delayed-inode.c 52.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright (C) 2011 Fujitsu.  All rights reserved.
 * Written by Miao Xie <miaox@cn.fujitsu.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/slab.h>
#include "delayed-inode.h"
#include "disk-io.h"
#include "transaction.h"
24
#include "ctree.h"
25

26 27 28
#define BTRFS_DELAYED_WRITEBACK		512
#define BTRFS_DELAYED_BACKGROUND	128
#define BTRFS_DELAYED_BATCH		16
29 30 31 32 33

static struct kmem_cache *delayed_node_cache;

int __init btrfs_delayed_inode_init(void)
{
D
David Sterba 已提交
34
	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
35 36
					sizeof(struct btrfs_delayed_node),
					0,
37
					SLAB_MEM_SPREAD,
38 39 40 41 42 43 44 45
					NULL);
	if (!delayed_node_cache)
		return -ENOMEM;
	return 0;
}

void btrfs_delayed_inode_exit(void)
{
46
	kmem_cache_destroy(delayed_node_cache);
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
}

static inline void btrfs_init_delayed_node(
				struct btrfs_delayed_node *delayed_node,
				struct btrfs_root *root, u64 inode_id)
{
	delayed_node->root = root;
	delayed_node->inode_id = inode_id;
	atomic_set(&delayed_node->refs, 0);
	delayed_node->ins_root = RB_ROOT;
	delayed_node->del_root = RB_ROOT;
	mutex_init(&delayed_node->mutex);
	INIT_LIST_HEAD(&delayed_node->n_list);
	INIT_LIST_HEAD(&delayed_node->p_list);
}

static inline int btrfs_is_continuous_delayed_item(
					struct btrfs_delayed_item *item1,
					struct btrfs_delayed_item *item2)
{
	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
	    item1->key.objectid == item2->key.objectid &&
	    item1->key.type == item2->key.type &&
	    item1->key.offset + 1 == item2->key.offset)
		return 1;
	return 0;
}

75
static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
76 77 78
{
	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
	struct btrfs_root *root = btrfs_inode->root;
79
	u64 ino = btrfs_ino(inode);
80
	struct btrfs_delayed_node *node;
81

S
Seraphime Kirkovski 已提交
82
	node = READ_ONCE(btrfs_inode->delayed_node);
83
	if (node) {
84
		atomic_inc(&node->refs);
85 86 87 88
		return node;
	}

	spin_lock(&root->inode_lock);
89
	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
90 91
	if (node) {
		if (btrfs_inode->delayed_node) {
92 93
			atomic_inc(&node->refs);	/* can be accessed */
			BUG_ON(btrfs_inode->delayed_node != node);
94
			spin_unlock(&root->inode_lock);
95
			return node;
96 97
		}
		btrfs_inode->delayed_node = node;
98 99
		/* can be accessed and cached in the inode */
		atomic_add(2, &node->refs);
100 101 102 103 104
		spin_unlock(&root->inode_lock);
		return node;
	}
	spin_unlock(&root->inode_lock);

105 106 107
	return NULL;
}

108
/* Will return either the node or PTR_ERR(-ENOMEM) */
109 110 111 112 113 114 115 116 117 118 119 120 121 122
static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
							struct inode *inode)
{
	struct btrfs_delayed_node *node;
	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
	struct btrfs_root *root = btrfs_inode->root;
	u64 ino = btrfs_ino(inode);
	int ret;

again:
	node = btrfs_get_delayed_node(inode);
	if (node)
		return node;

123
	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
124 125
	if (!node)
		return ERR_PTR(-ENOMEM);
126
	btrfs_init_delayed_node(node, root, ino);
127

128 129
	/* cached in the btrfs inode and can be accessed */
	atomic_add(2, &node->refs);
130

131
	ret = radix_tree_preload(GFP_NOFS);
132 133 134 135 136 137
	if (ret) {
		kmem_cache_free(delayed_node_cache, node);
		return ERR_PTR(ret);
	}

	spin_lock(&root->inode_lock);
138
	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
139 140
	if (ret == -EEXIST) {
		spin_unlock(&root->inode_lock);
141
		kmem_cache_free(delayed_node_cache, node);
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
		radix_tree_preload_end();
		goto again;
	}
	btrfs_inode->delayed_node = node;
	spin_unlock(&root->inode_lock);
	radix_tree_preload_end();

	return node;
}

/*
 * Call it when holding delayed_node->mutex
 *
 * If mod = 1, add this node into the prepared list.
 */
static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
				     struct btrfs_delayed_node *node,
				     int mod)
{
	spin_lock(&root->lock);
162
	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
163 164 165 166 167 168 169 170 171
		if (!list_empty(&node->p_list))
			list_move_tail(&node->p_list, &root->prepare_list);
		else if (mod)
			list_add_tail(&node->p_list, &root->prepare_list);
	} else {
		list_add_tail(&node->n_list, &root->node_list);
		list_add_tail(&node->p_list, &root->prepare_list);
		atomic_inc(&node->refs);	/* inserted into list */
		root->nodes++;
172
		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
173 174 175 176 177 178 179 180 181
	}
	spin_unlock(&root->lock);
}

/* Call it when holding delayed_node->mutex */
static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
				       struct btrfs_delayed_node *node)
{
	spin_lock(&root->lock);
182
	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
183 184 185 186 187
		root->nodes--;
		atomic_dec(&node->refs);	/* not in the list */
		list_del_init(&node->n_list);
		if (!list_empty(&node->p_list))
			list_del_init(&node->p_list);
188
		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
189 190 191 192
	}
	spin_unlock(&root->lock);
}

193
static struct btrfs_delayed_node *btrfs_first_delayed_node(
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
			struct btrfs_delayed_root *delayed_root)
{
	struct list_head *p;
	struct btrfs_delayed_node *node = NULL;

	spin_lock(&delayed_root->lock);
	if (list_empty(&delayed_root->node_list))
		goto out;

	p = delayed_root->node_list.next;
	node = list_entry(p, struct btrfs_delayed_node, n_list);
	atomic_inc(&node->refs);
out:
	spin_unlock(&delayed_root->lock);

	return node;
}

212
static struct btrfs_delayed_node *btrfs_next_delayed_node(
213 214 215 216 217 218 219 220
						struct btrfs_delayed_node *node)
{
	struct btrfs_delayed_root *delayed_root;
	struct list_head *p;
	struct btrfs_delayed_node *next = NULL;

	delayed_root = node->root->fs_info->delayed_root;
	spin_lock(&delayed_root->lock);
221 222
	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
		/* not in the list */
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
		if (list_empty(&delayed_root->node_list))
			goto out;
		p = delayed_root->node_list.next;
	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
		goto out;
	else
		p = node->n_list.next;

	next = list_entry(p, struct btrfs_delayed_node, n_list);
	atomic_inc(&next->refs);
out:
	spin_unlock(&delayed_root->lock);

	return next;
}

static void __btrfs_release_delayed_node(
				struct btrfs_delayed_node *delayed_node,
				int mod)
{
	struct btrfs_delayed_root *delayed_root;

	if (!delayed_node)
		return;

	delayed_root = delayed_node->root->fs_info->delayed_root;

	mutex_lock(&delayed_node->mutex);
	if (delayed_node->count)
		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
	else
		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
	mutex_unlock(&delayed_node->mutex);

	if (atomic_dec_and_test(&delayed_node->refs)) {
258
		bool free = false;
259 260 261 262 263
		struct btrfs_root *root = delayed_node->root;
		spin_lock(&root->inode_lock);
		if (atomic_read(&delayed_node->refs) == 0) {
			radix_tree_delete(&root->delayed_nodes_tree,
					  delayed_node->inode_id);
264
			free = true;
265 266
		}
		spin_unlock(&root->inode_lock);
267 268
		if (free)
			kmem_cache_free(delayed_node_cache, delayed_node);
269 270 271 272 273 274 275 276
	}
}

static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
{
	__btrfs_release_delayed_node(node, 0);
}

