core-book3s.c 38.5 KB
Newer Older
1
/*
2
 * Performance event support - powerpc architecture code
3 4 5 6 7 8 9 10 11 12
 *
 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
#include <linux/kernel.h>
#include <linux/sched.h>
13
#include <linux/perf_event.h>
14 15 16 17
#include <linux/percpu.h>
#include <linux/hardirq.h>
#include <asm/reg.h>
#include <asm/pmc.h>
18
#include <asm/machdep.h>
19
#include <asm/firmware.h>
20
#include <asm/ptrace.h>
21

22 23
struct cpu_hw_events {
	int n_events;
24 25 26
	int n_percpu;
	int disabled;
	int n_added;
27 28
	int n_limited;
	u8  pmcs_enabled;
29 30 31
	struct perf_event *event[MAX_HWEVENTS];
	u64 events[MAX_HWEVENTS];
	unsigned int flags[MAX_HWEVENTS];
32
	unsigned long mmcr[3];
33 34
	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
35 36 37
	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
38 39 40

	unsigned int group_flag;
	int n_txn_start;
41
};
42
DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
43 44 45

struct power_pmu *ppmu;

46
/*
I
Ingo Molnar 已提交
47
 * Normally, to ignore kernel events we set the FCS (freeze counters
48 49 50 51 52
 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
 * hypervisor bit set in the MSR, or if we are running on a processor
 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
 * then we need to use the FCHV bit to ignore kernel events.
 */
53
static unsigned int freeze_events_kernel = MMCR0_FCS;
54

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
/*
 * 32-bit doesn't have MMCRA but does have an MMCR2,
 * and a few other names are different.
 */
#ifdef CONFIG_PPC32

#define MMCR0_FCHV		0
#define MMCR0_PMCjCE		MMCR0_PMCnCE

#define SPRN_MMCRA		SPRN_MMCR2
#define MMCRA_SAMPLE_ENABLE	0

static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
{
	return 0;
}
static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
static inline u32 perf_get_misc_flags(struct pt_regs *regs)
{
	return 0;
}
76 77 78 79
static inline void perf_read_regs(struct pt_regs *regs)
{
	regs->result = 0;
}
80 81 82 83 84
static inline int perf_intr_is_nmi(struct pt_regs *regs)
{
	return 0;
}

85 86 87 88 89
static inline int siar_valid(struct pt_regs *regs)
{
	return 1;
}

90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
#endif /* CONFIG_PPC32 */

/*
 * Things that are specific to 64-bit implementations.
 */
#ifdef CONFIG_PPC64

static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
{
	unsigned long mmcra = regs->dsisr;

	if ((mmcra & MMCRA_SAMPLE_ENABLE) && !(ppmu->flags & PPMU_ALT_SIPR)) {
		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
		if (slot > 1)
			return 4 * (slot - 1);
	}
	return 0;
}

/*
 * The user wants a data address recorded.
 * If we're not doing instruction sampling, give them the SDAR
 * (sampled data address).  If we are doing instruction sampling, then
 * only give them the SDAR if it corresponds to the instruction
114 115
 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC or
 * the [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA.
116 117 118 119
 */
static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
{
	unsigned long mmcra = regs->dsisr;
120 121 122 123 124 125 126 127
	unsigned long sdsync;

	if (ppmu->flags & PPMU_SIAR_VALID)
		sdsync = POWER7P_MMCRA_SDAR_VALID;
	else if (ppmu->flags & PPMU_ALT_SIPR)
		sdsync = POWER6_MMCRA_SDSYNC;
	else
		sdsync = MMCRA_SDSYNC;
128 129 130 131 132

	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || (mmcra & sdsync))
		*addrp = mfspr(SPRN_SDAR);
}

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
static bool mmcra_sihv(unsigned long mmcra)
{
	unsigned long sihv = MMCRA_SIHV;

	if (ppmu->flags & PPMU_ALT_SIPR)
		sihv = POWER6_MMCRA_SIHV;

	return !!(mmcra & sihv);
}

static bool mmcra_sipr(unsigned long mmcra)
{
	unsigned long sipr = MMCRA_SIPR;

	if (ppmu->flags & PPMU_ALT_SIPR)
		sipr = POWER6_MMCRA_SIPR;

	return !!(mmcra & sipr);
}

153 154 155 156 157 158 159 160 161
static inline u32 perf_flags_from_msr(struct pt_regs *regs)
{
	if (regs->msr & MSR_PR)
		return PERF_RECORD_MISC_USER;
	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
		return PERF_RECORD_MISC_HYPERVISOR;
	return PERF_RECORD_MISC_KERNEL;
}

162 163 164
static inline u32 perf_get_misc_flags(struct pt_regs *regs)
{
	unsigned long mmcra = regs->dsisr;
165
	unsigned long use_siar = regs->result;
166

167
	if (!use_siar)
168 169 170 171 172 173 174 175 176 177 178 179 180 181
		return perf_flags_from_msr(regs);

	/*
	 * If we don't have flags in MMCRA, rather than using
	 * the MSR, we intuit the flags from the address in
	 * SIAR which should give slightly more reliable
	 * results
	 */
	if (ppmu->flags & PPMU_NO_SIPR) {
		unsigned long siar = mfspr(SPRN_SIAR);
		if (siar >= PAGE_OFFSET)
			return PERF_RECORD_MISC_KERNEL;
		return PERF_RECORD_MISC_USER;
	}
182

183
	/* PR has priority over HV, so order below is important */
184
	if (mmcra_sipr(mmcra))
185
		return PERF_RECORD_MISC_USER;
186
	if (mmcra_sihv(mmcra) && (freeze_events_kernel != MMCR0_FCHV))
187
		return PERF_RECORD_MISC_HYPERVISOR;
188
	return PERF_RECORD_MISC_KERNEL;
189 190 191 192 193
}

/*
 * Overload regs->dsisr to store MMCRA so we only need to read it once
 * on each interrupt.
194 195
 * Overload regs->result to specify whether we should use the MSR (result
 * is zero) or the SIAR (result is non zero).
196 197 198
 */
static inline void perf_read_regs(struct pt_regs *regs)
{
199 200 201 202
	unsigned long mmcra = mfspr(SPRN_MMCRA);
	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
	int use_siar;

