core-book3s.c 35.6 KB
Newer Older
1
/*
2
 * Performance event support - powerpc architecture code
3 4 5 6 7 8 9 10 11 12
 *
 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
#include <linux/kernel.h>
#include <linux/sched.h>
13
#include <linux/perf_event.h>
14 15 16 17
#include <linux/percpu.h>
#include <linux/hardirq.h>
#include <asm/reg.h>
#include <asm/pmc.h>
18
#include <asm/machdep.h>
19
#include <asm/firmware.h>
20
#include <asm/ptrace.h>
21

22 23
struct cpu_hw_events {
	int n_events;
24 25 26
	int n_percpu;
	int disabled;
	int n_added;
27 28
	int n_limited;
	u8  pmcs_enabled;
29 30 31
	struct perf_event *event[MAX_HWEVENTS];
	u64 events[MAX_HWEVENTS];
	unsigned int flags[MAX_HWEVENTS];
32
	unsigned long mmcr[3];
33 34
	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
35 36 37
	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
38 39 40

	unsigned int group_flag;
	int n_txn_start;
41
};
42
DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
43 44 45

struct power_pmu *ppmu;

46
/*
I
Ingo Molnar 已提交
47
 * Normally, to ignore kernel events we set the FCS (freeze counters
48 49 50 51 52
 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
 * hypervisor bit set in the MSR, or if we are running on a processor
 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
 * then we need to use the FCHV bit to ignore kernel events.
 */
53
static unsigned int freeze_events_kernel = MMCR0_FCS;
54

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
/*
 * 32-bit doesn't have MMCRA but does have an MMCR2,
 * and a few other names are different.
 */
#ifdef CONFIG_PPC32

#define MMCR0_FCHV		0
#define MMCR0_PMCjCE		MMCR0_PMCnCE

#define SPRN_MMCRA		SPRN_MMCR2
#define MMCRA_SAMPLE_ENABLE	0

static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
{
	return 0;
}
static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
static inline u32 perf_get_misc_flags(struct pt_regs *regs)
{
	return 0;
}
static inline void perf_read_regs(struct pt_regs *regs) { }
static inline int perf_intr_is_nmi(struct pt_regs *regs)
{
	return 0;
}

#endif /* CONFIG_PPC32 */

/*
 * Things that are specific to 64-bit implementations.
 */
#ifdef CONFIG_PPC64

static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
{
	unsigned long mmcra = regs->dsisr;

	if ((mmcra & MMCRA_SAMPLE_ENABLE) && !(ppmu->flags & PPMU_ALT_SIPR)) {
		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
		if (slot > 1)
			return 4 * (slot - 1);
	}
	return 0;
}

/*
 * The user wants a data address recorded.
 * If we're not doing instruction sampling, give them the SDAR
 * (sampled data address).  If we are doing instruction sampling, then
 * only give them the SDAR if it corresponds to the instruction
 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC
 * bit in MMCRA.
 */
static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
{
	unsigned long mmcra = regs->dsisr;
	unsigned long sdsync = (ppmu->flags & PPMU_ALT_SIPR) ?
		POWER6_MMCRA_SDSYNC : MMCRA_SDSYNC;

	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || (mmcra & sdsync))
		*addrp = mfspr(SPRN_SDAR);
}

119 120 121 122 123 124 125 126 127
static inline u32 perf_flags_from_msr(struct pt_regs *regs)
{
	if (regs->msr & MSR_PR)
		return PERF_RECORD_MISC_USER;
	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
		return PERF_RECORD_MISC_HYPERVISOR;
	return PERF_RECORD_MISC_KERNEL;
}

128 129 130
static inline u32 perf_get_misc_flags(struct pt_regs *regs)
{
	unsigned long mmcra = regs->dsisr;
131 132
	unsigned long sihv = MMCRA_SIHV;
	unsigned long sipr = MMCRA_SIPR;
133

134
	/* Not a PMU interrupt: Make up flags from regs->msr */
135
	if (TRAP(regs) != 0xf00)
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
		return perf_flags_from_msr(regs);

	/*
	 * If we don't support continuous sampling and this
	 * is not a marked event, same deal
	 */
	if ((ppmu->flags & PPMU_NO_CONT_SAMPLING) &&
	    !(mmcra & MMCRA_SAMPLE_ENABLE))
		return perf_flags_from_msr(regs);

	/*
	 * If we don't have flags in MMCRA, rather than using
	 * the MSR, we intuit the flags from the address in
	 * SIAR which should give slightly more reliable
	 * results
	 */
	if (ppmu->flags & PPMU_NO_SIPR) {
		unsigned long siar = mfspr(SPRN_SIAR);
		if (siar >= PAGE_OFFSET)
			return PERF_RECORD_MISC_KERNEL;
		return PERF_RECORD_MISC_USER;
	}
158 159

	if (ppmu->flags & PPMU_ALT_SIPR) {
160 161
		sihv = POWER6_MMCRA_SIHV;
		sipr = POWER6_MMCRA_SIPR;
162
	}
163 164 165 166 167

	/* PR has priority over HV, so order below is important */
	if (mmcra & sipr)
		return PERF_RECORD_MISC_USER;
	if ((mmcra & sihv) && (freeze_events_kernel != MMCR0_FCHV))
168
		return PERF_RECORD_MISC_HYPERVISOR;
169
	return PERF_RECORD_MISC_KERNEL;
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
}

/*
 * Overload regs->dsisr to store MMCRA so we only need to read it once
 * on each interrupt.
 */
static inline void perf_read_regs(struct pt_regs *regs)
{
	regs->dsisr = mfspr(SPRN_MMCRA);
}

/*
 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
 * it as an NMI.
 */
static inline int perf_intr_is_nmi(struct pt_regs *regs)
{
	return !regs->softe;
}

