#ifndef _SPARC64_TSB_H #define _SPARC64_TSB_H /* The sparc64 TSB is similar to the powerpc hashtables. It's a * power-of-2 sized table of TAG/PTE pairs. The cpu precomputes * pointers into this table for 8K and 64K page sizes, and also a * comparison TAG based upon the virtual address and context which * faults. * * TLB miss trap handler software does the actual lookup via something * of the form: * * ldxa [%g0] ASI_{D,I}MMU_TSB_8KB_PTR, %g1 * ldxa [%g0] ASI_{D,I}MMU, %g6 * sllx %g6, 22, %g6 * srlx %g6, 22, %g6 * ldda [%g1] ASI_NUCLEUS_QUAD_LDD, %g4 * cmp %g4, %g6 * bne,pn %xcc, tsb_miss_{d,i}tlb * mov FAULT_CODE_{D,I}TLB, %g3 * stxa %g5, [%g0] ASI_{D,I}TLB_DATA_IN * retry * * * Each 16-byte slot of the TSB is the 8-byte tag and then the 8-byte * PTE. The TAG is of the same layout as the TLB TAG TARGET mmu * register which is: * * ------------------------------------------------- * | - | CONTEXT | - | VADDR bits 63:22 | * ------------------------------------------------- * 63 61 60 48 47 42 41 0 * * But actually, since we use per-mm TSB's, we zero out the CONTEXT * field. * * Like the powerpc hashtables we need to use locking in order to * synchronize while we update the entries. PTE updates need locking * as well. * * We need to carefully choose a lock bits for the TSB entry. We * choose to use bit 47 in the tag. Also, since we never map anything * at page zero in context zero, we use zero as an invalid tag entry. * When the lock bit is set, this forces a tag comparison failure. */ #define TSB_TAG_LOCK_BIT 47 #define TSB_TAG_LOCK_HIGH (1 << (TSB_TAG_LOCK_BIT - 32)) #define TSB_TAG_INVALID_BIT 46 #define TSB_TAG_INVALID_HIGH (1 << (TSB_TAG_INVALID_BIT - 32)) /* Some cpus support physical address quad loads. We want to use * those if possible so we don't need to hard-lock the TSB mapping * into the TLB. We encode some instruction patching in order to * support this. * * The kernel TSB is locked into the TLB by virtue of being in the * kernel image, so we don't play these games for swapper_tsb access. */ #ifndef __ASSEMBLY__ struct tsb_ldquad_phys_patch_entry { unsigned int addr; unsigned int sun4u_insn; unsigned int sun4v_insn; }; extern struct tsb_ldquad_phys_patch_entry __tsb_ldquad_phys_patch, __tsb_ldquad_phys_patch_end; struct tsb_phys_patch_entry { unsigned int addr; unsigned int insn; }; extern struct tsb_phys_patch_entry __tsb_phys_patch, __tsb_phys_patch_end; #endif #define TSB_LOAD_QUAD(TSB, REG) \ 661: ldda [TSB] ASI_NUCLEUS_QUAD_LDD, REG; \ .section .tsb_ldquad_phys_patch, "ax"; \ .word 661b; \ ldda [TSB] ASI_QUAD_LDD_PHYS, REG; \ ldda [TSB] ASI_QUAD_LDD_PHYS_4V, REG; \ .previous #define TSB_LOAD_TAG_HIGH(TSB, REG) \ 661: lduwa [TSB] ASI_N, REG; \ .section .tsb_phys_patch, "ax"; \ .word 661b; \ lduwa [TSB] ASI_PHYS_USE_EC, REG; \ .previous #define