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
	/*
	 * If this isn't a PMU exception (eg a software event) the SIAR is
	 * not valid. Use pt_regs.
	 *
	 * If it is a marked event use the SIAR.
	 *
	 * If the PMU doesn't update the SIAR for non marked events use
	 * pt_regs.
	 *
	 * If the PMU has HV/PR flags then check to see if they
	 * place the exception in userspace. If so, use pt_regs. In
	 * continuous sampling mode the SIAR and the PMU exception are
	 * not synchronised, so they may be many instructions apart.
	 * This can result in confusing backtraces. We still want
	 * hypervisor samples as well as samples in the kernel with
	 * interrupts off hence the userspace check.
	 */
220 221
	if (TRAP(regs) != 0xf00)
		use_siar = 0;
222 223 224 225 226
	else if (marked)
		use_siar = 1;
	else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
		use_siar = 0;
	else if (!(ppmu->flags & PPMU_NO_SIPR) && mmcra_sipr(mmcra))
227 228 229 230 231 232
		use_siar = 0;
	else
		use_siar = 1;

	regs->dsisr = mmcra;
	regs->result = use_siar;
233 234 235 236 237 238 239 240 241 242 243
}

/*
 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
 * it as an NMI.
 */
static inline int perf_intr_is_nmi(struct pt_regs *regs)
{
	return !regs->softe;
}

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
/*
 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
 * must be sampled only if the SIAR-valid bit is set.
 *
 * For unmarked instructions and for processors that don't have the SIAR-Valid
 * bit, assume that SIAR is valid.
 */
static inline int siar_valid(struct pt_regs *regs)
{
	unsigned long mmcra = regs->dsisr;
	int marked = mmcra & MMCRA_SAMPLE_ENABLE;

	if ((ppmu->flags & PPMU_SIAR_VALID) && marked)
		return mmcra & POWER7P_MMCRA_SIAR_VALID;

	return 1;
}

262 263
#endif /* CONFIG_PPC64 */

264
static void perf_event_interrupt(struct pt_regs *regs);
265

266
void perf_event_print_debug(void)
267 268 269 270
{
}

/*
I
Ingo Molnar 已提交
271
 * Read one performance monitor counter (PMC).
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
 */
static unsigned long read_pmc(int idx)
{
	unsigned long val;

	switch (idx) {
	case 1:
		val = mfspr(SPRN_PMC1);
		break;
	case 2:
		val = mfspr(SPRN_PMC2);
		break;
	case 3:
		val = mfspr(SPRN_PMC3);
		break;
	case 4:
		val = mfspr(SPRN_PMC4);
		break;
	case 5:
		val = mfspr(SPRN_PMC5);
		break;
	case 6:
		val = mfspr(SPRN_PMC6);
		break;
296
#ifdef CONFIG_PPC64
297 298 299 300 301 302
	case 7:
		val = mfspr(SPRN_PMC7);
		break;
	case 8:
		val = mfspr(SPRN_PMC8);
		break;
303
#endif /* CONFIG_PPC64 */
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
	default:
		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
		val = 0;
	}
	return val;
}

/*
 * Write one PMC.
 */
static void write_pmc(int idx, unsigned long val)
{
	switch (idx) {
	case 1:
		mtspr(SPRN_PMC1, val);
		break;
	case 2:
		mtspr(SPRN_PMC2, val);
		break;
	case 3:
		mtspr(SPRN_PMC3, val);
		break;
	case 4:
		mtspr(SPRN_PMC4, val);
		break;
	case 5:
		mtspr(SPRN_PMC5, val);
		break;
	case 6:
		mtspr(SPRN_PMC6, val);
		break;
335
#ifdef CONFIG_PPC64
336 337 338 339 340 341
	case 7:
		mtspr(SPRN_PMC7, val);
		break;
	case 8:
		mtspr(SPRN_PMC8, val);
		break;
342
#endif /* CONFIG_PPC64 */
343 344 345 346 347 348 349 350 351
	default:
		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
	}
}

/*
 * Check if a set of events can all go on the PMU at once.
 * If they can't, this will look at alternative codes for the events
 * and see if any combination of alternative codes is feasible.
352
 * The feasible set is returned in event_id[].
353
 */
354 355
static int power_check_constraints(struct cpu_hw_events *cpuhw,
				   u64 event_id[], unsigned int cflags[],
356
				   int n_ev)
357
{
358
	unsigned long mask, value, nv;
359 360
	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
361
	int i, j;
362 363
	unsigned long addf = ppmu->add_fields;
	unsigned long tadd = ppmu->test_adder;
364

365
	if (n_ev > ppmu->n_counter)
366 367 368 369
		return -1;

	/* First see if the events will go on as-is */
	for (i = 0; i < n_ev; ++i) {
370
		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
371 372
		    && !ppmu->limited_pmc_event(event_id[i])) {
			ppmu->get_alternatives(event_id[i], cflags[i],
373
					       cpuhw->alternatives[i]);
374
			event_id[i] = cpuhw->alternatives[i][0];
375
		}
376
		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
377
					 &cpuhw->avalues[i][0]))
378 379 380 381
			return -1;
	}
	value = mask = 0;
	for (i = 0; i < n_ev; ++i) {
382 383
		nv = (value | cpuhw->avalues[i][0]) +
			(value & cpuhw->avalues[i][0] & addf);
384
		if ((((nv + tadd) ^ value) & mask) != 0 ||
385 386
		    (((nv + tadd) ^ cpuhw->avalues[i][0]) &
		     cpuhw->amasks[i][0]) != 0)
387 388
			break;
		value = nv;
389
		mask |= cpuhw->amasks[i][0];
390 391 392 393 394 395 396 397
	}
	if (i == n_ev)
		return 0;	/* all OK */

	/* doesn't work, gather alternatives... */
	if (!ppmu->get_alternatives)
		return -1;
	for (i = 0; i < n_ev; ++i) {
398
		choice[i] = 0;
399
		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
400
						  cpuhw->alternatives[i]);
401
		for (j = 1; j < n_alt[i]; ++j)
402 403 404
			ppmu->get_constraint(cpuhw->alternatives[i][j],
					     &cpuhw->amasks[i][j],
					     &cpuhw->avalues[i][j]);
405 406 407 408 409 410 411 412 413 414 415 416 417 418
	}