#endif /* CONFIG_PPC64 */

192
static void perf_event_interrupt(struct pt_regs *regs);
193

194
void perf_event_print_debug(void)
195 196 197 198
{
}

/*
I
Ingo Molnar 已提交
199
 * Read one performance monitor counter (PMC).
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
 */
static unsigned long read_pmc(int idx)
{
	unsigned long val;

	switch (idx) {
	case 1:
		val = mfspr(SPRN_PMC1);
		break;
	case 2:
		val = mfspr(SPRN_PMC2);
		break;
	case 3:
		val = mfspr(SPRN_PMC3);
		break;
	case 4:
		val = mfspr(SPRN_PMC4);
		break;
	case 5:
		val = mfspr(SPRN_PMC5);
		break;
	case 6:
		val = mfspr(SPRN_PMC6);
		break;
224
#ifdef CONFIG_PPC64
225 226 227 228 229 230
	case 7:
		val = mfspr(SPRN_PMC7);
		break;
	case 8:
		val = mfspr(SPRN_PMC8);
		break;
231
#endif /* CONFIG_PPC64 */
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
	default:
		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
		val = 0;
	}
	return val;
}

/*
 * Write one PMC.
 */
static void write_pmc(int idx, unsigned long val)
{
	switch (idx) {
	case 1:
		mtspr(SPRN_PMC1, val);
		break;
	case 2:
		mtspr(SPRN_PMC2, val);
		break;
	case 3:
		mtspr(SPRN_PMC3, val);
		break;
	case 4:
		mtspr(SPRN_PMC4, val);
		break;
	case 5:
		mtspr(SPRN_PMC5, val);
		break;
	case 6:
		mtspr(SPRN_PMC6, val);
		break;
263
#ifdef CONFIG_PPC64
264 265 266 267 268 269
	case 7:
		mtspr(SPRN_PMC7, val);
		break;
	case 8:
		mtspr(SPRN_PMC8, val);
		break;
270
#endif /* CONFIG_PPC64 */
271 272 273 274 275 276 277 278 279
	default:
		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
	}
}

/*
 * Check if a set of events can all go on the PMU at once.
 * If they can't, this will look at alternative codes for the events
 * and see if any combination of alternative codes is feasible.
280
 * The feasible set is returned in event_id[].
281
 */
282 283
static int power_check_constraints(struct cpu_hw_events *cpuhw,
				   u64 event_id[], unsigned int cflags[],
284
				   int n_ev)
285
{
286
	unsigned long mask, value, nv;
287 288
	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
289
	int i, j;
290 291
	unsigned long addf = ppmu->add_fields;
	unsigned long tadd = ppmu->test_adder;
292

293
	if (n_ev > ppmu->n_counter)
294 295 296 297
		return -1;

	/* First see if the events will go on as-is */
	for (i = 0; i < n_ev; ++i) {
298
		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
299 300
		    && !ppmu->limited_pmc_event(event_id[i])) {
			ppmu->get_alternatives(event_id[i], cflags[i],
301
					       cpuhw->alternatives[i]);
302
			event_id[i] = cpuhw->alternatives[i][0];
303
		}
304
		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
305
					 &cpuhw->avalues[i][0]))
306 307 308 309
			return -1;
	}
	value = mask = 0;
	for (i = 0; i < n_ev; ++i) {
310 311
		nv = (value | cpuhw->avalues[i][0]) +
			(value & cpuhw->avalues[i][0] & addf);
312
		if ((((nv + tadd) ^ value) & mask) != 0 ||
313 314
		    (((nv + tadd) ^ cpuhw->avalues[i][0]) &
		     cpuhw->amasks[i][0]) != 0)
315 316
			break;
		value = nv;
317
		mask |= cpuhw->amasks[i][0];
318 319 320 321 322 323 324 325
	}
	if (i == n_ev)
		return 0;	/* all OK */

	/* doesn't work, gather alternatives... */
	if (!ppmu->get_alternatives)
		return -1;
	for (i = 0; i < n_ev; ++i) {
326
		choice[i] = 0;
327
		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
328
						  cpuhw->alternatives[i]);
329
		for (j = 1; j < n_alt[i]; ++j)
330 331 332
			ppmu->get_constraint(cpuhw->alternatives[i][j],
					     &cpuhw->amasks[i][j],
					     &cpuhw->avalues[i][j]);
333 334 335 336 337 338 339 340 341 342 343 344 345 346
	}

	/* enumerate all possibilities and see if any will work */
	i = 0;
	j = -1;
	value = mask = nv = 0;
	while (i < n_ev) {
		if (j >= 0) {
			/* we're backtracking, restore context */
			value = svalues[i];
			mask = smasks[i];
			j = choice[i];
		}
		/*
347
		 * See if any alternative k for event_id i,
348 349 350
		 * where k > j, will satisfy the constraints.
		 */
		while (++j < n_alt[i]) {
351 352
			nv = (value | cpuhw->avalues[i][j]) +
				(value & cpuhw->avalues[i][j] & addf);
353
			if ((((nv + tadd) ^ value) & mask) == 0 &&
354 355
			    (((nv + tadd) ^ cpuhw->avalues[i][j])
			     & cpuhw->amasks[i][j]) == 0)
356 357 358 359 360
				break;
		}
		if (j >= n_alt[i]) {
			/*
			 * No feasible alternative, backtrack
361
			 * to event_id i-1 and continue enumerating its
362 363 364 365 366 367
			 * alternatives from where we got up to.
			 */
			if (--i < 0)
				return -1;
		} else {
			/*
368 369 370
			 * Found a feasible alternative for event_id i,
			 * remember where we got up to with this event_id,
			 * go on to the next event_id, and start with
371 372 373 374 375 376
			 * the first alternative for it.
			 */
			choice[i] = j;
			svalues[i] = value;
			smasks[i] = mask;
			value = nv;
377
			mask |= cpuhw->amasks[i][j];
378 379 380 381 382 383 384
			++i;
			j = -1;
		}
	}

	/* OK, we have a feasible combination, tell the caller the solution */
	for (i = 0; i < n_ev; ++i)
385
		event_id[i] = cpuhw->alternatives[i][choice[i]];
386 387 388
	return 0;
}

389
/*
390
 * Check if newly-added events have consistent settings for
391
 * exclude_{user,kernel,hv} with each other and any previously
392
 * added events.
393
 */
394
static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
395
			  int n_prev, int n_new)
396
{
397 398
	int eu = 0, ek = 0, eh = 0;
	int i, n, first;
399
	struct perf_event *event;
400 401 402 403 404

	n = n_prev + n_new;
	if (n <= 1)
		return 0;