277
static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
					struct btrfs_delayed_root *delayed_root)
{
	struct list_head *p;
	struct btrfs_delayed_node *node = NULL;

	spin_lock(&delayed_root->lock);
	if (list_empty(&delayed_root->prepare_list))
		goto out;

	p = delayed_root->prepare_list.next;
	list_del_init(p);
	node = list_entry(p, struct btrfs_delayed_node, p_list);
	atomic_inc(&node->refs);
out:
	spin_unlock(&delayed_root->lock);

	return node;
}

static inline void btrfs_release_prepared_delayed_node(
					struct btrfs_delayed_node *node)
{
	__btrfs_release_delayed_node(node, 1);
}

303
static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
{
	struct btrfs_delayed_item *item;
	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
	if (item) {
		item->data_len = data_len;
		item->ins_or_del = 0;
		item->bytes_reserved = 0;
		item->delayed_node = NULL;
		atomic_set(&item->refs, 1);
	}
	return item;
}

/*
 * __btrfs_lookup_delayed_item - look up the delayed item by key
 * @delayed_node: pointer to the delayed node
 * @key:	  the key to look up
 * @prev:	  used to store the prev item if the right item isn't found
 * @next:	  used to store the next item if the right item isn't found
 *
 * Note: if we don't find the right item, we will return the prev item and
 * the next item.
 */
static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
				struct rb_root *root,
				struct btrfs_key *key,
				struct btrfs_delayed_item **prev,
				struct btrfs_delayed_item **next)
{
	struct rb_node *node, *prev_node = NULL;
	struct btrfs_delayed_item *delayed_item = NULL;
	int ret = 0;

	node = root->rb_node;

	while (node) {
		delayed_item = rb_entry(node, struct btrfs_delayed_item,
					rb_node);
		prev_node = node;
		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
		if (ret < 0)
			node = node->rb_right;
		else if (ret > 0)
			node = node->rb_left;
		else
			return delayed_item;
	}

	if (prev) {
		if (!prev_node)
			*prev = NULL;
		else if (ret < 0)
			*prev = delayed_item;
		else if ((node = rb_prev(prev_node)) != NULL) {
			*prev = rb_entry(node, struct btrfs_delayed_item,
					 rb_node);
		} else
			*prev = NULL;
	}

	if (next) {
		if (!prev_node)
			*next = NULL;
		else if (ret > 0)
			*next = delayed_item;
		else if ((node = rb_next(prev_node)) != NULL) {
			*next = rb_entry(node, struct btrfs_delayed_item,
					 rb_node);
		} else
			*next = NULL;
	}
	return NULL;
}

378
static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
379 380 381
					struct btrfs_delayed_node *delayed_node,
					struct btrfs_key *key)
{
382
	return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
					   NULL, NULL);
}

static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
				    struct btrfs_delayed_item *ins,
				    int action)
{
	struct rb_node **p, *node;
	struct rb_node *parent_node = NULL;
	struct rb_root *root;
	struct btrfs_delayed_item *item;
	int cmp;

	if (action == BTRFS_DELAYED_INSERTION_ITEM)
		root = &delayed_node->ins_root;
	else if (action == BTRFS_DELAYED_DELETION_ITEM)
		root = &delayed_node->del_root;
	else
		BUG();
	p = &root->rb_node;
	node = &ins->rb_node;

	while (*p) {
		parent_node = *p;
		item = rb_entry(parent_node, struct btrfs_delayed_item,
				 rb_node);

		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
		if (cmp < 0)
			p = &(*p)->rb_right;
		else if (cmp > 0)
			p = &(*p)->rb_left;
		else
			return -EEXIST;
	}

	rb_link_node(node, parent_node, p);
	rb_insert_color(node, root);
	ins->delayed_node = delayed_node;
	ins->ins_or_del = action;

	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
	    action == BTRFS_DELAYED_INSERTION_ITEM &&
	    ins->key.offset >= delayed_node->index_cnt)
			delayed_node->index_cnt = ins->key.offset + 1;

	delayed_node->count++;
	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
	return 0;
}

static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
					      struct btrfs_delayed_item *item)
{
	return __btrfs_add_delayed_item(node, item,
					BTRFS_DELAYED_INSERTION_ITEM);
}

static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
					     struct btrfs_delayed_item *item)
{
	return __btrfs_add_delayed_item(node, item,
					BTRFS_DELAYED_DELETION_ITEM);
}

448 449 450
static void finish_one_item(struct btrfs_delayed_root *delayed_root)
{
	int seq = atomic_inc_return(&delayed_root->items_seq);
451 452 453 454

	/*
	 * atomic_dec_return implies a barrier for waitqueue_active
	 */
455 456 457 458 459 460
	if ((atomic_dec_return(&delayed_root->items) <
	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
	    waitqueue_active(&delayed_root->wait))
		wake_up(&delayed_root->wait);
}

461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
{
	struct rb_root *root;
	struct btrfs_delayed_root *delayed_root;

	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;

	BUG_ON(!delayed_root);
	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);

	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
		root = &delayed_item->delayed_node->ins_root;
	else
		root = &delayed_item->delayed_node->del_root;

	rb_erase(&delayed_item->rb_node, root);
	delayed_item->delayed_node->count--;
479 480

	finish_one_item(delayed_root);
481 482 483 484 485 486 487 488 489 490 491
}

static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
{
	if (item) {
		__btrfs_remove_delayed_item(item);
		if (atomic_dec_and_test(&item->refs))
			kfree(item);
	}
}

492
static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
493 494 495 496 497 498 499 500 501 502 503 504
					struct btrfs_delayed_node *delayed_node)
{
	struct rb_node *p;
	struct btrfs_delayed_item *item = NULL;

	p = rb_first(&delayed_node->ins_root);
	if (p)
		item = rb_entry(p, struct btrfs_delayed_item, rb_node);

	return item;
}

505
static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
506 507 508 509 510 511 512 513 514 515 516 517
					struct btrfs_delayed_node *delayed_node)
{
	struct rb_node *p;
	struct btrfs_delayed_item *item = NULL;

	p = rb_first(&delayed_node->del_root);
	if (p)
		item = rb_entry(p, struct btrfs_delayed_item, rb_node);

	return item;
}

518
static struct btrfs_delayed_item *__btrfs_next_delayed_item(
519 520 521 522 523 524 525 526 527 528 529 530 531
						struct btrfs_delayed_item *item)
{
	struct rb_node *p;
	struct btrfs_delayed_item *next = NULL;

	p = rb_next(&item->rb_node);
	if (p)
		next = rb_entry(p, struct btrfs_delayed_item, rb_node);