	/* enumerate all possibilities and see if any will work */
	i = 0;
	j = -1;
	value = mask = nv = 0;
	while (i < n_ev) {
		if (j >= 0) {
			/* we're backtracking, restore context */
			value = svalues[i];
			mask = smasks[i];
			j = choice[i];
		}
		/*
419
		 * See if any alternative k for event_id i,
420 421 422
		 * where k > j, will satisfy the constraints.
		 */
		while (++j < n_alt[i]) {
423 424
			nv = (value | cpuhw->avalues[i][j]) +
				(value & cpuhw->avalues[i][j] & addf);
425
			if ((((nv + tadd) ^ value) & mask) == 0 &&
426 427
			    (((nv + tadd) ^ cpuhw->avalues[i][j])
			     & cpuhw->amasks[i][j]) == 0)
428 429 430 431 432
				break;
		}
		if (j >= n_alt[i]) {
			/*
			 * No feasible alternative, backtrack
433
			 * to event_id i-1 and continue enumerating its
434 435 436 437 438 439
			 * alternatives from where we got up to.
			 */
			if (--i < 0)
				return -1;
		} else {
			/*
440 441 442
			 * Found a feasible alternative for event_id i,
			 * remember where we got up to with this event_id,
			 * go on to the next event_id, and start with
443 444 445 446 447 448
			 * the first alternative for it.
			 */
			choice[i] = j;
			svalues[i] = value;
			smasks[i] = mask;
			value = nv;
449
			mask |= cpuhw->amasks[i][j];
450 451 452 453 454 455 456
			++i;
			j = -1;
		}
	}

	/* OK, we have a feasible combination, tell the caller the solution */
	for (i = 0; i < n_ev; ++i)
457
		event_id[i] = cpuhw->alternatives[i][choice[i]];
458 459 460
	return 0;
}

461
/*
462
 * Check if newly-added events have consistent settings for
463
 * exclude_{user,kernel,hv} with each other and any previously
464
 * added events.
465
 */
466
static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
467
			  int n_prev, int n_new)
468
{
469 470
	int eu = 0, ek = 0, eh = 0;
	int i, n, first;
471
	struct perf_event *event;
472 473 474 475 476

	n = n_prev + n_new;
	if (n <= 1)
		return 0;

477 478 479 480 481 482
	first = 1;
	for (i = 0; i < n; ++i) {
		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
			continue;
		}
483
		event = ctrs[i];
484
		if (first) {
485 486 487
			eu = event->attr.exclude_user;
			ek = event->attr.exclude_kernel;
			eh = event->attr.exclude_hv;
488
			first = 0;
489 490 491
		} else if (event->attr.exclude_user != eu ||
			   event->attr.exclude_kernel != ek ||
			   event->attr.exclude_hv != eh) {
492
			return -EAGAIN;
493
		}
494
	}
495 496 497 498 499 500

	if (eu || ek || eh)
		for (i = 0; i < n; ++i)
			if (cflags[i] & PPMU_LIMITED_PMC_OK)
				cflags[i] |= PPMU_LIMITED_PMC_REQD;

501 502 503
	return 0;
}

504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
static u64 check_and_compute_delta(u64 prev, u64 val)
{
	u64 delta = (val - prev) & 0xfffffffful;

	/*
	 * POWER7 can roll back counter values, if the new value is smaller
	 * than the previous value it will cause the delta and the counter to
	 * have bogus values unless we rolled a counter over.  If a coutner is
	 * rolled back, it will be smaller, but within 256, which is the maximum
	 * number of events to rollback at once.  If we dectect a rollback
	 * return 0.  This can lead to a small lack of precision in the
	 * counters.
	 */
	if (prev > val && (prev - val) < 256)
		delta = 0;

	return delta;
}

523
static void power_pmu_read(struct perf_event *event)
524
{
525
	s64 val, delta, prev;
526

P
Peter Zijlstra 已提交
527 528 529
	if (event->hw.state & PERF_HES_STOPPED)
		return;

530
	if (!event->hw.idx)
531 532 533 534 535 536 537
		return;
	/*
	 * Performance monitor interrupts come even when interrupts
	 * are soft-disabled, as long as interrupts are hard-enabled.
	 * Therefore we treat them like NMIs.
	 */
	do {
538
		prev = local64_read(&event->hw.prev_count);
539
		barrier();
540
		val = read_pmc(event->hw.idx);
541 542 543
		delta = check_and_compute_delta(prev, val);
		if (!delta)
			return;
544
	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
545

546 547
	local64_add(delta, &event->count);
	local64_sub(delta, &event->hw.period_left);
548 549
}

550 551 552
/*
 * On some machines, PMC5 and PMC6 can't be written, don't respect
 * the freeze conditions, and don't generate interrupts.  This tells
553
 * us if `event' is using such a PMC.
554 555 556
 */
static int is_limited_pmc(int pmcnum)
{
557 558
	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
		&& (pmcnum == 5 || pmcnum == 6);
559 560
}

561
static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
562 563
				    unsigned long pmc5, unsigned long pmc6)
{
564
	struct perf_event *event;
565 566 567 568
	u64 val, prev, delta;
	int i;

	for (i = 0; i < cpuhw->n_limited; ++i) {
569
		event = cpuhw->limited_counter[i];
570
		if (!event->hw.idx)
571
			continue;
572
		val = (event->hw.idx == 5) ? pmc5 : pmc6;
573
		prev = local64_read(&event->hw.prev_count);
574
		event->hw.idx = 0;
575 576 577
		delta = check_and_compute_delta(prev, val);
		if (delta)
			local64_add(delta, &event->count);
578 579 580
	}
}

581
static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
582 583
				  unsigned long pmc5, unsigned long pmc6)
{
584
	struct perf_event *event;
585
	u64 val, prev;
586 587 588
	int i;

	for (i = 0; i < cpuhw->n_limited; ++i) {
589
		event = cpuhw->limited_counter[i];
590 591
		event->hw.idx = cpuhw->limited_hwidx[i];
		val = (event->hw.idx == 5) ? pmc5 : pmc6;
592 593 594
		prev = local64_read(&event->hw.prev_count);
		if (check_and_compute_delta(prev, val))
			local64_set(&event->hw.prev_count, val);
595
		perf_event_update_userpage(event);
596 597 598 599
	}
}

/*
600
 * Since limited events don't respect the freeze conditions, we
601
 * have to read them immediately after freezing or unfreezing the
602 603
 * other events.  We try to keep the values from the limited
 * events as consistent as possible by keeping the delay (in
604
 * cycles and instructions) between freezing/unfreezing and reading
605 606
 * the limited events as small and consistent as possible.
 * Therefore, if any limited events are in use, we read them
607 608 609
 * both, and always in the same order, to minimize variability,
 * and do it inside the same asm that writes MMCR0.
 */
610
static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
611 612 613 614 615 616 617 618 619 620
{
	unsigned long pmc5, pmc6;

	if (!cpuhw->n_limited) {
		mtspr(SPRN_MMCR0, mmcr0);
		return;
	}

	/*
	 * Write MMCR0, then read PMC5 and PMC6 immediately.
621 622
	 * To ensure we don't get a performance monitor interrupt
	 * between writing MMCR0 and freezing/thawing the limited
623
	 * events, we first write MMCR0 with the event overflow
624
	 * interrupt enable bits turned off.
625 626 627
	 */
	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
		     : "=&r" (pmc5), "=&r" (pmc6)
628 629
		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
		       "i" (SPRN_MMCR0),
630 631 632
		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));

	if (mmcr0 & MMCR0_FC)
633
		freeze_limited_counters(cpuhw, pmc5, pmc6);
634
	else
635
		thaw_limited_counters(cpuhw, pmc5, pmc6);
636 637

