delayed-inode.c 52.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright (C) 2011 Fujitsu.  All rights reserved.
 * Written by Miao Xie <miaox@cn.fujitsu.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/slab.h>
#include "delayed-inode.h"
#include "disk-io.h"
#include "transaction.h"
24
#include "ctree.h"
25

26 27 28
#define BTRFS_DELAYED_WRITEBACK		512
#define BTRFS_DELAYED_BACKGROUND	128
#define BTRFS_DELAYED_BATCH		16
29 30 31 32 33

static struct kmem_cache *delayed_node_cache;

int __init btrfs_delayed_inode_init(void)
{
D
David Sterba 已提交
34
	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
					sizeof(struct btrfs_delayed_node),
					0,
					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
					NULL);
	if (!delayed_node_cache)
		return -ENOMEM;
	return 0;
}

void btrfs_delayed_inode_exit(void)
{
	if (delayed_node_cache)
		kmem_cache_destroy(delayed_node_cache);
}

static inline void btrfs_init_delayed_node(
				struct btrfs_delayed_node *delayed_node,
				struct btrfs_root *root, u64 inode_id)
{
	delayed_node->root = root;
	delayed_node->inode_id = inode_id;
	atomic_set(&delayed_node->refs, 0);
	delayed_node->count = 0;
58
	delayed_node->flags = 0;
59 60 61 62 63 64 65
	delayed_node->ins_root = RB_ROOT;
	delayed_node->del_root = RB_ROOT;
	mutex_init(&delayed_node->mutex);
	delayed_node->index_cnt = 0;
	INIT_LIST_HEAD(&delayed_node->n_list);
	INIT_LIST_HEAD(&delayed_node->p_list);
	delayed_node->bytes_reserved = 0;
66
	memset(&delayed_node->inode_item, 0, sizeof(delayed_node->inode_item));
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
}

static inline int btrfs_is_continuous_delayed_item(
					struct btrfs_delayed_item *item1,
					struct btrfs_delayed_item *item2)
{
	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
	    item1->key.objectid == item2->key.objectid &&
	    item1->key.type == item2->key.type &&
	    item1->key.offset + 1 == item2->key.offset)
		return 1;
	return 0;
}

static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
							struct btrfs_root *root)
{
	return root->fs_info->delayed_root;
}

87
static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
88 89 90
{
	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
	struct btrfs_root *root = btrfs_inode->root;
91
	u64 ino = btrfs_ino(inode);
92
	struct btrfs_delayed_node *node;
93 94 95

	node = ACCESS_ONCE(btrfs_inode->delayed_node);
	if (node) {
96
		atomic_inc(&node->refs);
97 98 99 100
		return node;
	}

	spin_lock(&root->inode_lock);
101
	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
102 103
	if (node) {
		if (btrfs_inode->delayed_node) {
104 105
			atomic_inc(&node->refs);	/* can be accessed */
			BUG_ON(btrfs_inode->delayed_node != node);
106
			spin_unlock(&root->inode_lock);
107
			return node;
108 109
		}
		btrfs_inode->delayed_node = node;
110 111
		/* can be accessed and cached in the inode */
		atomic_add(2, &node->refs);
112 113 114 115 116
		spin_unlock(&root->inode_lock);
		return node;
	}
	spin_unlock(&root->inode_lock);

117 118 119
	return NULL;
}

120
/* Will return either the node or PTR_ERR(-ENOMEM) */
121 122 123 124 125 126 127 128 129 130 131 132 133 134
static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
							struct inode *inode)
{
	struct btrfs_delayed_node *node;
	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
	struct btrfs_root *root = btrfs_inode->root;
	u64 ino = btrfs_ino(inode);
	int ret;

again:
	node = btrfs_get_delayed_node(inode);
	if (node)
		return node;

135 136 137
	node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
	if (!node)
		return ERR_PTR(-ENOMEM);
138
	btrfs_init_delayed_node(node, root, ino);
139

140 141
	/* cached in the btrfs inode and can be accessed */
	atomic_add(2, &node->refs);
142 143 144 145 146 147 148 149

