu->arch.intr_msr |= MSR_LE;
	else
		vcpu->arch.intr_msr &= ~MSR_LE;
}

1260 1261
static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1262
{
1263
	int r = 0;
1264

1265
	switch (id) {
1266
	case KVM_REG_PPC_HIOR:
1267 1268
		to_book3s(vcpu)->hior = set_reg_val(id, *val);
		to_book3s(vcpu)->hior_explicit = true;
1269
		break;
1270 1271 1272
	case KVM_REG_PPC_LPCR:
		kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val));
		break;
1273
	default:
1274
		r = -EINVAL;
1275 1276 1277 1278 1279 1280
		break;
	}

	return r;
}

1281 1282
static struct kvm_vcpu *kvmppc_core_vcpu_create_pr(struct kvm *kvm,
						   unsigned int id)
1283 1284 1285 1286 1287 1288
{
	struct kvmppc_vcpu_book3s *vcpu_book3s;
	struct kvm_vcpu *vcpu;
	int err = -ENOMEM;
	unsigned long p;

1289 1290
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu)
1291 1292 1293 1294 1295
		goto out;

	vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
	if (!vcpu_book3s)
		goto free_vcpu;
1296
	vcpu->arch.book3s = vcpu_book3s;
1297

1298
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1299 1300 1301 1302
	vcpu->arch.shadow_vcpu =
		kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL);
	if (!vcpu->arch.shadow_vcpu)
		goto free_vcpu3s;
1303
#endif
1304 1305 1306 1307 1308

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_shadow_vcpu;

1309
	err = -ENOMEM;
1310 1311 1312
	p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
	if (!p)
		goto uninit_vcpu;
1313 1314
	/* the real shared page fills the last 4k of our page */
	vcpu->arch.shared = (void *)(p + PAGE_SIZE - 4096);
1315
#ifdef CONFIG_PPC_BOOK3S_64
1316 1317 1318 1319 1320 1321 1322
	/* Always start the shared struct in native endian mode */
#ifdef __BIG_ENDIAN__
        vcpu->arch.shared_big_endian = true;
#else
        vcpu->arch.shared_big_endian = false;
#endif

1323 1324 1325 1326 1327
	/*
	 * Default to the same as the host if we're on sufficiently
	 * recent machine that we have 1TB segments;
	 * otherwise default to PPC970FX.
	 */
1328
	vcpu->arch.pvr = 0x3C0301;
1329 1330
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		vcpu->arch.pvr = mfspr(SPRN_PVR);
1331
	vcpu->arch.intr_msr = MSR_SF;
1332 1333 1334 1335
#else
	/* default to book3s_32 (750) */
	vcpu->arch.pvr = 0x84202;
#endif
1336
	kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr);
1337 1338
	vcpu->arch.slb_nr = 64;

1339
	vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE;
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349

	err = kvmppc_mmu_init(vcpu);
	if (err < 0)
		goto uninit_vcpu;

	return vcpu;

uninit_vcpu:
	kvm_vcpu_uninit(vcpu);
free_shadow_vcpu:
1350
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1351 1352
	kfree(vcpu->arch.shadow_vcpu);
free_vcpu3s:
1353
#endif
1354
	vfree(vcpu_book3s);
1355 1356
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1357 1358 1359 1360
out:
	return ERR_PTR(err);
}

1361
static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu)
1362 1363 1364 1365 1366
{
	struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);

	free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
	kvm_vcpu_uninit(vcpu);
1367
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1368 1369
	kfree(vcpu->arch.shadow_vcpu);
#endif
1370
	vfree(vcpu_book3s);
1371
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1372 1373
}

1374
static int kvmppc_vcpu_run_pr(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1375 1376 1377 1378 1379 1380
{
	int ret;
#ifdef CONFIG_ALTIVEC
	unsigned long uninitialized_var(vrsave);
#endif

1381 1382 1383
	/* Check if we can run the vcpu at all */
	if (!vcpu->arch.sane) {
		kvm_run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1384 1385
		ret = -EINVAL;
		goto out;
1386 1387
	}

1388 1389 1390 1391 1392 1393
	/*
	 * Interrupts could be timers for the guest which we have to inject
	 * again, so let's postpone them until we're in the guest and if we
	 * really did time things so badly, then we just exit again due to
	 * a host external interrupt.
	 */
1394
	ret = kvmppc_prepare_to_enter(vcpu);
S
Scott Wood 已提交
1395
	if (ret <= 0)
1396
		goto out;
S
Scott Wood 已提交
1397
	/* interrupts now hard-disabled */
1398