	/*
638
	 * Write the full MMCR0 including the event overflow interrupt
639 640 641 642
	 * enable bits, if necessary.
	 */
	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
		mtspr(SPRN_MMCR0, mmcr0);
643 644
}

645
/*
646 647
 * Disable all events to prevent PMU interrupts and to allow
 * events to be added or removed.
648
 */
P
Peter Zijlstra 已提交
649
static void power_pmu_disable(struct pmu *pmu)
650
{
651
	struct cpu_hw_events *cpuhw;
652 653
	unsigned long flags;

654 655
	if (!ppmu)
		return;
656
	local_irq_save(flags);
657
	cpuhw = &__get_cpu_var(cpu_hw_events);
658

659
	if (!cpuhw->disabled) {
660 661 662
		cpuhw->disabled = 1;
		cpuhw->n_added = 0;

663 664 665 666
		/*
		 * Check if we ever enabled the PMU on this cpu.
		 */
		if (!cpuhw->pmcs_enabled) {
667
			ppc_enable_pmcs();
668 669 670
			cpuhw->pmcs_enabled = 1;
		}

671 672 673 674 675 676 677 678 679
		/*
		 * Disable instruction sampling if it was enabled
		 */
		if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
			mtspr(SPRN_MMCRA,
			      cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
			mb();
		}

680
		/*
I
Ingo Molnar 已提交
681
		 * Set the 'freeze counters' bit.
682
		 * The barrier is to make sure the mtspr has been
683
		 * executed and the PMU has frozen the events
684 685
		 * before we return.
		 */
686
		write_mmcr0(cpuhw, mfspr(SPRN_MMCR0) | MMCR0_FC);
687 688 689 690 691 692
		mb();
	}
	local_irq_restore(flags);
}

/*
693 694
 * Re-enable all events if disable == 0.
 * If we were previously disabled and events were added, then
695 696
 * put the new config on the PMU.
 */
P
Peter Zijlstra 已提交
697
static void power_pmu_enable(struct pmu *pmu)
698
{
699 700
	struct perf_event *event;
	struct cpu_hw_events *cpuhw;
701 702 703 704
	unsigned long flags;
	long i;
	unsigned long val;
	s64 left;
705
	unsigned int hwc_index[MAX_HWEVENTS];
706 707
	int n_lim;
	int idx;
708

709 710
	if (!ppmu)
		return;
711
	local_irq_save(flags);
712
	cpuhw = &__get_cpu_var(cpu_hw_events);
713 714 715 716
	if (!cpuhw->disabled) {
		local_irq_restore(flags);
		return;
	}
717 718 719
	cpuhw->disabled = 0;

	/*
720
	 * If we didn't change anything, or only removed events,
721 722
	 * no need to recalculate MMCR* settings and reset the PMCs.
	 * Just reenable the PMU with the current MMCR* settings
723
	 * (possibly updated for removal of events).
724 725
	 */
	if (!cpuhw->n_added) {
726
		mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
727
		mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
728
		if (cpuhw->n_events == 0)
729
			ppc_set_pmu_inuse(0);
730
		goto out_enable;
731 732 733
	}

	/*
734
	 * Compute MMCR* values for the new set of events
735
	 */
736
	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
737 738 739 740 741 742
			       cpuhw->mmcr)) {
		/* shouldn't ever get here */
		printk(KERN_ERR "oops compute_mmcr failed\n");
		goto out;
	}

743 744
	/*
	 * Add in MMCR0 freeze bits corresponding to the
745 746 747
	 * attr.exclude_* bits for the first event.
	 * We have already checked that all events have the
	 * same values for these bits as the first event.
748
	 */
749 750
	event = cpuhw->event[0];
	if (event->attr.exclude_user)
751
		cpuhw->mmcr[0] |= MMCR0_FCP;
752 753 754
	if (event->attr.exclude_kernel)
		cpuhw->mmcr[0] |= freeze_events_kernel;
	if (event->attr.exclude_hv)
755 756
		cpuhw->mmcr[0] |= MMCR0_FCHV;

757 758
	/*
	 * Write the new configuration to MMCR* with the freeze
759 760
	 * bit set and set the hardware events to their initial values.
	 * Then unfreeze the events.
761
	 */
762
	ppc_set_pmu_inuse(1);
763
	mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
764 765 766 767 768
	mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
	mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
				| MMCR0_FC);

	/*
769
	 * Read off any pre-existing events that need to move
770 771
	 * to another PMC.
	 */
772 773 774 775 776 777
	for (i = 0; i < cpuhw->n_events; ++i) {
		event = cpuhw->event[i];
		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
			power_pmu_read(event);
			write_pmc(event->hw.idx, 0);
			event->hw.idx = 0;
778 779 780 781
		}
	}

	/*
782
	 * Initialize the PMCs for all the new and moved events.
783
	 */
784
	cpuhw->n_limited = n_lim = 0;
785 786 787
	for (i = 0; i < cpuhw->n_events; ++i) {
		event = cpuhw->event[i];
		if (event->hw.idx)
788
			continue;
789 790
		idx = hwc_index[i] + 1;
		if (is_limited_pmc(idx)) {
791
			cpuhw->limited_counter[n_lim] = event;
792 793 794 795
			cpuhw->limited_hwidx[n_lim] = idx;
			++n_lim;
			continue;
		}
796
		val = 0;
797
		if (event->hw.sample_period) {
798
			left = local64_read(&event->hw.period_left);
799 800 801
			if (left < 0x80000000L)
				val = 0x80000000L - left;
		}
802
		local64_set(&event->hw.prev_count, val);
803
		event->hw.idx = idx;
P
Peter Zijlstra 已提交
804 805
		if (event->hw.state & PERF_HES_STOPPED)
			val = 0;
806
		write_pmc(idx, val);
807
		perf_event_update_userpage(event);
808
	}
809
	cpuhw->n_limited = n_lim;
810
	cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
811 812 813

 out_enable:
	mb();
814
	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
815

816 817 818 819 820 821 822 823
	/*
	 * Enable instruction sampling if necessary
	 */
	if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
		mb();
		mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
	}