	return next;
}

static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
532
					       struct btrfs_fs_info *fs_info,
533 534 535 536 537 538 539 540 541 542 543
					       struct btrfs_delayed_item *item)
{
	struct btrfs_block_rsv *src_rsv;
	struct btrfs_block_rsv *dst_rsv;
	u64 num_bytes;
	int ret;

	if (!trans->bytes_reserved)
		return 0;

	src_rsv = trans->block_rsv;
544
	dst_rsv = &fs_info->delayed_block_rsv;
545

546
	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
547
	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
J
Josef Bacik 已提交
548
	if (!ret) {
549
		trace_btrfs_space_reservation(fs_info, "delayed_item",
J
Josef Bacik 已提交
550 551
					      item->key.objectid,
					      num_bytes, 1);
552
		item->bytes_reserved = num_bytes;
J
Josef Bacik 已提交
553
	}
554 555 556 557

	return ret;
}

558
static void btrfs_delayed_item_release_metadata(struct btrfs_fs_info *fs_info,
559 560
						struct btrfs_delayed_item *item)
{
561 562
	struct btrfs_block_rsv *rsv;

563 564 565
	if (!item->bytes_reserved)
		return;

566 567
	rsv = &fs_info->delayed_block_rsv;
	trace_btrfs_space_reservation(fs_info, "delayed_item",
J
Josef Bacik 已提交
568 569
				      item->key.objectid, item->bytes_reserved,
				      0);
570
	btrfs_block_rsv_release(fs_info, rsv,
571 572 573 574 575 576
				item->bytes_reserved);
}

static int btrfs_delayed_inode_reserve_metadata(
					struct btrfs_trans_handle *trans,
					struct btrfs_root *root,
577
					struct inode *inode,
578 579
					struct btrfs_delayed_node *node)
{
580
	struct btrfs_fs_info *fs_info = root->fs_info;
581 582 583 584
	struct btrfs_block_rsv *src_rsv;
	struct btrfs_block_rsv *dst_rsv;
	u64 num_bytes;
	int ret;
J
Josef Bacik 已提交
585
	bool release = false;
586 587

	src_rsv = trans->block_rsv;
588
	dst_rsv = &fs_info->delayed_block_rsv;
589

590
	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
591

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
	/*
	 * If our block_rsv is the delalloc block reserve then check and see if
	 * we have our extra reservation for updating the inode.  If not fall
	 * through and try to reserve space quickly.
	 *
	 * We used to try and steal from the delalloc block rsv or the global
	 * reserve, but we'd steal a full reservation, which isn't kind.  We are
	 * here through delalloc which means we've likely just cowed down close
	 * to the leaf that contains the inode, so we would steal less just
	 * doing the fallback inode update, so if we do end up having to steal
	 * from the global block rsv we hopefully only steal one or two blocks
	 * worth which is less likely to hurt us.
	 */
	if (src_rsv && src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
		spin_lock(&BTRFS_I(inode)->lock);
		if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
				       &BTRFS_I(inode)->runtime_flags))
			release = true;
		else
			src_rsv = NULL;
		spin_unlock(&BTRFS_I(inode)->lock);
	}

615 616 617 618 619 620 621 622 623
	/*
	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
	 * which doesn't reserve space for speed.  This is a problem since we
	 * still need to reserve space for this update, so try to reserve the
	 * space.
	 *
	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
	 * we're accounted for.
	 */
624
	if (!src_rsv || (!trans->bytes_reserved &&
625
			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
M
Miao Xie 已提交
626 627
		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
					  BTRFS_RESERVE_NO_FLUSH);
628 629 630 631 632 633 634 635
		/*
		 * Since we're under a transaction reserve_metadata_bytes could
		 * try to commit the transaction which will make it return
		 * EAGAIN to make us stop the transaction we have, so return
		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
		 */
		if (ret == -EAGAIN)
			ret = -ENOSPC;
J
Josef Bacik 已提交
636
		if (!ret) {
637
			node->bytes_reserved = num_bytes;
638
			trace_btrfs_space_reservation(fs_info,
J
Josef Bacik 已提交
639 640 641 642
						      "delayed_inode",
						      btrfs_ino(inode),
						      num_bytes, 1);
		}
643 644 645
		return ret;
	}

646
	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
647 648 649 650 651 652 653 654 655 656 657 658 659 660

	/*
	 * Migrate only takes a reservation, it doesn't touch the size of the
	 * block_rsv.  This is to simplify people who don't normally have things
	 * migrated from their block rsv.  If they go to release their
	 * reservation, that will decrease the size as well, so if migrate
	 * reduced size we'd end up with a negative size.  But for the
	 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
	 * but we could in fact do this reserve/migrate dance several times
	 * between the time we did the original reservation and we'd clean it
	 * up.  So to take care of this, release the space for the meta
	 * reservation here.  I think it may be time for a documentation page on
	 * how block rsvs. work.
	 */
J
Josef Bacik 已提交
661
	if (!ret) {
662
		trace_btrfs_space_reservation(fs_info, "delayed_inode",
J
Josef Bacik 已提交
663
					      btrfs_ino(inode), num_bytes, 1);
664
		node->bytes_reserved = num_bytes;
J
Josef Bacik 已提交
665
	}
666

J
Josef Bacik 已提交
667
	if (release) {
668
		trace_btrfs_space_reservation(fs_info, "delalloc",
J
Josef Bacik 已提交
669
					      btrfs_ino(inode), num_bytes, 0);
670
		btrfs_block_rsv_release(fs_info, src_rsv, num_bytes);
J
Josef Bacik 已提交
671
	}
672 673 674 675

	return ret;
}

676
static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
677 678 679 680 681 682 683
						struct btrfs_delayed_node *node)
{
	struct btrfs_block_rsv *rsv;

	if (!node->bytes_reserved)
		return;

684 685
	rsv = &fs_info->delayed_block_rsv;
	trace_btrfs_space_reservation(fs_info, "delayed_inode",
J
Josef Bacik 已提交
686
				      node->inode_id, node->bytes_reserved, 0);
687
	btrfs_block_rsv_release(fs_info, rsv,
688 689 690 691 692 693 694 695
				node->bytes_reserved);
	node->bytes_reserved = 0;
}

/*
 * This helper will insert some continuous items into the same leaf according
 * to the free space of the leaf.
 */
696 697 698
static int btrfs_batch_insert_items(struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct btrfs_delayed_item *item)
699
{
700
	struct btrfs_fs_info *fs_info = root->fs_info;
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
	struct btrfs_delayed_item *curr, *next;
	int free_space;
	int total_data_size = 0, total_size = 0;
	struct extent_buffer *leaf;
	char *data_ptr;
	struct btrfs_key *keys;
	u32 *data_size;
	struct list_head head;
	int slot;
	int nitems;
	int i;
	int ret = 0;

	BUG_ON(!path->nodes[0]);

	leaf = path->nodes[0];
717
	free_space = btrfs_leaf_free_space(fs_info, leaf);
718 719 720
	INIT_LIST_HEAD(&head);

	next = item;
721
	nitems = 0;
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753