1399
	/* Save FPU state in thread_struct */
1400 1401 1402 1403
	if (current->thread.regs->msr & MSR_FP)
		giveup_fpu(current);

#ifdef CONFIG_ALTIVEC
1404 1405 1406
	/* Save Altivec state in thread_struct */
	if (current->thread.regs->msr & MSR_VEC)
		giveup_altivec(current);
1407 1408 1409
#endif

#ifdef CONFIG_VSX
1410 1411
	/* Save VSX state in thread_struct */
	if (current->thread.regs->msr & MSR_VSX)
1412
		__giveup_vsx(current);
1413 1414 1415
#endif

	/* Preload FPU if it's enabled */
1416
	if (kvmppc_get_msr(vcpu) & MSR_FP)
1417 1418
		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);

1419
	kvmppc_fix_ee_before_entry();
1420 1421 1422

	ret = __kvmppc_vcpu_run(kvm_run, vcpu);

1423 1424
	/* No need for kvm_guest_exit. It's done in handle_exit.
	   We also get here with interrupts enabled. */
1425 1426

	/* Make sure we save the guest FPU/Altivec/VSX state */
1427 1428
	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);

1429 1430 1431
	/* Make sure we save the guest TAR/EBB/DSCR state */
	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);

1432
out:
1433
	vcpu->mode = OUTSIDE_GUEST_MODE;
1434 1435 1436
	return ret;
}

1437 1438 1439
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
1440 1441
static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm,
					 struct kvm_dirty_log *log)
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
{
	struct kvm_memory_slot *memslot;
	struct kvm_vcpu *vcpu;
	ulong ga, ga_end;
	int is_dirty = 0;
	int r;
	unsigned long n;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* If nothing is dirty, don't bother messing with page tables. */
	if (is_dirty) {
		memslot = id_to_memslot(kvm->memslots, log->slot);

		ga = memslot->base_gfn << PAGE_SHIFT;
		ga_end = ga + (memslot->npages << PAGE_SHIFT);

		kvm_for_each_vcpu(n, vcpu, kvm)
			kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);

		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

1476 1477
static void kvmppc_core_flush_memslot_pr(struct kvm *kvm,
					 struct kvm_memory_slot *memslot)
1478
{
1479 1480
	return;
}
1481

1482 1483 1484 1485
static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm,
					struct kvm_memory_slot *memslot,
					struct kvm_userspace_memory_region *mem)
{
1486 1487 1488
	return 0;
}

1489 1490 1491
static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm,
				struct kvm_userspace_memory_region *mem,
				const struct kvm_memory_slot *old)
1492
{
1493
	return;
1494 1495
}

1496 1497
static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *free,
					struct kvm_memory_slot *dont)
1498
{
1499
	return;
1500 1501
}

1502 1503
static int kvmppc_core_create_memslot_pr(struct kvm_memory_slot *slot,
					 unsigned long npages)
1504 1505 1506 1507
{
	return 0;
}

1508

1509
#ifdef CONFIG_PPC64
1510 1511
static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
1512
{
1513 1514 1515 1516
	long int i;
	struct kvm_vcpu *vcpu;

	info->flags = 0;
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526

	/* SLB is always 64 entries */
	info->slb_size = 64;

	/* Standard 4k base page size segment */
	info->sps[0].page_shift = 12;
	info->sps[0].slb_enc = 0;
	info->sps[0].enc[0].page_shift = 12;
	info->sps[0].enc[0].pte_enc = 0;

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
	/*
	 * 64k large page size.
	 * We only want to put this in if the CPUs we're emulating
	 * support it, but unfortunately we don't have a vcpu easily
	 * to hand here to test.  Just pick the first vcpu, and if
	 * that doesn't exist yet, report the minimum capability,
	 * i.e., no 64k pages.
	 * 1T segment support goes along with 64k pages.
	 */
	i = 1;
	vcpu = kvm_get_vcpu(kvm, 0);
	if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) {
		info->flags = KVM_PPC_1T_SEGMENTS;
		info->sps[i].page_shift = 16;
		info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01;
		info->sps[i].enc[0].page_shift = 16;
		info->sps[i].enc[0].pte_enc = 1;
		++i;
	}

1547
	/* Standard 16M large page size segment */
1548 1549 1550 1551
	info->sps[i].page_shift = 24;
	info->sps[i].slb_enc = SLB_VSID_L;
	info->sps[i].enc[0].page_shift = 24;
	info->sps[i].enc[0].pte_enc = 0;
1552

1553 1554
	return 0;
}
1555 1556 1557
#else
static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
1558
{
1559 1560
	/* We should not get called */
	BUG();
1561
}
1562
#endif /* CONFIG_PPC64 */
1563