824 825 826 827
 out:
	local_irq_restore(flags);
}

828 829
static int collect_events(struct perf_event *group, int max_count,
			  struct perf_event *ctrs[], u64 *events,
830
			  unsigned int *flags)
831 832
{
	int n = 0;
833
	struct perf_event *event;
834

835
	if (!is_software_event(group)) {
836 837 838
		if (n >= max_count)
			return -1;
		ctrs[n] = group;
839
		flags[n] = group->hw.event_base;
840 841
		events[n++] = group->hw.config;
	}
842
	list_for_each_entry(event, &group->sibling_list, group_entry) {
843 844
		if (!is_software_event(event) &&
		    event->state != PERF_EVENT_STATE_OFF) {
845 846
			if (n >= max_count)
				return -1;
847 848 849
			ctrs[n] = event;
			flags[n] = event->hw.event_base;
			events[n++] = event->hw.config;
850 851 852 853 854 855
		}
	}
	return n;
}

/*
856 857
 * Add a event to the PMU.
 * If all events are not already frozen, then we disable and
858
 * re-enable the PMU in order to get hw_perf_enable to do the
859 860
 * actual work of reconfiguring the PMU.
 */
P
Peter Zijlstra 已提交
861
static int power_pmu_add(struct perf_event *event, int ef_flags)
862
{
863
	struct cpu_hw_events *cpuhw;
864 865 866 867 868
	unsigned long flags;
	int n0;
	int ret = -EAGAIN;

	local_irq_save(flags);
P
Peter Zijlstra 已提交
869
	perf_pmu_disable(event->pmu);
870 871

	/*
872
	 * Add the event to the list (if there is room)
873 874
	 * and check whether the total set is still feasible.
	 */
875 876
	cpuhw = &__get_cpu_var(cpu_hw_events);
	n0 = cpuhw->n_events;
877
	if (n0 >= ppmu->n_counter)
878
		goto out;
879 880 881
	cpuhw->event[n0] = event;
	cpuhw->events[n0] = event->hw.config;
	cpuhw->flags[n0] = event->hw.event_base;
882

883 884 885 886 887 888
	/*
	 * This event may have been disabled/stopped in record_and_restart()
	 * because we exceeded the ->event_limit. If re-starting the event,
	 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
	 * notification is re-enabled.
	 */
P
Peter Zijlstra 已提交
889 890
	if (!(ef_flags & PERF_EF_START))
		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
891 892
	else
		event->hw.state = 0;
P
Peter Zijlstra 已提交
893

894 895
	/*
	 * If group events scheduling transaction was started,
L
Lucas De Marchi 已提交
896
	 * skip the schedulability test here, it will be performed
897 898
	 * at commit time(->commit_txn) as a whole
	 */
899
	if (cpuhw->group_flag & PERF_EVENT_TXN)
900 901
		goto nocheck;

902
	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
903
		goto out;
904
	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
905
		goto out;
906
	event->hw.config = cpuhw->events[n0];
907 908

nocheck:
909
	++cpuhw->n_events;
910 911 912 913
	++cpuhw->n_added;

	ret = 0;
 out:
P
Peter Zijlstra 已提交
914
	perf_pmu_enable(event->pmu);
915 916 917 918 919
	local_irq_restore(flags);
	return ret;
}

/*
920
 * Remove a event from the PMU.
921
 */
P
Peter Zijlstra 已提交
922
static void power_pmu_del(struct perf_event *event, int ef_flags)
923
{
924
	struct cpu_hw_events *cpuhw;
925 926 927 928
	long i;
	unsigned long flags;

	local_irq_save(flags);
P
Peter Zijlstra 已提交
929
	perf_pmu_disable(event->pmu);
930

931 932 933 934 935
	power_pmu_read(event);

	cpuhw = &__get_cpu_var(cpu_hw_events);
	for (i = 0; i < cpuhw->n_events; ++i) {
		if (event == cpuhw->event[i]) {
936
			while (++i < cpuhw->n_events) {
937
				cpuhw->event[i-1] = cpuhw->event[i];
938 939 940
				cpuhw->events[i-1] = cpuhw->events[i];
				cpuhw->flags[i-1] = cpuhw->flags[i];
			}
941 942 943 944 945
			--cpuhw->n_events;
			ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
			if (event->hw.idx) {
				write_pmc(event->hw.idx, 0);
				event->hw.idx = 0;
946
			}
947
			perf_event_update_userpage(event);
948 949 950
			break;
		}
	}
951
	for (i = 0; i < cpuhw->n_limited; ++i)
952
		if (event == cpuhw->limited_counter[i])
953 954 955
			break;
	if (i < cpuhw->n_limited) {
		while (++i < cpuhw->n_limited) {
956
			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
957 958 959 960
			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
		}
		--cpuhw->n_limited;
	}
961 962
	if (cpuhw->n_events == 0) {
		/* disable exceptions if no events are running */
963 964 965
		cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
	}

P
Peter Zijlstra 已提交
966
	perf_pmu_enable(event->pmu);
967 968 969
	local_irq_restore(flags);
}

970
/*
P
Peter Zijlstra 已提交
971 972
 * POWER-PMU does not support disabling individual counters, hence
 * program their cycle counter to their max value and ignore the interrupts.
973
 */
P
Peter Zijlstra 已提交
974 975

static void power_pmu_start(struct perf_event *event, int ef_flags)
976 977
{
	unsigned long flags;
P
Peter Zijlstra 已提交
978
	s64 left;
979
	unsigned long val;
980

981
	if (!event->hw.idx || !event->hw.sample_period)
982
		return;
P
Peter Zijlstra 已提交
983 984 985 986 987 988 989 990 991 992 993 994

	if (!(event->hw.state & PERF_HES_STOPPED))
		return;

	if (ef_flags & PERF_EF_RELOAD)
		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));

	local_irq_save(flags);
	perf_pmu_disable(event->pmu);

	event->hw.state = 0;
	left = local64_read(&event->hw.period_left);
995 996 997 998 999 1000

	val = 0;
	if (left < 0x80000000L)
		val = 0x80000000L - left;

	write_pmc(event->hw.idx, val);
P
Peter Zijlstra 已提交
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016

	perf_event_update_userpage(event);
	perf_pmu_enable(event->pmu);
	local_irq_restore(flags);
}

static void power_pmu_stop(struct perf_event *event, int ef_flags)
{
	unsigned long flags;

	if (!event->hw.idx || !event->hw.sample_period)
		return;

	if (event->hw.state & PERF_HES_STOPPED)
		return;