405 406 407 408 409 410
	first = 1;
	for (i = 0; i < n; ++i) {
		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
			continue;
		}
411
		event = ctrs[i];
412
		if (first) {
413 414 415
			eu = event->attr.exclude_user;
			ek = event->attr.exclude_kernel;
			eh = event->attr.exclude_hv;
416
			first = 0;
417 418 419
		} else if (event->attr.exclude_user != eu ||
			   event->attr.exclude_kernel != ek ||
			   event->attr.exclude_hv != eh) {
420
			return -EAGAIN;
421
		}
422
	}
423 424 425 426 427 428

	if (eu || ek || eh)
		for (i = 0; i < n; ++i)
			if (cflags[i] & PPMU_LIMITED_PMC_OK)
				cflags[i] |= PPMU_LIMITED_PMC_REQD;

429 430 431
	return 0;
}

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
static u64 check_and_compute_delta(u64 prev, u64 val)
{
	u64 delta = (val - prev) & 0xfffffffful;

	/*
	 * POWER7 can roll back counter values, if the new value is smaller
	 * than the previous value it will cause the delta and the counter to
	 * have bogus values unless we rolled a counter over.  If a coutner is
	 * rolled back, it will be smaller, but within 256, which is the maximum
	 * number of events to rollback at once.  If we dectect a rollback
	 * return 0.  This can lead to a small lack of precision in the
	 * counters.
	 */
	if (prev > val && (prev - val) < 256)
		delta = 0;

	return delta;
}

451
static void power_pmu_read(struct perf_event *event)
452
{
453
	s64 val, delta, prev;
454

P
Peter Zijlstra 已提交
455 456 457
	if (event->hw.state & PERF_HES_STOPPED)
		return;

458
	if (!event->hw.idx)
459 460 461 462 463 464 465
		return;
	/*
	 * Performance monitor interrupts come even when interrupts
	 * are soft-disabled, as long as interrupts are hard-enabled.
	 * Therefore we treat them like NMIs.
	 */
	do {
466
		prev = local64_read(&event->hw.prev_count);
467
		barrier();
468
		val = read_pmc(event->hw.idx);
469 470 471
		delta = check_and_compute_delta(prev, val);
		if (!delta)
			return;
472
	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
473

474 475
	local64_add(delta, &event->count);
	local64_sub(delta, &event->hw.period_left);
476 477
}

478 479 480
/*
 * On some machines, PMC5 and PMC6 can't be written, don't respect
 * the freeze conditions, and don't generate interrupts.  This tells
481
 * us if `event' is using such a PMC.
482 483 484
 */
static int is_limited_pmc(int pmcnum)
{
485 486
	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
		&& (pmcnum == 5 || pmcnum == 6);
487 488
}

489
static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
490 491
				    unsigned long pmc5, unsigned long pmc6)
{
492
	struct perf_event *event;
493 494 495 496
	u64 val, prev, delta;
	int i;

	for (i = 0; i < cpuhw->n_limited; ++i) {
497
		event = cpuhw->limited_counter[i];
498
		if (!event->hw.idx)
499
			continue;
500
		val = (event->hw.idx == 5) ? pmc5 : pmc6;
501
		prev = local64_read(&event->hw.prev_count);
502
		event->hw.idx = 0;
503 504 505
		delta = check_and_compute_delta(prev, val);
		if (delta)
			local64_add(delta, &event->count);
506 507 508
	}
}

509
static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
510 511
				  unsigned long pmc5, unsigned long pmc6)
{
512
	struct perf_event *event;
513
	u64 val, prev;
514 515 516
	int i;

	for (i = 0; i < cpuhw->n_limited; ++i) {
517
		event = cpuhw->limited_counter[i];
518 519
		event->hw.idx = cpuhw->limited_hwidx[i];
		val = (event->hw.idx == 5) ? pmc5 : pmc6;
520 521 522
		prev = local64_read(&event->hw.prev_count);
		if (check_and_compute_delta(prev, val))
			local64_set(&event->hw.prev_count, val);
523
		perf_event_update_userpage(event);
524 525 526 527
	}
}

/*
528
 * Since limited events don't respect the freeze conditions, we
529
 * have to read them immediately after freezing or unfreezing the
530 531
 * other events.  We try to keep the values from the limited
 * events as consistent as possible by keeping the delay (in
532
 * cycles and instructions) between freezing/unfreezing and reading
533 534
 * the limited events as small and consistent as possible.
 * Therefore, if any limited events are in use, we read them
535 536 537
 * both, and always in the same order, to minimize variability,
 * and do it inside the same asm that writes MMCR0.
 */
538
static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
539 540 541 542 543 544 545 546 547 548
{
	unsigned long pmc5, pmc6;

	if (!cpuhw->n_limited) {
		mtspr(SPRN_MMCR0, mmcr0);
		return;
	}

	/*
	 * Write MMCR0, then read PMC5 and PMC6 immediately.
549 550
	 * To ensure we don't get a performance monitor interrupt
	 * between writing MMCR0 and freezing/thawing the limited
551
	 * events, we first write MMCR0 with the event overflow
552
	 * interrupt enable bits turned off.
553 554 555
	 */
	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
		     : "=&r" (pmc5), "=&r" (pmc6)
556 557
		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
		       "i" (SPRN_MMCR0),
558 559 560
		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));

	if (mmcr0 & MMCR0_FC)
561
		freeze_limited_counters(cpuhw, pmc5, pmc6);
562
	else
563
		thaw_limited_counters(cpuhw, pmc5, pmc6);
564 565

	/*
566
	 * Write the full MMCR0 including the event overflow interrupt
567 568 569 570
	 * enable bits, if necessary.
	 */
	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
		mtspr(SPRN_MMCR0, mmcr0);
571 572
}

573
/*
574 575
 * Disable all events to prevent PMU interrupts and to allow
 * events to be added or removed.
576
 */
P
Peter Zijlstra 已提交
577
static void power_pmu_disable(struct pmu *pmu)
578
{
579
	struct cpu_hw_events *cpuhw;
580 581
	unsigned long flags;