	/*
	 * count the number of the continuous items that we can insert in batch
	 */
	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
	       free_space) {
		total_data_size += next->data_len;
		total_size += next->data_len + sizeof(struct btrfs_item);
		list_add_tail(&next->tree_list, &head);
		nitems++;

		curr = next;
		next = __btrfs_next_delayed_item(curr);
		if (!next)
			break;

		if (!btrfs_is_continuous_delayed_item(curr, next))
			break;
	}

	if (!nitems) {
		ret = 0;
		goto out;
	}

	/*
	 * we need allocate some memory space, but it might cause the task
	 * to sleep, so we set all locked nodes in the path to blocking locks
	 * first.
	 */
	btrfs_set_path_blocking(path);

754
	keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
755 756 757 758 759
	if (!keys) {
		ret = -ENOMEM;
		goto out;
	}

760
	data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
761 762 763 764 765 766 767 768 769 770 771 772 773 774
	if (!data_size) {
		ret = -ENOMEM;
		goto error;
	}

	/* get keys of all the delayed items */
	i = 0;
	list_for_each_entry(next, &head, tree_list) {
		keys[i] = next->key;
		data_size[i] = next->data_len;
		i++;
	}

	/* reset all the locked nodes in the patch to spinning locks. */
775
	btrfs_clear_path_blocking(path, NULL, 0);
776 777

	/* insert the keys of the items */
778
	setup_items_for_insert(root, path, keys, data_size,
779
			       total_data_size, total_size, nitems);
780 781 782 783 784 785 786 787 788 789

	/* insert the dir index items */
	slot = path->slots[0];
	list_for_each_entry_safe(curr, next, &head, tree_list) {
		data_ptr = btrfs_item_ptr(leaf, slot, char);
		write_extent_buffer(leaf, &curr->data,
				    (unsigned long)data_ptr,
				    curr->data_len);
		slot++;

790
		btrfs_delayed_item_release_metadata(fs_info, curr);
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811

		list_del(&curr->tree_list);
		btrfs_release_delayed_item(curr);
	}

error:
	kfree(data_size);
	kfree(keys);
out:
	return ret;
}

/*
 * This helper can just do simple insertion that needn't extend item for new
 * data, such as directory name index insertion, inode insertion.
 */
static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
				     struct btrfs_root *root,
				     struct btrfs_path *path,
				     struct btrfs_delayed_item *delayed_item)
{
812
	struct btrfs_fs_info *fs_info = root->fs_info;
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
	struct extent_buffer *leaf;
	char *ptr;
	int ret;

	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
				      delayed_item->data_len);
	if (ret < 0 && ret != -EEXIST)
		return ret;

	leaf = path->nodes[0];

	ptr = btrfs_item_ptr(leaf, path->slots[0], char);

	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
			    delayed_item->data_len);
	btrfs_mark_buffer_dirty(leaf);

830
	btrfs_delayed_item_release_metadata(fs_info, delayed_item);
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
	return 0;
}

/*
 * we insert an item first, then if there are some continuous items, we try
 * to insert those items into the same leaf.
 */
static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
				      struct btrfs_path *path,
				      struct btrfs_root *root,
				      struct btrfs_delayed_node *node)
{
	struct btrfs_delayed_item *curr, *prev;
	int ret = 0;

do_again:
	mutex_lock(&node->mutex);
	curr = __btrfs_first_delayed_insertion_item(node);
	if (!curr)
		goto insert_end;

	ret = btrfs_insert_delayed_item(trans, root, path, curr);
	if (ret < 0) {
854
		btrfs_release_path(path);
855 856 857 858 859 860 861 862
		goto insert_end;
	}

	prev = curr;
	curr = __btrfs_next_delayed_item(prev);
	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
		/* insert the continuous items into the same leaf */
		path->slots[0]++;
863
		btrfs_batch_insert_items(root, path, curr);
864 865 866 867
	}
	btrfs_release_delayed_item(prev);
	btrfs_mark_buffer_dirty(path->nodes[0]);

868
	btrfs_release_path(path);
869 870 871 872 873 874 875 876 877 878 879 880 881
	mutex_unlock(&node->mutex);
	goto do_again;

insert_end:
	mutex_unlock(&node->mutex);
	return ret;
}

static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct btrfs_delayed_item *item)
{
882
	struct btrfs_fs_info *fs_info = root->fs_info;
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
	struct btrfs_delayed_item *curr, *next;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	struct list_head head;
	int nitems, i, last_item;
	int ret = 0;

	BUG_ON(!path->nodes[0]);

	leaf = path->nodes[0];

	i = path->slots[0];
	last_item = btrfs_header_nritems(leaf) - 1;
	if (i > last_item)
		return -ENOENT;	/* FIXME: Is errno suitable? */

	next = item;
	INIT_LIST_HEAD(&head);
	btrfs_item_key_to_cpu(leaf, &key, i);
	nitems = 0;
	/*
	 * count the number of the dir index items that we can delete in batch
	 */
	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
		list_add_tail(&next->tree_list, &head);
		nitems++;

		curr = next;
		next = __btrfs_next_delayed_item(curr);
		if (!next)
			break;

		if (!btrfs_is_continuous_delayed_item(curr, next))
			break;

		i++;
		if (i > last_item)
			break;
		btrfs_item_key_to_cpu(leaf, &key, i);
	}

	if (!nitems)
		return 0;

	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
	if (ret)
		goto out;

	list_for_each_entry_safe(curr, next, &head, tree_list) {
932
		btrfs_delayed_item_release_metadata(fs_info, curr);
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
		list_del(&curr->tree_list);
		btrfs_release_delayed_item(curr);
	}

out:
	return ret;
}

static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
				      struct btrfs_path *path,
				      struct btrfs_root *root,
				      struct btrfs_delayed_node *node)
{
	struct btrfs_delayed_item *curr, *prev;
	int ret = 0;

do_again:
	mutex_lock(&node->mutex);
	curr = __btrfs_first_delayed_deletion_item(node);
	if (!curr)
		goto delete_fail;

	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
	if (ret < 0)
		goto delete_fail;
	else if (ret > 0) {
		/*
		 * can't find the item which the node points to, so this node
		 * is invalid, just drop it.
		 */
		prev = curr;
		curr = __btrfs_next_delayed_item(prev);
		btrfs_release_delayed_item(prev);
		ret = 0;
967
		btrfs_release_path(path);
968 969
		if (curr) {
			mutex_unlock(&node->mutex);
970
			goto do_again;
971
		} else
972 973 974 975
			goto delete_fail;
	}

	btrfs_batch_delete_items(trans, root, path, curr);
976
	btrfs_release_path(path);
977 978 979 980
	mutex_unlock(&node->mutex);
	goto do_again;

delete_fail:
981
	btrfs_release_path(path);
982 983 984 985 986 987 988 989
	mutex_unlock(&node->mutex);
	return ret;
}

static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
{
	struct btrfs_delayed_root *delayed_root;

990 991
	if (delayed_node &&
	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
992
		BUG_ON(!delayed_node->root);
993
		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
994 995 996
		delayed_node->count--;

		delayed_root = delayed_node->root->fs_info->delayed_root;
997
		finish_one_item(delayed_root);
998 999 1000
	}
}

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
{
	struct btrfs_delayed_root *delayed_root;

	ASSERT(delayed_node->root);
	clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
	delayed_node->count--;

	delayed_root = delayed_node->root->fs_info->delayed_root;
	finish_one_item(delayed_root);
}