1017
	local_irq_save(flags);
P
Peter Zijlstra 已提交
1018
	perf_pmu_disable(event->pmu);
P
Peter Zijlstra 已提交
1019

1020
	power_pmu_read(event);
P
Peter Zijlstra 已提交
1021 1022 1023
	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
	write_pmc(event->hw.idx, 0);

1024
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
1025
	perf_pmu_enable(event->pmu);
1026 1027 1028
	local_irq_restore(flags);
}

1029 1030 1031 1032 1033
/*
 * Start group events scheduling transaction
 * Set the flag to make pmu::enable() not perform the
 * schedulability test, it will be performed at commit time
 */
P
Peter Zijlstra 已提交
1034
void power_pmu_start_txn(struct pmu *pmu)
1035 1036 1037
{
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);

P
Peter Zijlstra 已提交
1038
	perf_pmu_disable(pmu);
1039
	cpuhw->group_flag |= PERF_EVENT_TXN;
1040 1041 1042 1043 1044 1045 1046 1047
	cpuhw->n_txn_start = cpuhw->n_events;
}

/*
 * Stop group events scheduling transaction
 * Clear the flag and pmu::enable() will perform the
 * schedulability test.
 */
P
Peter Zijlstra 已提交
1048
void power_pmu_cancel_txn(struct pmu *pmu)
1049 1050 1051
{
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);

1052
	cpuhw->group_flag &= ~PERF_EVENT_TXN;
P
Peter Zijlstra 已提交
1053
	perf_pmu_enable(pmu);
1054 1055 1056 1057 1058 1059 1060
}

/*
 * Commit group events scheduling transaction
 * Perform the group schedulability test as a whole
 * Return 0 if success
 */
P
Peter Zijlstra 已提交
1061
int power_pmu_commit_txn(struct pmu *pmu)
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
{
	struct cpu_hw_events *cpuhw;
	long i, n;

	if (!ppmu)
		return -EAGAIN;
	cpuhw = &__get_cpu_var(cpu_hw_events);
	n = cpuhw->n_events;
	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
		return -EAGAIN;
	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
	if (i < 0)
		return -EAGAIN;

	for (i = cpuhw->n_txn_start; i < n; ++i)
		cpuhw->event[i]->hw.config = cpuhw->events[i];

1079
	cpuhw->group_flag &= ~PERF_EVENT_TXN;
P
Peter Zijlstra 已提交
1080
	perf_pmu_enable(pmu);
1081 1082 1083
	return 0;
}

1084
/*
1085
 * Return 1 if we might be able to put event on a limited PMC,
1086
 * or 0 if not.
1087
 * A event can only go on a limited PMC if it counts something
1088 1089 1090
 * that a limited PMC can count, doesn't require interrupts, and
 * doesn't exclude any processor mode.
 */
1091
static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1092 1093 1094
				 unsigned int flags)
{
	int n;
1095
	u64 alt[MAX_EVENT_ALTERNATIVES];
1096

1097 1098 1099 1100
	if (event->attr.exclude_user
	    || event->attr.exclude_kernel
	    || event->attr.exclude_hv
	    || event->attr.sample_period)
1101 1102 1103 1104 1105 1106
		return 0;

	if (ppmu->limited_pmc_event(ev))
		return 1;

	/*
1107
	 * The requested event_id isn't on a limited PMC already;
1108 1109 1110 1111 1112 1113 1114 1115
	 * see if any alternative code goes on a limited PMC.
	 */
	if (!ppmu->get_alternatives)
		return 0;

	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
	n = ppmu->get_alternatives(ev, flags, alt);

1116
	return n > 0;
1117 1118 1119
}

/*
1120 1121 1122
 * Find an alternative event_id that goes on a normal PMC, if possible,
 * and return the event_id code, or 0 if there is no such alternative.
 * (Note: event_id code 0 is "don't count" on all machines.)
1123
 */
1124
static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1125
{
1126
	u64 alt[MAX_EVENT_ALTERNATIVES];
1127 1128 1129 1130 1131 1132 1133 1134 1135
	int n;

	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
	n = ppmu->get_alternatives(ev, flags, alt);
	if (!n)
		return 0;
	return alt[0];
}

1136 1137
/* Number of perf_events counting hardware events */
static atomic_t num_events;
1138 1139 1140 1141
/* Used to avoid races in calling reserve/release_pmc_hardware */
static DEFINE_MUTEX(pmc_reserve_mutex);

/*
1142
 * Release the PMU if this is the last perf_event.
1143
 */
1144
static void hw_perf_event_destroy(struct perf_event *event)
1145
{
1146
	if (!atomic_add_unless(&num_events, -1, 1)) {
1147
		mutex_lock(&pmc_reserve_mutex);
1148
		if (atomic_dec_return(&num_events) == 0)
1149 1150 1151 1152 1153
			release_pmc_hardware();
		mutex_unlock(&pmc_reserve_mutex);
	}
}

1154
/*
1155
 * Translate a generic cache event_id config to a raw event_id code.
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
 */
static int hw_perf_cache_event(u64 config, u64 *eventp)
{
	unsigned long type, op, result;
	int ev;

	if (!ppmu->cache_events)
		return -EINVAL;

	/* unpack config */
	type = config & 0xff;
	op = (config >> 8) & 0xff;
	result = (config >> 16) & 0xff;

	if (type >= PERF_COUNT_HW_CACHE_MAX ||
	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
		return -EINVAL;

	ev = (*ppmu->cache_events)[type][op][result];
	if (ev == 0)
		return -EOPNOTSUPP;
	if (ev == -1)
		return -EINVAL;
	*eventp = ev;
	return 0;
}

1184
static int power_pmu_event_init(struct perf_event *event)
1185
{
1186 1187
	u64 ev;
	unsigned long flags;
1188 1189 1190
	struct perf_event *ctrs[MAX_HWEVENTS];
	u64 events[MAX_HWEVENTS];
	unsigned int cflags[MAX_HWEVENTS];
1191
	int n;
1192
	int err;
1193
	struct cpu_hw_events *cpuhw;
1194 1195

	if (!ppmu)
1196 1197
		return -ENOENT;

1198 1199 1200 1201
	/* does not support taken branch sampling */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

1202
	switch (event->attr.type) {
1203
	case PERF_TYPE_HARDWARE:
1204
		ev = event->attr.config;
1205
		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1206
			return -EOPNOTSUPP;
1207
		ev = ppmu->generic_events[ev];
1208 1209
		break;
	case PERF_TYPE_HW_CACHE:
1210
		err = hw_perf_cache_event(event->attr.config, &ev);
1211
		if (err)
1212
			return err;
1213 1214
		break;
	case PERF_TYPE_RAW:
1215
		ev = event->attr.config;
1216
		break;
1217
	default:
1218
		return -ENOENT;
1219
	}
1220