	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
	if (ret) {
		kmem_cache_free(delayed_node_cache, node);
		return ERR_PTR(ret);
	}

	spin_lock(&root->inode_lock);
150
	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
151 152
	if (ret == -EEXIST) {
		spin_unlock(&root->inode_lock);
153
		kmem_cache_free(delayed_node_cache, node);
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
		radix_tree_preload_end();
		goto again;
	}
	btrfs_inode->delayed_node = node;
	spin_unlock(&root->inode_lock);
	radix_tree_preload_end();

	return node;
}

/*
 * Call it when holding delayed_node->mutex
 *
 * If mod = 1, add this node into the prepared list.
 */
static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
				     struct btrfs_delayed_node *node,
				     int mod)
{
	spin_lock(&root->lock);
174
	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
175 176 177 178 179 180 181 182 183
		if (!list_empty(&node->p_list))
			list_move_tail(&node->p_list, &root->prepare_list);
		else if (mod)
			list_add_tail(&node->p_list, &root->prepare_list);
	} else {
		list_add_tail(&node->n_list, &root->node_list);
		list_add_tail(&node->p_list, &root->prepare_list);
		atomic_inc(&node->refs);	/* inserted into list */
		root->nodes++;
184
		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
185 186 187 188 189 190 191 192 193
	}
	spin_unlock(&root->lock);
}

/* Call it when holding delayed_node->mutex */
static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
				       struct btrfs_delayed_node *node)
{
	spin_lock(&root->lock);
194
	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
195 196 197 198 199
		root->nodes--;
		atomic_dec(&node->refs);	/* not in the list */
		list_del_init(&node->n_list);
		if (!list_empty(&node->p_list))
			list_del_init(&node->p_list);
200
		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
201 202 203 204
	}
	spin_unlock(&root->lock);
}

205
static struct btrfs_delayed_node *btrfs_first_delayed_node(
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
			struct btrfs_delayed_root *delayed_root)
{
	struct list_head *p;
	struct btrfs_delayed_node *node = NULL;

	spin_lock(&delayed_root->lock);
	if (list_empty(&delayed_root->node_list))
		goto out;

	p = delayed_root->node_list.next;
	node = list_entry(p, struct btrfs_delayed_node, n_list);
	atomic_inc(&node->refs);
out:
	spin_unlock(&delayed_root->lock);

	return node;
}

224
static struct btrfs_delayed_node *btrfs_next_delayed_node(
225 226 227 228 229 230 231 232
						struct btrfs_delayed_node *node)
{
	struct btrfs_delayed_root *delayed_root;
	struct list_head *p;
	struct btrfs_delayed_node *next = NULL;

	delayed_root = node->root->fs_info->delayed_root;
	spin_lock(&delayed_root->lock);
233 234
	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
		/* not in the list */
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
		if (list_empty(&delayed_root->node_list))
			goto out;
		p = delayed_root->node_list.next;
	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
		goto out;
	else
		p = node->n_list.next;

	next = list_entry(p, struct btrfs_delayed_node, n_list);
	atomic_inc(&next->refs);
out:
	spin_unlock(&delayed_root->lock);

	return next;
}

static void __btrfs_release_delayed_node(
				struct btrfs_delayed_node *delayed_node,
				int mod)
{
	struct btrfs_delayed_root *delayed_root;

	if (!delayed_node)
		return;

	delayed_root = delayed_node->root->fs_info->delayed_root;

	mutex_lock(&delayed_node->mutex);
	if (delayed_node->count)
		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
	else
		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
	mutex_unlock(&delayed_node->mutex);

	if (atomic_dec_and_test(&delayed_node->refs)) {
270
		bool free = false;
271 272 273 274 275
		struct btrfs_root *root = delayed_node->root;
		spin_lock(&root->inode_lock);
		if (atomic_read(&delayed_node->refs) == 0) {
			radix_tree_delete(&root->delayed_nodes_tree,
					  delayed_node->inode_id);
276
			free = true;
277 278
		}
		spin_unlock(&root->inode_lock);
279 280
		if (free)
			kmem_cache_free(delayed_node_cache, delayed_node);
281 282 283 284 285 286 287 288
	}
}

static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
{
	__btrfs_release_delayed_node(node, 0);
}

289
static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
					struct btrfs_delayed_root *delayed_root)
{
	struct list_head *p;
	struct btrfs_delayed_node *node = NULL;

	spin_lock(&delayed_root->lock);
	if (list_empty(&delayed_root->prepare_list))
		goto out;

	p = delayed_root->prepare_list.next;
	list_del_init(p);
	node = list_entry(p, struct btrfs_delayed_node, p_list);
	atomic_inc(&node->refs);
out:
	spin_unlock(&delayed_root->lock);

	return node;
}

static inline void btrfs_release_prepared_delayed_node(
					struct btrfs_delayed_node *node)
{
	__btrfs_release_delayed_node(node, 1);
}