1013 1014 1015 1016
static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
					struct btrfs_root *root,
					struct btrfs_path *path,
					struct btrfs_delayed_node *node)
1017
{
1018
	struct btrfs_fs_info *fs_info = root->fs_info;
1019 1020 1021
	struct btrfs_key key;
	struct btrfs_inode_item *inode_item;
	struct extent_buffer *leaf;
1022
	int mod;
1023 1024 1025
	int ret;

	key.objectid = node->inode_id;
1026
	key.type = BTRFS_INODE_ITEM_KEY;
1027
	key.offset = 0;
1028

1029 1030 1031 1032 1033 1034
	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
		mod = -1;
	else
		mod = 1;

	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1035
	if (ret > 0) {
1036
		btrfs_release_path(path);
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
		return -ENOENT;
	} else if (ret < 0) {
		return ret;
	}

	leaf = path->nodes[0];
	inode_item = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_inode_item);
	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
			    sizeof(struct btrfs_inode_item));
	btrfs_mark_buffer_dirty(leaf);

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
		goto no_iref;

	path->slots[0]++;
	if (path->slots[0] >= btrfs_header_nritems(leaf))
		goto search;
again:
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
	if (key.objectid != node->inode_id)
		goto out;

	if (key.type != BTRFS_INODE_REF_KEY &&
	    key.type != BTRFS_INODE_EXTREF_KEY)
		goto out;

	/*
	 * Delayed iref deletion is for the inode who has only one link,
	 * so there is only one iref. The case that several irefs are
	 * in the same item doesn't exist.
	 */
	btrfs_del_item(trans, root, path);
out:
	btrfs_release_delayed_iref(node);
no_iref:
	btrfs_release_path(path);
err_out:
1075
	btrfs_delayed_inode_release_metadata(fs_info, node);
1076 1077
	btrfs_release_delayed_inode(node);

1078 1079 1080 1081 1082
	return ret;

search:
	btrfs_release_path(path);

1083
	key.type = BTRFS_INODE_EXTREF_KEY;
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
	key.offset = -1;
	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
	if (ret < 0)
		goto err_out;
	ASSERT(ret);

	ret = 0;
	leaf = path->nodes[0];
	path->slots[0]--;
	goto again;
1094 1095
}

1096 1097 1098 1099 1100 1101 1102 1103
static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
					     struct btrfs_root *root,
					     struct btrfs_path *path,
					     struct btrfs_delayed_node *node)
{
	int ret;

	mutex_lock(&node->mutex);
1104
	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1105 1106 1107 1108 1109 1110 1111 1112 1113
		mutex_unlock(&node->mutex);
		return 0;
	}

	ret = __btrfs_update_delayed_inode(trans, root, path, node);
	mutex_unlock(&node->mutex);
	return ret;
}

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
static inline int
__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
				   struct btrfs_path *path,
				   struct btrfs_delayed_node *node)
{
	int ret;

	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
	if (ret)
		return ret;

	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
	if (ret)
		return ret;

	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
	return ret;
}

1133 1134 1135 1136 1137 1138
/*
 * Called when committing the transaction.
 * Returns 0 on success.
 * Returns < 0 on error and returns with an aborted transaction with any
 * outstanding delayed items cleaned up.
 */
1139
static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1140
				     struct btrfs_fs_info *fs_info, int nr)
1141 1142 1143 1144
{
	struct btrfs_delayed_root *delayed_root;
	struct btrfs_delayed_node *curr_node, *prev_node;
	struct btrfs_path *path;
1145
	struct btrfs_block_rsv *block_rsv;
1146
	int ret = 0;
1147
	bool count = (nr > 0);
1148

1149 1150 1151
	if (trans->aborted)
		return -EIO;

1152 1153 1154 1155 1156
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
	path->leave_spinning = 1;

1157
	block_rsv = trans->block_rsv;
1158
	trans->block_rsv = &fs_info->delayed_block_rsv;
1159

1160
	delayed_root = fs_info->delayed_root;
1161 1162

	curr_node = btrfs_first_delayed_node(delayed_root);
1163
	while (curr_node && (!count || (count && nr--))) {
1164 1165
		ret = __btrfs_commit_inode_delayed_items(trans, path,
							 curr_node);
1166 1167
		if (ret) {
			btrfs_release_delayed_node(curr_node);
1168
			curr_node = NULL;
1169
			btrfs_abort_transaction(trans, ret);
1170 1171 1172 1173 1174 1175 1176 1177
			break;
		}

		prev_node = curr_node;
		curr_node = btrfs_next_delayed_node(curr_node);
		btrfs_release_delayed_node(prev_node);
	}

1178 1179
	if (curr_node)
		btrfs_release_delayed_node(curr_node);
1180
	btrfs_free_path(path);
1181
	trans->block_rsv = block_rsv;
1182

1183 1184 1185
	return ret;
}

1186
int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1187
			    struct btrfs_fs_info *fs_info)
1188
{
1189
	return __btrfs_run_delayed_items(trans, fs_info, -1);
1190 1191 1192
}

int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1193
			       struct btrfs_fs_info *fs_info, int nr)
1194
{
1195
	return __btrfs_run_delayed_items(trans, fs_info, nr);
1196 1197
}

1198 1199 1200 1201
int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
				     struct inode *inode)
{
	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1202 1203
	struct btrfs_path *path;
	struct btrfs_block_rsv *block_rsv;
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
	int ret;

	if (!delayed_node)
		return 0;

	mutex_lock(&delayed_node->mutex);
	if (!delayed_node->count) {
		mutex_unlock(&delayed_node->mutex);
		btrfs_release_delayed_node(delayed_node);
		return 0;
	}
	mutex_unlock(&delayed_node->mutex);

1217
	path = btrfs_alloc_path();
1218 1219
	if (!path) {
		btrfs_release_delayed_node(delayed_node);
1220
		return -ENOMEM;
1221
	}
1222 1223 1224 1225 1226 1227 1228
	path->leave_spinning = 1;

	block_rsv = trans->block_rsv;
	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;

	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);

1229
	btrfs_release_delayed_node(delayed_node);
1230 1231 1232
	btrfs_free_path(path);
	trans->block_rsv = block_rsv;

1233 1234 1235
	return ret;
}

1236 1237
int btrfs_commit_inode_delayed_inode(struct inode *inode)
{
1238
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
	struct btrfs_trans_handle *trans;
	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
	struct btrfs_path *path;
	struct btrfs_block_rsv *block_rsv;
	int ret;

	if (!delayed_node)
		return 0;

	mutex_lock(&delayed_node->mutex);
1249
	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
		mutex_unlock(&delayed_node->mutex);
		btrfs_release_delayed_node(delayed_node);
		return 0;
	}
	mutex_unlock(&delayed_node->mutex);

	trans = btrfs_join_transaction(delayed_node->root);
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
		goto out;
	}

	path = btrfs_alloc_path();
	if (!path) {
		ret = -ENOMEM;
		goto trans_out;
	}
	path->leave_spinning = 1;

	block_rsv = trans->block_rsv;
1270
	trans->block_rsv = &fs_info->delayed_block_rsv;
1271 1272

	mutex_lock(&delayed_node->mutex);
1273
	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1274 1275 1276 1277 1278 1279 1280 1281 1282
		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
						   path, delayed_node);
	else
		ret = 0;
	mutex_unlock(&delayed_node->mutex);

	btrfs_free_path(path);
	trans->block_rsv = block_rsv;
trans_out:
1283
	btrfs_end_transaction(trans);
1284
	btrfs_btree_balance_dirty(fs_info);
1285 1286 1287 1288 1289 1290
out:
	btrfs_release_delayed_node(delayed_node);

	return ret;
}

1291 1292 1293 1294
void btrfs_remove_delayed_node(struct inode *inode)
{
	struct btrfs_delayed_node *delayed_node;