1221 1222
	event->hw.config_base = ev;
	event->hw.idx = 0;
1223

1224 1225 1226
	/*
	 * If we are not running on a hypervisor, force the
	 * exclude_hv bit to 0 so that we don't care what
1227
	 * the user set it to.
1228 1229
	 */
	if (!firmware_has_feature(FW_FEATURE_LPAR))
1230
		event->attr.exclude_hv = 0;
1231 1232

	/*
1233
	 * If this is a per-task event, then we can use
1234 1235 1236 1237 1238
	 * PM_RUN_* events interchangeably with their non RUN_*
	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
	 * XXX we should check if the task is an idle task.
	 */
	flags = 0;
1239
	if (event->attach_state & PERF_ATTACH_TASK)
1240 1241 1242
		flags |= PPMU_ONLY_COUNT_RUN;

	/*
1243 1244
	 * If this machine has limited events, check whether this
	 * event_id could go on a limited event.
1245
	 */
1246
	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1247
		if (can_go_on_limited_pmc(event, ev, flags)) {
1248 1249 1250
			flags |= PPMU_LIMITED_PMC_OK;
		} else if (ppmu->limited_pmc_event(ev)) {
			/*
1251
			 * The requested event_id is on a limited PMC,
1252 1253 1254 1255 1256
			 * but we can't use a limited PMC; see if any
			 * alternative goes on a normal PMC.
			 */
			ev = normal_pmc_alternative(ev, flags);
			if (!ev)
1257
				return -EINVAL;
1258 1259 1260
		}
	}

1261 1262
	/*
	 * If this is in a group, check if it can go on with all the
1263
	 * other hardware events in the group.  We assume the event
1264 1265 1266
	 * hasn't been linked into its leader's sibling list at this point.
	 */
	n = 0;
1267
	if (event->group_leader != event) {
1268
		n = collect_events(event->group_leader, ppmu->n_counter - 1,
1269
				   ctrs, events, cflags);
1270
		if (n < 0)
1271
			return -EINVAL;
1272
	}
1273
	events[n] = ev;
1274
	ctrs[n] = event;
1275 1276
	cflags[n] = flags;
	if (check_excludes(ctrs, cflags, n, 1))
1277
		return -EINVAL;
1278

1279
	cpuhw = &get_cpu_var(cpu_hw_events);
1280
	err = power_check_constraints(cpuhw, events, cflags, n + 1);
1281
	put_cpu_var(cpu_hw_events);
1282
	if (err)
1283
		return -EINVAL;
1284

1285 1286 1287
	event->hw.config = events[n];
	event->hw.event_base = cflags[n];
	event->hw.last_period = event->hw.sample_period;
1288
	local64_set(&event->hw.period_left, event->hw.last_period);
1289 1290 1291

	/*
	 * See if we need to reserve the PMU.
1292
	 * If no events are currently in use, then we have to take a
1293 1294 1295 1296
	 * mutex to ensure that we don't race with another task doing
	 * reserve_pmc_hardware or release_pmc_hardware.
	 */
	err = 0;
1297
	if (!atomic_inc_not_zero(&num_events)) {
1298
		mutex_lock(&pmc_reserve_mutex);
1299 1300
		if (atomic_read(&num_events) == 0 &&
		    reserve_pmc_hardware(perf_event_interrupt))
1301 1302
			err = -EBUSY;
		else
1303
			atomic_inc(&num_events);
1304 1305
		mutex_unlock(&pmc_reserve_mutex);
	}
1306
	event->destroy = hw_perf_event_destroy;
1307

1308
	return err;
1309 1310
}

1311 1312 1313 1314 1315
static int power_pmu_event_idx(struct perf_event *event)
{
	return event->hw.idx;
}

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
ssize_t power_events_sysfs_show(struct device *dev,
				struct device_attribute *attr, char *page)
{
	struct perf_pmu_events_attr *pmu_attr;

	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);

	return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
}

1326
struct pmu power_pmu = {
P
Peter Zijlstra 已提交
1327 1328
	.pmu_enable	= power_pmu_enable,
	.pmu_disable	= power_pmu_disable,
1329
	.event_init	= power_pmu_event_init,
P
Peter Zijlstra 已提交
1330 1331 1332 1333
	.add		= power_pmu_add,
	.del		= power_pmu_del,
	.start		= power_pmu_start,
	.stop		= power_pmu_stop,
1334 1335 1336 1337
	.read		= power_pmu_read,
	.start_txn	= power_pmu_start_txn,
	.cancel_txn	= power_pmu_cancel_txn,
	.commit_txn	= power_pmu_commit_txn,
1338
	.event_idx	= power_pmu_event_idx,
1339 1340
};

1341

1342
/*
I
Ingo Molnar 已提交
1343
 * A counter has overflowed; update its count and record
1344 1345 1346
 * things if requested.  Note that interrupts are hard-disabled
 * here so there is no possibility of being interrupted.
 */
1347
static void record_and_restart(struct perf_event *event, unsigned long val,
1348
			       struct pt_regs *regs)
1349
{
1350
	u64 period = event->hw.sample_period;
1351 1352 1353
	s64 prev, delta, left;
	int record = 0;

P
Peter Zijlstra 已提交
1354 1355 1356 1357 1358
	if (event->hw.state & PERF_HES_STOPPED) {
		write_pmc(event->hw.idx, 0);
		return;
	}

1359
	/* we don't have to worry about interrupts here */
1360
	prev = local64_read(&event->hw.prev_count);
1361
	delta = check_and_compute_delta(prev, val);
1362
	local64_add(delta, &event->count);
1363 1364

	/*
1365
	 * See if the total period for this event has expired,
1366 1367 1368
	 * and update for the next period.
	 */
	val = 0;
1369
	left = local64_read(&event->hw.period_left) - delta;
1370 1371
	if (delta == 0)
		left++;
1372
	if (period) {
1373
		if (left <= 0) {
1374
			left += period;
1375
			if (left <= 0)
1376
				left = period;
1377
			record = siar_valid(regs);
1378
			event->hw.last_period = event->hw.sample_period;
1379
		}
1380 1381
		if (left < 0x80000000LL)
			val = 0x80000000LL - left;
1382 1383
	}

P
Peter Zijlstra 已提交
1384 1385 1386 1387 1388
	write_pmc(event->hw.idx, val);
	local64_set(&event->hw.prev_count, val);
	local64_set(&event->hw.period_left, left);
	perf_event_update_userpage(event);