582 583
	if (!ppmu)
		return;
584
	local_irq_save(flags);
585
	cpuhw = &__get_cpu_var(cpu_hw_events);
586

587
	if (!cpuhw->disabled) {
588 589 590
		cpuhw->disabled = 1;
		cpuhw->n_added = 0;

591 592 593 594
		/*
		 * Check if we ever enabled the PMU on this cpu.
		 */
		if (!cpuhw->pmcs_enabled) {
595
			ppc_enable_pmcs();
596 597 598
			cpuhw->pmcs_enabled = 1;
		}

599 600 601 602 603 604 605 606 607
		/*
		 * Disable instruction sampling if it was enabled
		 */
		if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
			mtspr(SPRN_MMCRA,
			      cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
			mb();
		}

608
		/*
I
Ingo Molnar 已提交
609
		 * Set the 'freeze counters' bit.
610
		 * The barrier is to make sure the mtspr has been
611
		 * executed and the PMU has frozen the events
612 613
		 * before we return.
		 */
614
		write_mmcr0(cpuhw, mfspr(SPRN_MMCR0) | MMCR0_FC);
615 616 617 618 619 620
		mb();
	}
	local_irq_restore(flags);
}

/*
621 622
 * Re-enable all events if disable == 0.
 * If we were previously disabled and events were added, then
623 624
 * put the new config on the PMU.
 */
P
Peter Zijlstra 已提交
625
static void power_pmu_enable(struct pmu *pmu)
626
{
627 628
	struct perf_event *event;
	struct cpu_hw_events *cpuhw;
629 630 631 632
	unsigned long flags;
	long i;
	unsigned long val;
	s64 left;
633
	unsigned int hwc_index[MAX_HWEVENTS];
634 635
	int n_lim;
	int idx;
636

637 638
	if (!ppmu)
		return;
639
	local_irq_save(flags);
640
	cpuhw = &__get_cpu_var(cpu_hw_events);
641 642 643 644
	if (!cpuhw->disabled) {
		local_irq_restore(flags);
		return;
	}
645 646 647
	cpuhw->disabled = 0;

	/*
648
	 * If we didn't change anything, or only removed events,
649 650
	 * no need to recalculate MMCR* settings and reset the PMCs.
	 * Just reenable the PMU with the current MMCR* settings
651
	 * (possibly updated for removal of events).
652 653
	 */
	if (!cpuhw->n_added) {
654
		mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
655
		mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
656
		if (cpuhw->n_events == 0)
657
			ppc_set_pmu_inuse(0);
658
		goto out_enable;
659 660 661
	}

	/*
662
	 * Compute MMCR* values for the new set of events
663
	 */
664
	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
665 666 667 668 669 670
			       cpuhw->mmcr)) {
		/* shouldn't ever get here */
		printk(KERN_ERR "oops compute_mmcr failed\n");
		goto out;
	}

671 672
	/*
	 * Add in MMCR0 freeze bits corresponding to the
673 674 675
	 * attr.exclude_* bits for the first event.
	 * We have already checked that all events have the
	 * same values for these bits as the first event.
676
	 */
677 678
	event = cpuhw->event[0];
	if (event->attr.exclude_user)
679
		cpuhw->mmcr[0] |= MMCR0_FCP;
680 681 682
	if (event->attr.exclude_kernel)
		cpuhw->mmcr[0] |= freeze_events_kernel;
	if (event->attr.exclude_hv)
683 684
		cpuhw->mmcr[0] |= MMCR0_FCHV;

685 686
	/*
	 * Write the new configuration to MMCR* with the freeze
687 688
	 * bit set and set the hardware events to their initial values.
	 * Then unfreeze the events.
689
	 */
690
	ppc_set_pmu_inuse(1);
691
	mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
692 693 694 695 696
	mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
	mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
				| MMCR0_FC);

	/*
697
	 * Read off any pre-existing events that need to move
698 699
	 * to another PMC.
	 */
700 701 702 703 704 705
	for (i = 0; i < cpuhw->n_events; ++i) {
		event = cpuhw->event[i];
		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
			power_pmu_read(event);
			write_pmc(event->hw.idx, 0);
			event->hw.idx = 0;
706 707 708 709
		}
	}

	/*
710
	 * Initialize the PMCs for all the new and moved events.
711
	 */
712
	cpuhw->n_limited = n_lim = 0;
713 714 715
	for (i = 0; i < cpuhw->n_events; ++i) {
		event = cpuhw->event[i];
		if (event->hw.idx)
716
			continue;
717 718
		idx = hwc_index[i] + 1;
		if (is_limited_pmc(idx)) {
719
			cpuhw->limited_counter[n_lim] = event;
720 721 722 723
			cpuhw->limited_hwidx[n_lim] = idx;
			++n_lim;
			continue;
		}
724
		val = 0;
725
		if (event->hw.sample_period) {
726
			left = local64_read(&event->hw.period_left);
727 728 729
			if (left < 0x80000000L)
				val = 0x80000000L - left;
		}
730
		local64_set(&event->hw.prev_count, val);
731
		event->hw.idx = idx;
P
Peter Zijlstra 已提交
732 733
		if (event->hw.state & PERF_HES_STOPPED)
			val = 0;
734
		write_pmc(idx, val);
735
		perf_event_update_userpage(event);
736
	}
737
	cpuhw->n_limited = n_lim;
738
	cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
739 740 741

 out_enable:
	mb();
742
	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
743

744 745 746 747 748 749 750 751
	/*
	 * Enable instruction sampling if necessary
	 */
	if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
		mb();
		mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
	}

752 753 754 755
 out:
	local_irq_restore(flags);
}

756 757
static int collect_events(struct perf_event *group, int max_count,
			  struct perf_event *ctrs[], u64 *events,
758
			  unsigned int *flags)
759 760
{
	int n = 0;
761
	struct perf_event *event;
762