S
Seraphime Kirkovski 已提交
1295
	delayed_node = READ_ONCE(BTRFS_I(inode)->delayed_node);
1296 1297 1298 1299 1300 1301 1302
	if (!delayed_node)
		return;

	BTRFS_I(inode)->delayed_node = NULL;
	btrfs_release_delayed_node(delayed_node);
}

1303 1304 1305
struct btrfs_async_delayed_work {
	struct btrfs_delayed_root *delayed_root;
	int nr;
1306
	struct btrfs_work work;
1307 1308
};

1309
static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1310
{
1311 1312
	struct btrfs_async_delayed_work *async_work;
	struct btrfs_delayed_root *delayed_root;
1313 1314 1315 1316
	struct btrfs_trans_handle *trans;
	struct btrfs_path *path;
	struct btrfs_delayed_node *delayed_node = NULL;
	struct btrfs_root *root;
1317
	struct btrfs_block_rsv *block_rsv;
1318
	int total_done = 0;
1319

1320 1321
	async_work = container_of(work, struct btrfs_async_delayed_work, work);
	delayed_root = async_work->delayed_root;
1322 1323 1324 1325 1326

	path = btrfs_alloc_path();
	if (!path)
		goto out;

1327 1328 1329 1330 1331 1332 1333 1334 1335
again:
	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
		goto free_path;

	delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
	if (!delayed_node)
		goto free_path;

	path->leave_spinning = 1;
1336 1337
	root = delayed_node->root;

C
Chris Mason 已提交
1338
	trans = btrfs_join_transaction(root);
1339
	if (IS_ERR(trans))
1340
		goto release_path;
1341

1342
	block_rsv = trans->block_rsv;
1343
	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1344

1345
	__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1346

1347
	trans->block_rsv = block_rsv;
1348
	btrfs_end_transaction(trans);
1349
	btrfs_btree_balance_dirty_nodelay(root->fs_info);
1350 1351 1352 1353 1354 1355

release_path:
	btrfs_release_path(path);
	total_done++;

	btrfs_release_prepared_delayed_node(delayed_node);
1356 1357
	if ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) ||
	    total_done < async_work->nr)
1358 1359
		goto again;

1360 1361 1362
free_path:
	btrfs_free_path(path);
out:
1363 1364
	wake_up(&delayed_root->wait);
	kfree(async_work);
1365 1366
}

1367

1368
static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1369
				     struct btrfs_fs_info *fs_info, int nr)
1370
{
1371
	struct btrfs_async_delayed_work *async_work;
1372

1373 1374
	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND ||
	    btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1375 1376
		return 0;

1377 1378
	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
	if (!async_work)
1379 1380
		return -ENOMEM;

1381
	async_work->delayed_root = delayed_root;
1382 1383
	btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
			btrfs_async_run_delayed_root, NULL, NULL);
1384
	async_work->nr = nr;
1385

1386
	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1387 1388 1389
	return 0;
}

1390
void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1391
{
1392
	WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1393 1394
}

1395
static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1396 1397 1398
{
	int val = atomic_read(&delayed_root->items_seq);

1399
	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1400
		return 1;
1401 1402 1403 1404

	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
		return 1;

1405 1406 1407
	return 0;
}

1408
void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1409
{
1410
	struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1411 1412 1413 1414 1415

	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
		return;

	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1416
		int seq;
1417
		int ret;
1418 1419

		seq = atomic_read(&delayed_root->items_seq);
1420

1421
		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1422 1423 1424
		if (ret)
			return;

1425 1426
		wait_event_interruptible(delayed_root->wait,
					 could_end_wait(delayed_root, seq));
1427
		return;
1428 1429
	}

1430
	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1431 1432
}

1433
/* Will return 0 or -ENOMEM */
1434
int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1435 1436 1437
				   struct btrfs_fs_info *fs_info,
				   const char *name, int name_len,
				   struct inode *dir,
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
				   struct btrfs_disk_key *disk_key, u8 type,
				   u64 index)
{
	struct btrfs_delayed_node *delayed_node;
	struct btrfs_delayed_item *delayed_item;
	struct btrfs_dir_item *dir_item;
	int ret;

	delayed_node = btrfs_get_or_create_delayed_node(dir);
	if (IS_ERR(delayed_node))
		return PTR_ERR(delayed_node);

	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
	if (!delayed_item) {
		ret = -ENOMEM;
		goto release_node;
	}

1456
	delayed_item->key.objectid = btrfs_ino(dir);
1457
	delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1458 1459 1460 1461
	delayed_item->key.offset = index;

	dir_item = (struct btrfs_dir_item *)delayed_item->data;
	dir_item->location = *disk_key;
1462 1463 1464 1465
	btrfs_set_stack_dir_transid(dir_item, trans->transid);
	btrfs_set_stack_dir_data_len(dir_item, 0);
	btrfs_set_stack_dir_name_len(dir_item, name_len);
	btrfs_set_stack_dir_type(dir_item, type);
1466 1467
	memcpy((char *)(dir_item + 1), name, name_len);

1468
	ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, delayed_item);
J
Josef Bacik 已提交
1469 1470 1471 1472 1473 1474 1475
	/*
	 * we have reserved enough space when we start a new transaction,
	 * so reserving metadata failure is impossible
	 */
	BUG_ON(ret);


1476 1477 1478
	mutex_lock(&delayed_node->mutex);
	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
	if (unlikely(ret)) {
1479
		btrfs_err(fs_info,
J
Jeff Mahoney 已提交
1480 1481 1482
			  "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
			  name_len, name, delayed_node->root->objectid,
			  delayed_node->inode_id, ret);
1483 1484 1485 1486 1487 1488 1489 1490 1491
		BUG();
	}
	mutex_unlock(&delayed_node->mutex);

release_node:
	btrfs_release_delayed_node(delayed_node);
	return ret;
}

1492
static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
					       struct btrfs_delayed_node *node,
					       struct btrfs_key *key)
{
	struct btrfs_delayed_item *item;

	mutex_lock(&node->mutex);
	item = __btrfs_lookup_delayed_insertion_item(node, key);
	if (!item) {
		mutex_unlock(&node->mutex);
		return 1;
	}

1505
	btrfs_delayed_item_release_metadata(fs_info, item);
1506 1507 1508 1509 1510 1511
	btrfs_release_delayed_item(item);
	mutex_unlock(&node->mutex);
	return 0;
}

int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1512 1513
				   struct btrfs_fs_info *fs_info,
				   struct inode *dir, u64 index)
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
{
	struct btrfs_delayed_node *node;
	struct btrfs_delayed_item *item;
	struct btrfs_key item_key;
	int ret;

	node = btrfs_get_or_create_delayed_node(dir);
	if (IS_ERR(node))
		return PTR_ERR(node);