TSB_LOAD_TAG(TSB, REG) \ 661: ldxa [TSB] ASI_N, REG; \ .section .tsb_phys_patch, "ax"; \ .word 661b; \ ldxa [TSB] ASI_PHYS_USE_EC, REG; \ .previous #define TSB_CAS_TAG_HIGH(TSB, REG1, REG2) \ 661: casa [TSB] ASI_N, REG1, REG2; \ .section .tsb_phys_patch, "ax"; \ .word 661b; \ casa [TSB] ASI_PHYS_USE_EC, REG1, REG2; \ .previous #define TSB_CAS_TAG(TSB, REG1, REG2) \ 661: casxa [TSB] ASI_N, REG1, REG2; \ .section .tsb_phys_patch, "ax"; \ .word 661b; \ casxa [TSB] ASI_PHYS_USE_EC, REG1, REG2; \ .previous #define TSB_STORE(ADDR, VAL) \ 661: stxa VAL, [ADDR] ASI_N; \ .section .tsb_phys_patch, "ax"; \ .word 661b; \ stxa VAL, [ADDR] ASI_PHYS_USE_EC; \ .previous #define TSB_LOCK_TAG(TSB, REG1, REG2) \ 99: TSB_LOAD_TAG_HIGH(TSB, REG1); \ sethi %hi(TSB_TAG_LOCK_HIGH), REG2;\ andcc REG1, REG2, %g0; \ bne,pn %icc, 99b; \ nop; \ TSB_CAS_TAG_HIGH(TSB, REG1, REG2); \ cmp REG1, REG2; \ bne,pn %icc, 99b; \ nop; \ #define TSB_WRITE(TSB, TTE, TAG) \ add TSB, 0x8, TSB; \ TSB_STORE(TSB, TTE); \ sub TSB, 0x8, TSB; \ TSB_STORE(TSB, TAG); /* Do a kernel page table walk. Leaves physical PTE pointer in * REG1. Jumps to FAIL_LABEL on early page table walk termination. * VADDR will not be clobbered, but REG2 will. */ #define KERN_PGTABLE_WALK(VADDR, REG1, REG2, FAIL_LABEL) \ sethi %hi(swapper_pg_dir), REG1; \ or REG1, %lo(swapper_pg_dir), REG1; \ sllx VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \ srlx REG2, 64 - PAGE_SHIFT, REG2; \ andn REG2, 0x7, REG2; \ ldx [REG1 + REG2], REG1; \ brz,pn REG1, FAIL_LABEL; \ sllx VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \ srlx REG2, 64 - PAGE_SHIFT, REG2; \ sllx REG1, PGD_PADDR_SHIFT, REG1; \ andn REG2, 0x7, REG2; \ ldxa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \ brz,pn REG1, FAIL_LABEL; \ sllx VADDR, 64 - PMD_SHIFT, REG2; \ srlx REG2, 64 - PAGE_SHIFT, REG2; \ sllx REG1, PMD_PADDR_SHIFT, REG1; \ andn REG2, 0x7, REG2; \ add REG1, REG2, REG1; /* These macros exists only to make the PMD translator below * easier to read. It hides the ELF section switch for the * sun4v code patching. */ #define OR_PTE_BIT_1INSN(REG, NAME) \ 661: or REG, _PAGE_##NAME##_4U, REG; \ .section .sun4v_1insn_patch, "ax"; \ .word 661b; \ or REG, _PAGE_##NAME##_4V, REG; \ .previous; #define OR_PTE_BIT_2INSN(REG, TMP, NAME) \ 661: sethi %hi(_PAGE_##NAME##_4U), TMP; \ or REG, TMP, REG; \ .section .sun4v_2insn_patch, "ax"; \ .word 661b; \ mov -1, TMP; \ or REG, _PAGE_##NAME##_4V, REG; \ .previous; /* Load into REG the PTE value for VALID, CACHE, and SZHUGE. * * We are fabricating an 8MB page using 2 4MB HW pages here. */ #define BUILD_PTE_VALID_SZHUGE_CACHE(VADDR, PADDR_BITS, REG) \ sethi %hi(4 * 1024 * 1024), REG; \ andn PADDR_BITS, REG, PADDR_BITS; \ and VADDR, REG, REG; \ or PADDR_BITS, REG, PADDR_BITS; \ 661: sethi %uhi(_PAGE_VALID|_PAGE_SZHUGE_4U), REG; \ .section .sun4v_1insn_patch, "ax"; \ .word 661b; \ sethi %uhi(_PAGE_VALID), REG; \ .previous; \ sllx REG, 32, REG; \ 661: or REG, _PAGE_CP_4U|_PAGE_CV_4U, REG; \ .section .sun4v_1insn_patch, "ax"; \ .word 661b; \ or REG, _PAGE_CP_4V|_PAGE_CV_4V|_PAGE_SZHUGE_4V, REG; \ .previous; /* PMD has been loaded into REG1, interpret the value, seeing * if it is a HUGE PMD or a normal one. If it is not valid * then jump to FAIL_LABEL. If it is a HUGE PMD, and it * translates to a valid PTE, branch to PTE_LABEL. * * We translate the PMD by hand, one bit at a time, * constructing the huge PTE. * * So we construct the PTE in REG2 as follows: * * 1) Extract the PMD PFN from REG1 and place it into REG2. * * 2) Translate PMD protection bits in REG1 into REG2, one bit * at a time using andcc tests on REG1 and OR's into REG2. * * Only two bits to be concerned with here, EXEC and WRITE. * Now REG1 is freed up and we can use it as a temporary. * * 3) Construct the VALID, CACHE, and page size PTE bits in * REG1, OR with REG2 to form final PTE. */ #ifdef CONFIG_TRANSPARENT_HUGEPAGE #define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \ brz,pn REG1, FAIL_LABEL; \ andcc REG1, PMD_ISHUGE, %g0; \ be,pt %xcc, 700f; \ and REG1, PMD_HUGE_PRESENT|PMD_HUGE_ACCESSED, REG2; \ cmp REG2, PMD_HUGE_PRESENT|PMD_HUGE_ACCESSED; \ bne,pn %xcc, FAIL_LABEL; \ andn REG1, PMD_HUGE_PROTBITS, REG2; \ sllx REG2, PMD_PADDR_SHIFT, REG2; \ /* REG2 now holds PFN << PAGE_SHIFT */ \ andcc REG1, PMD_HUGE_WRITE, %g0; \ bne,a,pt %xcc, 1f; \ OR_PTE_BIT_1INSN(REG2, W); \ 1: andcc REG1, PMD_HUGE_EXEC, %g0; \ be,pt %xcc, 1f; \ nop; \ OR_PTE_BIT_2INSN(REG2, REG1, EXEC); \ /* REG1 can now be clobbered, build final PTE */ \ 1: BUILD_PTE_VALID_SZHUGE_CACHE(VADDR, REG2, REG1); \ ba,pt %xcc, PTE_LABEL; \ or REG1, REG2, REG1; \ 700: #else #define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \ brz,pn REG1, FAIL_LABEL; \ nop; #endif /* Do a user page table walk in MMU globals. Leaves final, * valid, PTE value in REG1. Jumps to FAIL_LABEL on early * page table walk termination or if the PTE is not valid. * * Physical base of page tables is in PHYS_PGD which will not * be modified. * * VADDR will not be clobbered, but REG1 and REG2 will. */ #define USER_PGTABLE_WALK_TL1(VADDR, PHYS_PGD, REG1, REG2, FAIL_LABEL) \ sllx VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \ srlx REG2, 64 - PAGE_SHIFT, REG2; \ andn REG2, 0x7, REG2; \ ldxa [PHYS_PGD + REG2] ASI_PHYS_USE_EC, REG1; \ brz,pn REG1, FAIL_LABEL; \ sllx VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \ srlx REG2, 64 - PAGE_SHIFT, REG2; \ sllx REG1, PGD_PADDR_SHIFT, REG1; \ andn REG2, 0x7, REG2; \ ldxa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \ USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, 800f) \ sllx VADDR, 64 - PMD_SHIFT, REG2; \ srlx REG2, 64 - PAGE_SHIFT, REG2; \ sllx REG1, PMD_PADDR_SHIFT, REG1; \ andn REG2, 0x7, REG2; \ add REG1, REG2, REG1; \ ldxa [REG1] ASI_PHYS_USE_EC, REG1; \ brgez,pn REG1, FAIL_LABEL; \ nop; \ 800: /* Lookup a OBP mapping on VADDR in the prom_trans[] table at TL>0. * If no entry is found, FAIL_LABEL will be branched to. On success * the resulting PTE value will be left in REG1. VADDR is preserved * by this routine. */ #define OBP_TRANS_LOOKUP(VADDR, REG1, REG2, REG3, FAIL_LABEL) \ sethi %hi(prom_trans), REG1; \ or REG1, %lo(prom_trans), REG1; \ 97: ldx [REG1 + 0x00], REG2; \ brz,pn REG2, FAIL_LABEL; \ nop; \ ldx [REG1 + 0x08], REG3; \ add REG2, REG3, REG3; \ cmp REG2, VADDR; \ bgu,pt %xcc, 98f; \ cmp VADDR, REG3; \ bgeu,pt %xcc, 98f; \ ldx [REG1 + 0x10], REG3; \ sub VADDR, REG2, REG2; \ ba,pt %xcc, 99f; \ add REG3, REG2, REG1; \ 98: ba,pt %xcc, 97b; \ add REG1, (3 * 8), REG1; \ 99: /* We use a 32K TSB for the whole kernel, this allows to * handle about 16MB of modules and vmalloc mappings without * incurring many hash conflicts. */ #define KERNEL_TSB_SIZE_BYTES (32 * 1024) #define KERNEL_TSB_NENTRIES \ (KERNEL_TSB_SIZE_BYTES / 16) #define KERNEL_TSB4M_NENTRIES 4096 #define KTSB_PHYS_SHIFT 15 /* Do a kernel TSB lookup at tl>0 on VADDR+TAG, branch to OK_LABEL * on TSB hit. REG1, REG2, REG3, and REG4 are used as temporaries * and the found TTE will be left in REG1. REG3 and REG4 must * be an even/odd pair of registers. * * VADDR and TAG will be preserved and not clobbered by this macro. */ #define KERN_TSB_LOOKUP_TL1(VADDR, TAG, REG1, REG2, REG3, REG4, OK_LABEL) \ 661: sethi %hi(swapper_tsb), REG1; \ or REG1, %lo(swapper_tsb), REG1; \ .section .swapper_tsb_phys_patch, "ax"; \ .word 661b; \ .previous; \ 661: nop; \ .section .tsb_ldquad_phys_patch, "ax"; \ .word 661b; \ sllx REG1, KTSB_PHYS_SHIFT, REG1; \ sllx REG1, KTSB_PHYS_SHIFT, REG1; \ .previous; \ srlx VADDR, PAGE_SHIFT, REG2; \ and REG2, (KERNEL_TSB_NENTRIES - 1), REG2; \ sllx REG2, 4, REG2; \ add REG1, REG2, REG2; \ TSB_LOAD_QUAD(REG2, REG3); \ cmp REG3, TAG; \ be,a,pt %xcc, OK_LABEL; \ mov REG4, REG1; #ifndef CONFIG_DEBUG_PAGEALLOC /* This version uses a trick, the TAG is already (VADDR >> 22) so * we can make use of that for the index computation. */ #define KERN_TSB4M_LOOKUP_TL1(TAG, REG1, REG2, REG3, REG4, OK_LABEL) \ 661: sethi %hi(swapper_4m_tsb), REG1; \ or REG1, %lo(swapper_4m_tsb), REG1; \ .section .swapper_4m_tsb_phys_patch, "ax"; \ .word 661b; \ .previous; \ 661: nop; \ .section .tsb_ldquad_phys_patch, "ax"; \ .word 661b; \ sllx REG1, KTSB_PHYS_SHIFT, REG1; \ sllx REG1, KTSB_PHYS_SHIFT, REG1; \ .previous; \ and TAG, (KERNEL_TSB4M_NENTRIES - 1), REG2; \ sllx REG2, 4, REG2; \ add REG1, REG2, REG2; \ TSB_LOAD_QUAD(REG2, REG3); \ cmp REG3, TAG; \ be,a,pt %xcc, OK_LABEL; \ mov REG4, REG1; #endif #endif /* !(_SPARC64_TSB_H) */