763
	if (!is_software_event(group)) {
764 765 766
		if (n >= max_count)
			return -1;
		ctrs[n] = group;
767
		flags[n] = group->hw.event_base;
768 769
		events[n++] = group->hw.config;
	}
770
	list_for_each_entry(event, &group->sibling_list, group_entry) {
771 772
		if (!is_software_event(event) &&
		    event->state != PERF_EVENT_STATE_OFF) {
773 774
			if (n >= max_count)
				return -1;
775 776 777
			ctrs[n] = event;
			flags[n] = event->hw.event_base;
			events[n++] = event->hw.config;
778 779 780 781 782 783
		}
	}
	return n;
}

/*
784 785
 * Add a event to the PMU.
 * If all events are not already frozen, then we disable and
786
 * re-enable the PMU in order to get hw_perf_enable to do the
787 788
 * actual work of reconfiguring the PMU.
 */
P
Peter Zijlstra 已提交
789
static int power_pmu_add(struct perf_event *event, int ef_flags)
790
{
791
	struct cpu_hw_events *cpuhw;
792 793 794 795 796
	unsigned long flags;
	int n0;
	int ret = -EAGAIN;

	local_irq_save(flags);
P
Peter Zijlstra 已提交
797
	perf_pmu_disable(event->pmu);
798 799

	/*
800
	 * Add the event to the list (if there is room)
801 802
	 * and check whether the total set is still feasible.
	 */
803 804
	cpuhw = &__get_cpu_var(cpu_hw_events);
	n0 = cpuhw->n_events;
805
	if (n0 >= ppmu->n_counter)
806
		goto out;
807 808 809
	cpuhw->event[n0] = event;
	cpuhw->events[n0] = event->hw.config;
	cpuhw->flags[n0] = event->hw.event_base;
810

P
Peter Zijlstra 已提交
811 812 813
	if (!(ef_flags & PERF_EF_START))
		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;

814 815
	/*
	 * If group events scheduling transaction was started,
L
Lucas De Marchi 已提交
816
	 * skip the schedulability test here, it will be performed
817 818
	 * at commit time(->commit_txn) as a whole
	 */
819
	if (cpuhw->group_flag & PERF_EVENT_TXN)
820 821
		goto nocheck;

822
	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
823
		goto out;
824
	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
825
		goto out;
826
	event->hw.config = cpuhw->events[n0];
827 828

nocheck:
829
	++cpuhw->n_events;
830 831 832 833
	++cpuhw->n_added;

	ret = 0;
 out:
P
Peter Zijlstra 已提交
834
	perf_pmu_enable(event->pmu);
835 836 837 838 839
	local_irq_restore(flags);
	return ret;
}

/*
840
 * Remove a event from the PMU.
841
 */
P
Peter Zijlstra 已提交
842
static void power_pmu_del(struct perf_event *event, int ef_flags)
843
{
844
	struct cpu_hw_events *cpuhw;
845 846 847 848
	long i;
	unsigned long flags;

	local_irq_save(flags);
P
Peter Zijlstra 已提交
849
	perf_pmu_disable(event->pmu);
850

851 852 853 854 855
	power_pmu_read(event);

	cpuhw = &__get_cpu_var(cpu_hw_events);
	for (i = 0; i < cpuhw->n_events; ++i) {
		if (event == cpuhw->event[i]) {
856
			while (++i < cpuhw->n_events) {
857
				cpuhw->event[i-1] = cpuhw->event[i];
858 859 860
				cpuhw->events[i-1] = cpuhw->events[i];
				cpuhw->flags[i-1] = cpuhw->flags[i];
			}
861 862 863 864 865
			--cpuhw->n_events;
			ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
			if (event->hw.idx) {
				write_pmc(event->hw.idx, 0);
				event->hw.idx = 0;
866
			}
867
			perf_event_update_userpage(event);
868 869 870
			break;
		}
	}
871
	for (i = 0; i < cpuhw->n_limited; ++i)
872
		if (event == cpuhw->limited_counter[i])
873 874 875
			break;
	if (i < cpuhw->n_limited) {
		while (++i < cpuhw->n_limited) {
876
			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
877 878 879 880
			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
		}
		--cpuhw->n_limited;
	}
881 882
	if (cpuhw->n_events == 0) {
		/* disable exceptions if no events are running */
883 884 885
		cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
	}

P
Peter Zijlstra 已提交
886
	perf_pmu_enable(event->pmu);
887 888 889
	local_irq_restore(flags);
}

890
/*
P
Peter Zijlstra 已提交
891 892
 * POWER-PMU does not support disabling individual counters, hence
 * program their cycle counter to their max value and ignore the interrupts.
893
 */
P
Peter Zijlstra 已提交
894 895

static void power_pmu_start(struct perf_event *event, int ef_flags)
896 897
{
	unsigned long flags;
P
Peter Zijlstra 已提交
898
	s64 left;
899
	unsigned long val;
900

901
	if (!event->hw.idx || !event->hw.sample_period)
902
		return;
P
Peter Zijlstra 已提交
903 904 905 906 907 908 909 910 911 912 913 914

	if (!(event->hw.state & PERF_HES_STOPPED))
		return;

	if (ef_flags & PERF_EF_RELOAD)
		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));

	local_irq_save(flags);
	perf_pmu_disable(event->pmu);

	event->hw.state = 0;
	left = local64_read(&event->hw.period_left);
915 916 917 918 919 920

	val = 0;
	if (left < 0x80000000L)
		val = 0x80000000L - left;

	write_pmc(event->hw.idx, val);
P
Peter Zijlstra 已提交
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936

	perf_event_update_userpage(event);
	perf_pmu_enable(event->pmu);
	local_irq_restore(flags);
}

static void power_pmu_stop(struct perf_event *event, int ef_flags)
{
	unsigned long flags;

	if (!event->hw.idx || !event->hw.sample_period)
		return;

	if (event->hw.state & PERF_HES_STOPPED)
		return;

937
	local_irq_save(flags);
P
Peter Zijlstra 已提交
938
	perf_pmu_disable(event->pmu);
P
Peter Zijlstra 已提交
939

940
	power_pmu_read(event);
P
Peter Zijlstra 已提交
941 942 943
	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
	write_pmc(event->hw.idx, 0);