1524
	item_key.objectid = btrfs_ino(dir);
1525
	item_key.type = BTRFS_DIR_INDEX_KEY;
1526 1527
	item_key.offset = index;

1528
	ret = btrfs_delete_delayed_insertion_item(fs_info, node, &item_key);
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
	if (!ret)
		goto end;

	item = btrfs_alloc_delayed_item(0);
	if (!item) {
		ret = -ENOMEM;
		goto end;
	}

	item->key = item_key;

1540
	ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, item);
1541 1542 1543 1544 1545 1546 1547 1548 1549
	/*
	 * we have reserved enough space when we start a new transaction,
	 * so reserving metadata failure is impossible.
	 */
	BUG_ON(ret);

	mutex_lock(&node->mutex);
	ret = __btrfs_add_delayed_deletion_item(node, item);
	if (unlikely(ret)) {
1550
		btrfs_err(fs_info,
J
Jeff Mahoney 已提交
1551 1552
			  "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
			  index, node->root->objectid, node->inode_id, ret);
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
		BUG();
	}
	mutex_unlock(&node->mutex);
end:
	btrfs_release_delayed_node(node);
	return ret;
}

int btrfs_inode_delayed_dir_index_count(struct inode *inode)
{
1563
	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1564 1565 1566 1567 1568 1569 1570 1571 1572

	if (!delayed_node)
		return -ENOENT;

	/*
	 * Since we have held i_mutex of this directory, it is impossible that
	 * a new directory index is added into the delayed node and index_cnt
	 * is updated now. So we needn't lock the delayed node.
	 */
1573 1574
	if (!delayed_node->index_cnt) {
		btrfs_release_delayed_node(delayed_node);
1575
		return -EINVAL;
1576
	}
1577 1578

	BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1579 1580
	btrfs_release_delayed_node(delayed_node);
	return 0;
1581 1582
}

1583 1584 1585
bool btrfs_readdir_get_delayed_items(struct inode *inode,
				     struct list_head *ins_list,
				     struct list_head *del_list)
1586 1587 1588 1589 1590 1591
{
	struct btrfs_delayed_node *delayed_node;
	struct btrfs_delayed_item *item;

	delayed_node = btrfs_get_delayed_node(inode);
	if (!delayed_node)
1592 1593 1594 1595 1596 1597 1598 1599
		return false;

	/*
	 * We can only do one readdir with delayed items at a time because of
	 * item->readdir_list.
	 */
	inode_unlock_shared(inode);
	inode_lock(inode);
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625

	mutex_lock(&delayed_node->mutex);
	item = __btrfs_first_delayed_insertion_item(delayed_node);
	while (item) {
		atomic_inc(&item->refs);
		list_add_tail(&item->readdir_list, ins_list);
		item = __btrfs_next_delayed_item(item);
	}

	item = __btrfs_first_delayed_deletion_item(delayed_node);
	while (item) {
		atomic_inc(&item->refs);
		list_add_tail(&item->readdir_list, del_list);
		item = __btrfs_next_delayed_item(item);
	}
	mutex_unlock(&delayed_node->mutex);
	/*
	 * This delayed node is still cached in the btrfs inode, so refs
	 * must be > 1 now, and we needn't check it is going to be freed
	 * or not.
	 *
	 * Besides that, this function is used to read dir, we do not
	 * insert/delete delayed items in this period. So we also needn't
	 * requeue or dequeue this delayed node.
	 */
	atomic_dec(&delayed_node->refs);
1626 1627

	return true;
1628 1629
}

1630 1631 1632
void btrfs_readdir_put_delayed_items(struct inode *inode,
				     struct list_head *ins_list,
				     struct list_head *del_list)
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
{
	struct btrfs_delayed_item *curr, *next;

	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
		list_del(&curr->readdir_list);
		if (atomic_dec_and_test(&curr->refs))
			kfree(curr);
	}

	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
		list_del(&curr->readdir_list);
		if (atomic_dec_and_test(&curr->refs))
			kfree(curr);
	}
1647 1648 1649 1650 1651 1652

	/*
	 * The VFS is going to do up_read(), so we need to downgrade back to a
	 * read lock.
	 */
	downgrade_write(&inode->i_rwsem);
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
}

int btrfs_should_delete_dir_index(struct list_head *del_list,
				  u64 index)
{
	struct btrfs_delayed_item *curr, *next;
	int ret;

	if (list_empty(del_list))
		return 0;

	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
		if (curr->key.offset > index)
			break;

		list_del(&curr->readdir_list);
		ret = (curr->key.offset == index);

		if (atomic_dec_and_test(&curr->refs))
			kfree(curr);

		if (ret)
			return 1;
		else
			continue;
	}
	return 0;
}

/*
 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
 *
 */
A
Al Viro 已提交
1686
int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1687
				    struct list_head *ins_list)
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
{
	struct btrfs_dir_item *di;
	struct btrfs_delayed_item *curr, *next;
	struct btrfs_key location;
	char *name;
	int name_len;
	int over = 0;
	unsigned char d_type;

	if (list_empty(ins_list))
		return 0;

	/*
	 * Changing the data of the delayed item is impossible. So
	 * we needn't lock them. And we have held i_mutex of the
	 * directory, nobody can delete any directory indexes now.
	 */
	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
		list_del(&curr->readdir_list);

A
Al Viro 已提交
1708
		if (curr->key.offset < ctx->pos) {
1709 1710 1711 1712 1713
			if (atomic_dec_and_test(&curr->refs))
				kfree(curr);
			continue;
		}

A
Al Viro 已提交
1714
		ctx->pos = curr->key.offset;
1715 1716 1717

		di = (struct btrfs_dir_item *)curr->data;
		name = (char *)(di + 1);
1718
		name_len = btrfs_stack_dir_name_len(di);
1719 1720 1721 1722

		d_type = btrfs_filetype_table[di->type];
		btrfs_disk_key_to_cpu(&location, &di->location);

A
Al Viro 已提交
1723
		over = !dir_emit(ctx, name, name_len,
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
			       location.objectid, d_type);

		if (atomic_dec_and_test(&curr->refs))
			kfree(curr);

		if (over)
			return 1;
	}
	return 0;
}

static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
				  struct btrfs_inode_item *inode_item,
				  struct inode *inode)
{
1739 1740
	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1741 1742 1743 1744 1745 1746
	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
	btrfs_set_stack_inode_generation(inode_item,
					 BTRFS_I(inode)->generation);
1747
	btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1748 1749 1750
	btrfs_set_stack_inode_transid(inode_item, trans->transid);
	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
C
Chris Mason 已提交
1751
	btrfs_set_stack_inode_block_group(inode_item, 0);
1752

1753
	btrfs_set_stack_timespec_sec(&inode_item->atime,
1754
				     inode->i_atime.tv_sec);
1755
	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1756 1757
				      inode->i_atime.tv_nsec);

1758
	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1759
				     inode->i_mtime.tv_sec);
1760
	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1761 1762
				      inode->i_mtime.tv_nsec);