1564 1565 1566
static unsigned int kvm_global_user_count = 0;
static DEFINE_SPINLOCK(kvm_global_user_count_lock);

1567
static int kvmppc_core_init_vm_pr(struct kvm *kvm)
1568
{
1569
	mutex_init(&kvm->arch.hpt_mutex);
1570

1571 1572 1573 1574 1575 1576
	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
		spin_lock(&kvm_global_user_count_lock);
		if (++kvm_global_user_count == 1)
			pSeries_disable_reloc_on_exc();
		spin_unlock(&kvm_global_user_count_lock);
	}
1577 1578 1579
	return 0;
}

1580
static void kvmppc_core_destroy_vm_pr(struct kvm *kvm)
1581
{
1582 1583 1584
#ifdef CONFIG_PPC64
	WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
#endif
1585 1586 1587 1588 1589 1590 1591 1592

	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
		spin_lock(&kvm_global_user_count_lock);
		BUG_ON(kvm_global_user_count == 0);
		if (--kvm_global_user_count == 0)
			pSeries_enable_reloc_on_exc();
		spin_unlock(&kvm_global_user_count_lock);
	}
1593 1594
}

1595
static int kvmppc_core_check_processor_compat_pr(void)
1596
{
1597 1598 1599
	/* we are always compatible */
	return 0;
}
1600

1601 1602 1603 1604 1605
static long kvm_arch_vm_ioctl_pr(struct file *filp,
				 unsigned int ioctl, unsigned long arg)
{
	return -ENOTTY;
}
1606

1607
static struct kvmppc_ops kvm_ops_pr = {
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr,
	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr,
	.get_one_reg = kvmppc_get_one_reg_pr,
	.set_one_reg = kvmppc_set_one_reg_pr,
	.vcpu_load   = kvmppc_core_vcpu_load_pr,
	.vcpu_put    = kvmppc_core_vcpu_put_pr,
	.set_msr     = kvmppc_set_msr_pr,
	.vcpu_run    = kvmppc_vcpu_run_pr,
	.vcpu_create = kvmppc_core_vcpu_create_pr,
	.vcpu_free   = kvmppc_core_vcpu_free_pr,
	.check_requests = kvmppc_core_check_requests_pr,
	.get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr,
	.flush_memslot = kvmppc_core_flush_memslot_pr,
	.prepare_memory_region = kvmppc_core_prepare_memory_region_pr,
	.commit_memory_region = kvmppc_core_commit_memory_region_pr,
	.unmap_hva = kvm_unmap_hva_pr,
	.unmap_hva_range = kvm_unmap_hva_range_pr,
	.age_hva  = kvm_age_hva_pr,
	.test_age_hva = kvm_test_age_hva_pr,
	.set_spte_hva = kvm_set_spte_hva_pr,
	.mmu_destroy  = kvmppc_mmu_destroy_pr,
	.free_memslot = kvmppc_core_free_memslot_pr,
	.create_memslot = kvmppc_core_create_memslot_pr,
	.init_vm = kvmppc_core_init_vm_pr,
	.destroy_vm = kvmppc_core_destroy_vm_pr,
	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr,
	.emulate_op = kvmppc_core_emulate_op_pr,
	.emulate_mtspr = kvmppc_core_emulate_mtspr_pr,
	.emulate_mfspr = kvmppc_core_emulate_mfspr_pr,
	.fast_vcpu_kick = kvm_vcpu_kick,
	.arch_vm_ioctl  = kvm_arch_vm_ioctl_pr,
};

1641 1642

int kvmppc_book3s_init_pr(void)
1643 1644 1645
{
	int r;

1646 1647
	r = kvmppc_core_check_processor_compat_pr();
	if (r < 0)
1648 1649
		return r;

1650 1651
	kvm_ops_pr.owner = THIS_MODULE;
	kvmppc_pr_ops = &kvm_ops_pr;
1652

1653
	r = kvmppc_mmu_hpte_sysinit();
1654 1655 1656
	return r;
}

1657
void kvmppc_book3s_exit_pr(void)
1658
{
1659
	kvmppc_pr_ops = NULL;
1660 1661 1662
	kvmppc_mmu_hpte_sysexit();
}

1663 1664 1665 1666 1667
/*
 * We only support separate modules for book3s 64
 */
#ifdef CONFIG_PPC_BOOK3S_64

1668 1669
module_init(kvmppc_book3s_init_pr);
module_exit(kvmppc_book3s_exit_pr);
1670 1671

MODULE_LICENSE("GPL");
1672 1673
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");
1674
#endif