944
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
945
	perf_pmu_enable(event->pmu);
946 947 948
	local_irq_restore(flags);
}

949 950 951 952 953
/*
 * Start group events scheduling transaction
 * Set the flag to make pmu::enable() not perform the
 * schedulability test, it will be performed at commit time
 */
P
Peter Zijlstra 已提交
954
void power_pmu_start_txn(struct pmu *pmu)
955 956 957
{
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);

P
Peter Zijlstra 已提交
958
	perf_pmu_disable(pmu);
959
	cpuhw->group_flag |= PERF_EVENT_TXN;
960 961 962 963 964 965 966 967
	cpuhw->n_txn_start = cpuhw->n_events;
}

/*
 * Stop group events scheduling transaction
 * Clear the flag and pmu::enable() will perform the
 * schedulability test.
 */
P
Peter Zijlstra 已提交
968
void power_pmu_cancel_txn(struct pmu *pmu)
969 970 971
{
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);

972
	cpuhw->group_flag &= ~PERF_EVENT_TXN;
P
Peter Zijlstra 已提交
973
	perf_pmu_enable(pmu);
974 975 976 977 978 979 980
}

/*
 * Commit group events scheduling transaction
 * Perform the group schedulability test as a whole
 * Return 0 if success
 */
P
Peter Zijlstra 已提交
981
int power_pmu_commit_txn(struct pmu *pmu)
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
{
	struct cpu_hw_events *cpuhw;
	long i, n;

	if (!ppmu)
		return -EAGAIN;
	cpuhw = &__get_cpu_var(cpu_hw_events);
	n = cpuhw->n_events;
	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
		return -EAGAIN;
	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
	if (i < 0)
		return -EAGAIN;

	for (i = cpuhw->n_txn_start; i < n; ++i)
		cpuhw->event[i]->hw.config = cpuhw->events[i];

999
	cpuhw->group_flag &= ~PERF_EVENT_TXN;
P
Peter Zijlstra 已提交
1000
	perf_pmu_enable(pmu);
1001 1002 1003
	return 0;
}

1004
/*
1005
 * Return 1 if we might be able to put event on a limited PMC,
1006
 * or 0 if not.
1007
 * A event can only go on a limited PMC if it counts something
1008 1009 1010
 * that a limited PMC can count, doesn't require interrupts, and
 * doesn't exclude any processor mode.
 */
1011
static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1012 1013 1014
				 unsigned int flags)
{
	int n;
1015
	u64 alt[MAX_EVENT_ALTERNATIVES];
1016

1017 1018 1019 1020
	if (event->attr.exclude_user
	    || event->attr.exclude_kernel
	    || event->attr.exclude_hv
	    || event->attr.sample_period)
1021 1022 1023 1024 1025 1026
		return 0;

	if (ppmu->limited_pmc_event(ev))
		return 1;

	/*
1027
	 * The requested event_id isn't on a limited PMC already;
1028 1029 1030 1031 1032 1033 1034 1035
	 * see if any alternative code goes on a limited PMC.
	 */
	if (!ppmu->get_alternatives)
		return 0;

	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
	n = ppmu->get_alternatives(ev, flags, alt);

1036
	return n > 0;
1037 1038 1039
}

/*
1040 1041 1042
 * Find an alternative event_id that goes on a normal PMC, if possible,
 * and return the event_id code, or 0 if there is no such alternative.
 * (Note: event_id code 0 is "don't count" on all machines.)
1043
 */
1044
static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1045
{
1046
	u64 alt[MAX_EVENT_ALTERNATIVES];
1047 1048 1049 1050 1051 1052 1053 1054 1055
	int n;

	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
	n = ppmu->get_alternatives(ev, flags, alt);
	if (!n)
		return 0;
	return alt[0];
}

1056 1057
/* Number of perf_events counting hardware events */
static atomic_t num_events;
1058 1059 1060 1061
/* Used to avoid races in calling reserve/release_pmc_hardware */
static DEFINE_MUTEX(pmc_reserve_mutex);

/*
1062
 * Release the PMU if this is the last perf_event.
1063
 */
1064
static void hw_perf_event_destroy(struct perf_event *event)
1065
{
1066
	if (!atomic_add_unless(&num_events, -1, 1)) {
1067
		mutex_lock(&pmc_reserve_mutex);
1068
		if (atomic_dec_return(&num_events) == 0)
1069 1070 1071 1072 1073
			release_pmc_hardware();
		mutex_unlock(&pmc_reserve_mutex);
	}
}

1074
/*
1075
 * Translate a generic cache event_id config to a raw event_id code.
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
 */
static int hw_perf_cache_event(u64 config, u64 *eventp)
{
	unsigned long type, op, result;
	int ev;

	if (!ppmu->cache_events)
		return -EINVAL;

	/* unpack config */
	type = config & 0xff;
	op = (config >> 8) & 0xff;
	result = (config >> 16) & 0xff;

	if (type >= PERF_COUNT_HW_CACHE_MAX ||
	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
		return -EINVAL;

	ev = (*ppmu->cache_events)[type][op][result];
	if (ev == 0)
		return -EOPNOTSUPP;
	if (ev == -1)
		return -EINVAL;
	*eventp = ev;
	return 0;
}

1104
static int power_pmu_event_init(struct perf_event *event)
1105
{
1106 1107
	u64 ev;
	unsigned long flags;
1108 1109 1110
	struct perf_event *ctrs[MAX_HWEVENTS];
	u64 events[MAX_HWEVENTS];
	unsigned int cflags[MAX_HWEVENTS];
1111
	int n;
1112
	int err;
1113
	struct cpu_hw_events *cpuhw;
1114 1115

	if (!ppmu)
1116 1117
		return -ENOENT;

1118 1119 1120 1121
	/* does not support taken branch sampling */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

1122
	switch (event->attr.type) {
1123
	case PERF_TYPE_HARDWARE:
1124
		ev = event->attr.config;
1125
		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1126
			return -EOPNOTSUPP;
1127
		ev = ppmu->generic_events[ev];
1128 1129
		break;
	case PERF_TYPE_HW_CACHE:
1130
		err = hw_perf_cache_event(event->attr.config, &ev);
1131
		if (err)
1132
			return err;
1133 1134
		break;
	case PERF_TYPE_RAW:
1135
		ev = event->attr.config;
1136
		break;
1137
	default:
1138
		return -ENOENT;
1139
	}
1140