1763
	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1764
				     inode->i_ctime.tv_sec);
1765
	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1766
				      inode->i_ctime.tv_nsec);
1767 1768 1769 1770 1771

	btrfs_set_stack_timespec_sec(&inode_item->otime,
				     BTRFS_I(inode)->i_otime.tv_sec);
	btrfs_set_stack_timespec_nsec(&inode_item->otime,
				     BTRFS_I(inode)->i_otime.tv_nsec);
1772 1773
}

1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
int btrfs_fill_inode(struct inode *inode, u32 *rdev)
{
	struct btrfs_delayed_node *delayed_node;
	struct btrfs_inode_item *inode_item;

	delayed_node = btrfs_get_delayed_node(inode);
	if (!delayed_node)
		return -ENOENT;

	mutex_lock(&delayed_node->mutex);
1784
	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1785 1786 1787 1788 1789 1790 1791
		mutex_unlock(&delayed_node->mutex);
		btrfs_release_delayed_node(delayed_node);
		return -ENOENT;
	}

	inode_item = &delayed_node->inode_item;

1792 1793
	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1794 1795
	btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
	inode->i_mode = btrfs_stack_inode_mode(inode_item);
M
Miklos Szeredi 已提交
1796
	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1797 1798
	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1799 1800
        BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);

1801
	inode->i_version = btrfs_stack_inode_sequence(inode_item);
1802 1803 1804 1805
	inode->i_rdev = 0;
	*rdev = btrfs_stack_inode_rdev(inode_item);
	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);

1806 1807
	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1808

1809 1810
	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1811

1812 1813
	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1814

1815 1816 1817 1818 1819
	BTRFS_I(inode)->i_otime.tv_sec =
		btrfs_stack_timespec_sec(&inode_item->otime);
	BTRFS_I(inode)->i_otime.tv_nsec =
		btrfs_stack_timespec_nsec(&inode_item->otime);

1820 1821 1822 1823 1824 1825 1826 1827
	inode->i_generation = BTRFS_I(inode)->generation;
	BTRFS_I(inode)->index_cnt = (u64)-1;

	mutex_unlock(&delayed_node->mutex);
	btrfs_release_delayed_node(delayed_node);
	return 0;
}

1828 1829 1830 1831
int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root, struct inode *inode)
{
	struct btrfs_delayed_node *delayed_node;
1832
	int ret = 0;
1833 1834 1835 1836 1837 1838

	delayed_node = btrfs_get_or_create_delayed_node(inode);
	if (IS_ERR(delayed_node))
		return PTR_ERR(delayed_node);

	mutex_lock(&delayed_node->mutex);
1839
	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1840 1841 1842 1843
		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
		goto release_node;
	}

1844 1845
	ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
						   delayed_node);
1846 1847
	if (ret)
		goto release_node;
1848 1849

	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1850
	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1851 1852 1853 1854 1855 1856 1857 1858
	delayed_node->count++;
	atomic_inc(&root->fs_info->delayed_root->items);
release_node:
	mutex_unlock(&delayed_node->mutex);
	btrfs_release_delayed_node(delayed_node);
	return ret;
}

1859 1860
int btrfs_delayed_delete_inode_ref(struct inode *inode)
{
1861
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1862 1863
	struct btrfs_delayed_node *delayed_node;

1864 1865 1866 1867 1868
	/*
	 * we don't do delayed inode updates during log recovery because it
	 * leads to enospc problems.  This means we also can't do
	 * delayed inode refs
	 */
1869
	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1870 1871
		return -EAGAIN;

1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
	delayed_node = btrfs_get_or_create_delayed_node(inode);
	if (IS_ERR(delayed_node))
		return PTR_ERR(delayed_node);

	/*
	 * We don't reserve space for inode ref deletion is because:
	 * - We ONLY do async inode ref deletion for the inode who has only
	 *   one link(i_nlink == 1), it means there is only one inode ref.
	 *   And in most case, the inode ref and the inode item are in the
	 *   same leaf, and we will deal with them at the same time.
	 *   Since we are sure we will reserve the space for the inode item,
	 *   it is unnecessary to reserve space for inode ref deletion.
	 * - If the inode ref and the inode item are not in the same leaf,
	 *   We also needn't worry about enospc problem, because we reserve
	 *   much more space for the inode update than it needs.
	 * - At the worst, we can steal some space from the global reservation.
	 *   It is very rare.
	 */
	mutex_lock(&delayed_node->mutex);
	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
		goto release_node;

	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
	delayed_node->count++;
1896
	atomic_inc(&fs_info->delayed_root->items);
1897 1898 1899 1900 1901 1902
release_node:
	mutex_unlock(&delayed_node->mutex);
	btrfs_release_delayed_node(delayed_node);
	return 0;
}

1903 1904 1905
static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
{
	struct btrfs_root *root = delayed_node->root;
1906
	struct btrfs_fs_info *fs_info = root->fs_info;
1907 1908 1909 1910 1911
	struct btrfs_delayed_item *curr_item, *prev_item;

	mutex_lock(&delayed_node->mutex);
	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
	while (curr_item) {
1912
		btrfs_delayed_item_release_metadata(fs_info, curr_item);
1913 1914 1915 1916 1917 1918 1919
		prev_item = curr_item;
		curr_item = __btrfs_next_delayed_item(prev_item);
		btrfs_release_delayed_item(prev_item);
	}

	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
	while (curr_item) {
1920
		btrfs_delayed_item_release_metadata(fs_info, curr_item);
1921 1922 1923 1924 1925
		prev_item = curr_item;
		curr_item = __btrfs_next_delayed_item(prev_item);
		btrfs_release_delayed_item(prev_item);
	}

1926 1927 1928
	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
		btrfs_release_delayed_iref(delayed_node);

1929
	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1930
		btrfs_delayed_inode_release_metadata(fs_info, delayed_node);
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
		btrfs_release_delayed_inode(delayed_node);
	}
	mutex_unlock(&delayed_node->mutex);
}

void btrfs_kill_delayed_inode_items(struct inode *inode)
{
	struct btrfs_delayed_node *delayed_node;

	delayed_node = btrfs_get_delayed_node(inode);
	if (!delayed_node)
		return;

	__btrfs_kill_delayed_node(delayed_node);
	btrfs_release_delayed_node(delayed_node);
}

void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
{
	u64 inode_id = 0;
	struct btrfs_delayed_node *delayed_nodes[8];
	int i, n;

	while (1) {
		spin_lock(&root->inode_lock);
		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
					   (void **)delayed_nodes, inode_id,
					   ARRAY_SIZE(delayed_nodes));
		if (!n) {
			spin_unlock(&root->inode_lock);
			break;
		}

		inode_id = delayed_nodes[n - 1]->inode_id + 1;

		for (i = 0; i < n; i++)
			atomic_inc(&delayed_nodes[i]->refs);
		spin_unlock(&root->inode_lock);

		for (i = 0; i < n; i++) {
			__btrfs_kill_delayed_node(delayed_nodes[i]);
			btrfs_release_delayed_node(delayed_nodes[i]);
		}
	}
}
1976

1977
void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1978 1979 1980
{
	struct btrfs_delayed_node *curr_node, *prev_node;

1981
	curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1982 1983 1984 1985 1986 1987 1988 1989 1990
	while (curr_node) {
		__btrfs_kill_delayed_node(curr_node);

		prev_node = curr_node;
		curr_node = btrfs_next_delayed_node(curr_node);
		btrfs_release_delayed_node(prev_node);
	}
}