1389 1390 1391
	/*
	 * Finally record data if requested.
	 */
1392
	if (record) {
1393 1394
		struct perf_sample_data data;

1395
		perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
1396

1397
		if (event->attr.sample_type & PERF_SAMPLE_ADDR)
1398 1399
			perf_get_data_addr(regs, &data.addr);

1400
		if (perf_event_overflow(event, &data, regs))
P
Peter Zijlstra 已提交
1401
			power_pmu_stop(event, 0);
1402 1403 1404 1405 1406
	}
}

/*
 * Called from generic code to get the misc flags (i.e. processor mode)
1407
 * for an event_id.
1408 1409 1410
 */
unsigned long perf_misc_flags(struct pt_regs *regs)
{
1411
	u32 flags = perf_get_misc_flags(regs);
1412

1413 1414
	if (flags)
		return flags;
1415 1416
	return user_mode(regs) ? PERF_RECORD_MISC_USER :
		PERF_RECORD_MISC_KERNEL;
1417 1418 1419 1420
}

/*
 * Called from generic code to get the instruction pointer
1421
 * for an event_id.
1422 1423 1424
 */
unsigned long perf_instruction_pointer(struct pt_regs *regs)
{
1425
	unsigned long use_siar = regs->result;
1426

1427
	if (use_siar && siar_valid(regs))
1428
		return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
1429 1430
	else if (use_siar)
		return 0;		// no valid instruction pointer
1431
	else
1432
		return regs->nip;
1433 1434
}

1435
static bool pmc_overflow_power7(unsigned long val)
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
{
	/*
	 * Events on POWER7 can roll back if a speculative event doesn't
	 * eventually complete. Unfortunately in some rare cases they will
	 * raise a performance monitor exception. We need to catch this to
	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
	 * cycles from overflow.
	 *
	 * We only do this if the first pass fails to find any overflowing
	 * PMCs because a user might set a period of less than 256 and we
	 * don't want to mistakenly reset them.
	 */
1448 1449 1450 1451 1452 1453 1454 1455 1456
	if ((0x80000000 - val) <= 256)
		return true;

	return false;
}

static bool pmc_overflow(unsigned long val)
{
	if ((int)val < 0)
1457 1458 1459 1460 1461
		return true;

	return false;
}

1462 1463 1464
/*
 * Performance monitor interrupt stuff
 */
1465
static void perf_event_interrupt(struct pt_regs *regs)
1466
{
1467
	int i, j;
1468 1469
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
	struct perf_event *event;
1470 1471
	unsigned long val[8];
	int found, active;
1472 1473
	int nmi;

1474
	if (cpuhw->n_limited)
1475
		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
1476 1477
					mfspr(SPRN_PMC6));

1478
	perf_read_regs(regs);
1479

1480
	nmi = perf_intr_is_nmi(regs);
1481 1482 1483 1484
	if (nmi)
		nmi_enter();
	else
		irq_enter();
1485

1486 1487 1488 1489 1490 1491 1492 1493
	/* Read all the PMCs since we'll need them a bunch of times */
	for (i = 0; i < ppmu->n_counter; ++i)
		val[i] = read_pmc(i + 1);

	/* Try to find what caused the IRQ */
	found = 0;
	for (i = 0; i < ppmu->n_counter; ++i) {
		if (!pmc_overflow(val[i]))
1494
			continue;
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
		if (is_limited_pmc(i + 1))
			continue; /* these won't generate IRQs */
		/*
		 * We've found one that's overflowed.  For active
		 * counters we need to log this.  For inactive
		 * counters, we need to reset it anyway
		 */
		found = 1;
		active = 0;
		for (j = 0; j < cpuhw->n_events; ++j) {
			event = cpuhw->event[j];
			if (event->hw.idx == (i + 1)) {
				active = 1;
				record_and_restart(event, val[i], regs);
				break;
			}
1511
		}
1512 1513 1514
		if (!active)
			/* reset non active counters that have overflowed */
			write_pmc(i + 1, 0);
1515
	}
1516 1517 1518 1519 1520
	if (!found && pvr_version_is(PVR_POWER7)) {
		/* check active counters for special buggy p7 overflow */
		for (i = 0; i < cpuhw->n_events; ++i) {
			event = cpuhw->event[i];
			if (!event->hw.idx || is_limited_pmc(event->hw.idx))
1521
				continue;
1522 1523 1524 1525 1526 1527 1528
			if (pmc_overflow_power7(val[event->hw.idx - 1])) {
				/* event has overflowed in a buggy way*/
				found = 1;
				record_and_restart(event,
						   val[event->hw.idx - 1],
						   regs);
			}
1529 1530
		}
	}
1531 1532
	if ((!found) && printk_ratelimit())
		printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
1533 1534 1535

	/*
	 * Reset MMCR0 to its normal value.  This will set PMXE and
I
Ingo Molnar 已提交
1536
	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
1537
	 * and thus allow interrupts to occur again.
1538
	 * XXX might want to use MSR.PM to keep the events frozen until
1539 1540
	 * we get back out of this interrupt.
	 */
1541
	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
1542

1543 1544 1545
	if (nmi)
		nmi_exit();
	else
1546
		irq_exit();
1547 1548
}

1549
static void power_pmu_setup(int cpu)
1550
{
1551
	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
1552

1553 1554
	if (!ppmu)
		return;
1555 1556 1557 1558
	memset(cpuhw, 0, sizeof(*cpuhw));
	cpuhw->mmcr[0] = MMCR0_FC;
}

1559
static int __cpuinit
1560
power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
{
	unsigned int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_UP_PREPARE:
		power_pmu_setup(cpu);
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

1576
int __cpuinit register_power_pmu(struct power_pmu *pmu)
1577
{
1578 1579 1580 1581 1582 1583
	if (ppmu)
		return -EBUSY;		/* something's already registered */

	ppmu = pmu;
	pr_info("%s performance monitor hardware support registered\n",
		pmu->name);
1584

1585 1586
	power_pmu.attr_groups = ppmu->attr_groups;

1587
#ifdef MSR_HV
1588 1589 1590 1591
	/*
	 * Use FCHV to ignore kernel events if MSR.HV is set.
	 */
	if (mfmsr() & MSR_HV)
1592
		freeze_events_kernel = MMCR0_FCHV;
1593
#endif /* CONFIG_PPC64 */
1594

P
Peter Zijlstra 已提交
1595
	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
1596 1597
	perf_cpu_notifier(power_pmu_notifier);

1598 1599
	return 0;
}