1141 1142
	event->hw.config_base = ev;
	event->hw.idx = 0;
1143

1144 1145 1146
	/*
	 * If we are not running on a hypervisor, force the
	 * exclude_hv bit to 0 so that we don't care what
1147
	 * the user set it to.
1148 1149
	 */
	if (!firmware_has_feature(FW_FEATURE_LPAR))
1150
		event->attr.exclude_hv = 0;
1151 1152

	/*
1153
	 * If this is a per-task event, then we can use
1154 1155 1156 1157 1158
	 * PM_RUN_* events interchangeably with their non RUN_*
	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
	 * XXX we should check if the task is an idle task.
	 */
	flags = 0;
1159
	if (event->attach_state & PERF_ATTACH_TASK)
1160 1161 1162
		flags |= PPMU_ONLY_COUNT_RUN;

	/*
1163 1164
	 * If this machine has limited events, check whether this
	 * event_id could go on a limited event.
1165
	 */
1166
	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1167
		if (can_go_on_limited_pmc(event, ev, flags)) {
1168 1169 1170
			flags |= PPMU_LIMITED_PMC_OK;
		} else if (ppmu->limited_pmc_event(ev)) {
			/*
1171
			 * The requested event_id is on a limited PMC,
1172 1173 1174 1175 1176
			 * but we can't use a limited PMC; see if any
			 * alternative goes on a normal PMC.
			 */
			ev = normal_pmc_alternative(ev, flags);
			if (!ev)
1177
				return -EINVAL;
1178 1179 1180
		}
	}

1181 1182
	/*
	 * If this is in a group, check if it can go on with all the
1183
	 * other hardware events in the group.  We assume the event
1184 1185 1186
	 * hasn't been linked into its leader's sibling list at this point.
	 */
	n = 0;
1187
	if (event->group_leader != event) {
1188
		n = collect_events(event->group_leader, ppmu->n_counter - 1,
1189
				   ctrs, events, cflags);
1190
		if (n < 0)
1191
			return -EINVAL;
1192
	}
1193
	events[n] = ev;
1194
	ctrs[n] = event;
1195 1196
	cflags[n] = flags;
	if (check_excludes(ctrs, cflags, n, 1))
1197
		return -EINVAL;
1198

1199
	cpuhw = &get_cpu_var(cpu_hw_events);
1200
	err = power_check_constraints(cpuhw, events, cflags, n + 1);
1201
	put_cpu_var(cpu_hw_events);
1202
	if (err)
1203
		return -EINVAL;
1204

1205 1206 1207
	event->hw.config = events[n];
	event->hw.event_base = cflags[n];
	event->hw.last_period = event->hw.sample_period;
1208
	local64_set(&event->hw.period_left, event->hw.last_period);
1209 1210 1211

	/*
	 * See if we need to reserve the PMU.
1212
	 * If no events are currently in use, then we have to take a
1213 1214 1215 1216
	 * mutex to ensure that we don't race with another task doing
	 * reserve_pmc_hardware or release_pmc_hardware.
	 */
	err = 0;
1217
	if (!atomic_inc_not_zero(&num_events)) {
1218
		mutex_lock(&pmc_reserve_mutex);
1219 1220
		if (atomic_read(&num_events) == 0 &&
		    reserve_pmc_hardware(perf_event_interrupt))
1221 1222
			err = -EBUSY;
		else
1223
			atomic_inc(&num_events);
1224 1225
		mutex_unlock(&pmc_reserve_mutex);
	}
1226
	event->destroy = hw_perf_event_destroy;
1227

1228
	return err;
1229 1230
}

1231 1232 1233 1234 1235
static int power_pmu_event_idx(struct perf_event *event)
{
	return event->hw.idx;
}

1236
struct pmu power_pmu = {
P
Peter Zijlstra 已提交
1237 1238
	.pmu_enable	= power_pmu_enable,
	.pmu_disable	= power_pmu_disable,
1239
	.event_init	= power_pmu_event_init,
P
Peter Zijlstra 已提交
1240 1241 1242 1243
	.add		= power_pmu_add,
	.del		= power_pmu_del,
	.start		= power_pmu_start,
	.stop		= power_pmu_stop,
1244 1245 1246 1247
	.read		= power_pmu_read,
	.start_txn	= power_pmu_start_txn,
	.cancel_txn	= power_pmu_cancel_txn,
	.commit_txn	= power_pmu_commit_txn,
1248
	.event_idx	= power_pmu_event_idx,
1249 1250
};

1251
/*
I
Ingo Molnar 已提交
1252
 * A counter has overflowed; update its count and record
1253 1254 1255
 * things if requested.  Note that interrupts are hard-disabled
 * here so there is no possibility of being interrupted.
 */
1256
static void record_and_restart(struct perf_event *event, unsigned long val,
1257
			       struct pt_regs *regs)
1258
{
1259
	u64 period = event->hw.sample_period;
1260 1261 1262
	s64 prev, delta, left;
	int record = 0;

P
Peter Zijlstra 已提交
1263 1264 1265 1266 1267
	if (event->hw.state & PERF_HES_STOPPED) {
		write_pmc(event->hw.idx, 0);
		return;
	}

1268
	/* we don't have to worry about interrupts here */
1269
	prev = local64_read(&event->hw.prev_count);
1270
	delta = check_and_compute_delta(prev, val);
1271
	local64_add(delta, &event->count);
1272 1273

	/*
1274
	 * See if the total period for this event has expired,
1275 1276 1277
	 * and update for the next period.
	 */
	val = 0;
1278
	left = local64_read(&event->hw.period_left) - delta;
1279
	if (period) {
1280
		if (left <= 0) {
1281
			left += period;
1282
			if (left <= 0)
1283
				left = period;
1284
			record = 1;
1285
			event->hw.last_period = event->hw.sample_period;
1286
		}
1287 1288
		if (left < 0x80000000LL)
			val = 0x80000000LL - left;
1289 1290
	}

P
Peter Zijlstra 已提交
1291 1292 1293 1294 1295
	write_pmc(event->hw.idx, val);
	local64_set(&event->hw.prev_count, val);
	local64_set(&event->hw.period_left, left);
	perf_event_update_userpage(event);

1296 1297 1298
	/*
	 * Finally record data if requested.
	 */
1299
	if (record) {
1300 1301 1302 1303
		struct perf_sample_data data;

		perf_sample_data_init(&data, ~0ULL);
		data.period = event->hw.last_period;
1304

1305
		if (event->attr.sample_type & PERF_SAMPLE_ADDR)
1306 1307
			perf_get_data_addr(regs, &data.addr);

1308
		if (perf_event_overflow(event, &data, regs))
P
Peter Zijlstra 已提交
1309
			power_pmu_stop(event, 0);
1310 1311 1312 1313 1314
	}
}

/*
 * Called from generic code to get the misc flags (i.e. processor mode)
1315
 * for an event_id.
1316 1317 1318
 */
unsigned long perf_misc_flags(struct pt_regs *regs)
{
1319
	u32 flags = perf_get_misc_flags(regs);
1320

1321 1322
	if (flags)
		return flags;
1323 1324
	return user_mode(regs) ? PERF_RECORD_MISC_USER :
		PERF_RECORD_MISC_KERNEL;
1325 1326 1327 1328
}

/*
 * Called from generic code to get the instruction pointer
1329
 * for an event_id.
1330 1331 1332
 */
unsigned long perf_instruction_pointer(struct pt_regs *regs)
{
1333
	unsigned long mmcra = regs->dsisr;
1334

1335
	/* Not a PMU interrupt */
1336
	if (TRAP(regs) != 0xf00)
1337 1338 1339 1340 1341 1342
		return regs->nip;

	/* Processor doesn't support sampling non marked events */
	if ((ppmu->flags & PPMU_NO_CONT_SAMPLING) &&
	    !(mmcra & MMCRA_SAMPLE_ENABLE))
		return regs->nip;
1343

1344
	return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
1345 1346
}

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
static bool pmc_overflow(unsigned long val)
{
	if ((int)val < 0)
		return true;

	/*
	 * Events on POWER7 can roll back if a speculative event doesn't
	 * eventually complete. Unfortunately in some rare cases they will
	 * raise a performance monitor exception. We need to catch this to
	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
	 * cycles from overflow.
	 *
	 * We only do this if the first pass fails to find any overflowing
	 * PMCs because a user might set a period of less than 256 and we
	 * don't want to mistakenly reset them.
	 */
	if (__is_processor(PV_POWER7) && ((0x80000000 - val) <= 256))
		return true;

	return false;
}

1369 1370 1371
/*
 * Performance monitor interrupt stuff
 */
1372
static void perf_event_interrupt(struct pt_regs *regs)
1373 1374
{
	int i;
1375 1376
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
	struct perf_event *event;
1377
	unsigned long val;
1378
	int found = 0;
1379 1380
	int nmi;

1381
	if (cpuhw->n_limited)
1382
		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
1383 1384
					mfspr(SPRN_PMC6));

1385
	perf_read_regs(regs);
1386

1387
	nmi = perf_intr_is_nmi(regs);
1388 1389 1390 1391
	if (nmi)
		nmi_enter();
	else
		irq_enter();
1392

1393 1394 1395
	for (i = 0; i < cpuhw->n_events; ++i) {
		event = cpuhw->event[i];
		if (!event->hw.idx || is_limited_pmc(event->hw.idx))
1396
			continue;
1397
		val = read_pmc(event->hw.idx);
1398
		if ((int)val < 0) {
1399
			/* event has overflowed */
1400
			found = 1;
1401
			record_and_restart(event, val, regs);
1402 1403 1404 1405
		}
	}

	/*
1406 1407
	 * In case we didn't find and reset the event that caused
	 * the interrupt, scan all events and reset any that are
1408 1409 1410 1411
	 * negative, to avoid getting continual interrupts.
	 * Any that we processed in the previous loop will not be negative.
	 */
	if (!found) {
1412
		for (i = 0; i < ppmu->n_counter; ++i) {
1413 1414
			if (is_limited_pmc(i + 1))
				continue;
1415
			val = read_pmc(i + 1);
1416
			if (pmc_overflow(val))
1417 1418 1419 1420 1421 1422
				write_pmc(i + 1, 0);
		}
	}

	/*
	 * Reset MMCR0 to its normal value.  This will set PMXE and
I
Ingo Molnar 已提交
1423
	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
1424
	 * and thus allow interrupts to occur again.
1425
	 * XXX might want to use MSR.PM to keep the events frozen until
1426 1427
	 * we get back out of this interrupt.
	 */
1428
	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
1429

1430 1431 1432
	if (nmi)
		nmi_exit();
	else
1433
		irq_exit();
1434 1435
}

1436
static void power_pmu_setup(int cpu)
1437
{
1438
	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
1439

1440 1441
	if (!ppmu)
		return;
1442 1443 1444 1445
	memset(cpuhw, 0, sizeof(*cpuhw));
	cpuhw->mmcr[0] = MMCR0_FC;
}

1446
static int __cpuinit
1447
power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
{
	unsigned int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_UP_PREPARE:
		power_pmu_setup(cpu);
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

1463
int __cpuinit register_power_pmu(struct power_pmu *pmu)
1464
{
1465 1466 1467 1468 1469 1470
	if (ppmu)
		return -EBUSY;		/* something's already registered */

	ppmu = pmu;
	pr_info("%s performance monitor hardware support registered\n",
		pmu->name);
1471

1472
#ifdef MSR_HV
1473 1474 1475 1476
	/*
	 * Use FCHV to ignore kernel events if MSR.HV is set.
	 */
	if (mfmsr() & MSR_HV)
1477
		freeze_events_kernel = MMCR0_FCHV;
1478
#endif /* CONFIG_PPC64 */
1479

P
Peter Zijlstra 已提交
1480
	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
1481 1482
	perf_cpu_notifier(power_pmu_notifier);

1483 1484
	return 0;
}