315
static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
{
	struct btrfs_delayed_item *item;
	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
	if (item) {
		item->data_len = data_len;
		item->ins_or_del = 0;
		item->bytes_reserved = 0;
		item->delayed_node = NULL;
		atomic_set(&item->refs, 1);
	}
	return item;
}

/*
 * __btrfs_lookup_delayed_item - look up the delayed item by key
 * @delayed_node: pointer to the delayed node
 * @key:	  the key to look up
 * @prev:	  used to store the prev item if the right item isn't found
 * @next:	  used to store the next item if the right item isn't found
 *
 * Note: if we don't find the right item, we will return the prev item and
 * the next item.
 */
static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
				struct rb_root *root,
				struct btrfs_key *key,
				struct btrfs_delayed_item **prev,
				struct btrfs_delayed_item **next)
{
	struct rb_node *node, *prev_node = NULL;
	struct btrfs_delayed_item *delayed_item = NULL;
	int ret = 0;

	node = root->rb_node;

	while (node) {
		delayed_item = rb_entry(node, struct btrfs_delayed_item,
					rb_node);
		prev_node = node;
		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
		if (ret < 0)
			node = node->rb_right;
		else if (ret > 0)
			node = node->rb_left;
		else
			return delayed_item;
	}

	if (prev) {
		if (!prev_node)
			*prev = NULL;
		else if (ret < 0)
			*prev = delayed_item;
		else if ((node = rb_prev(prev_node)) != NULL) {
			*prev = rb_entry(node, struct btrfs_delayed_item,
					 rb_node);
		} else
			*prev = NULL;
	}

	if (next) {
		if (!prev_node)
			*next = NULL;
		else if (ret > 0)
			*next = delayed_item;
		else if ((node = rb_next(prev_node)) != NULL) {
			*next = rb_entry(node, struct btrfs_delayed_item,
					 rb_node);
		} else
			*next = NULL;
	}
	return NULL;
}

390
static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
					struct btrfs_delayed_node *delayed_node,
					struct btrfs_key *key)
{
	struct btrfs_delayed_item *item;

	item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
					   NULL, NULL);
	return item;
}

static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
				    struct btrfs_delayed_item *ins,
				    int action)
{
	struct rb_node **p, *node;
	struct rb_node *parent_node = NULL;
	struct rb_root *root;
	struct btrfs_delayed_item *item;
	int cmp;

	if (action == BTRFS_DELAYED_INSERTION_ITEM)
		root = &delayed_node->ins_root;
	else if (action == BTRFS_DELAYED_DELETION_ITEM)
		root = &delayed_node->del_root;
	else
		BUG();
	p = &root->rb_node;
	node = &ins->rb_node;

	while (*p) {
		parent_node = *p;
		item = rb_entry(parent_node, struct btrfs_delayed_item,
				 rb_node);

		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
		if (cmp < 0)
			p = &(*p)->rb_right;
		else if (cmp > 0)
			p = &(*p)->rb_left;
		else
			return -EEXIST;
	}

	rb_link_node(node, parent_node, p);
	rb_insert_color(node, root);
	ins->delayed_node = delayed_node;
	ins->ins_or_del = action;

	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
	    action == BTRFS_DELAYED_INSERTION_ITEM &&
	    ins->key.offset >= delayed_node->index_cnt)
			delayed_node->index_cnt = ins->key.offset + 1;

	delayed_node->count++;
	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
	return 0;
}

static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
					      struct btrfs_delayed_item *item)
{
	return __btrfs_add_delayed_item(node, item,
					BTRFS_DELAYED_INSERTION_ITEM);
}

static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
					     struct btrfs_delayed_item *item)
{
	return __btrfs_add_delayed_item(node, item,
					BTRFS_DELAYED_DELETION_ITEM);
}

463 464 465
static void finish_one_item(struct btrfs_delayed_root *delayed_root)
{
	int seq = atomic_inc_return(&delayed_root->items_seq);
466 467 468 469

	/*
	 * atomic_dec_return implies a barrier for waitqueue_active
	 */
470 471 472 473 474 475
	if ((atomic_dec_return(&delayed_root->items) <
	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
	    waitqueue_active(&delayed_root->wait))
		wake_up(&delayed_root->wait);
}

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
{
	struct rb_root *root;
	struct btrfs_delayed_root *delayed_root;

	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;

	BUG_ON(!delayed_root);
	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);

	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
		root = &delayed_item->delayed_node->ins_root;
	else
		root = &delayed_item->delayed_node->del_root;

	rb_erase(&delayed_item->rb_node, root);
	delayed_item->delayed_node->count--;
494 495

	finish_one_item(delayed_root);
496 497 498 499 500 501 502 503 504 505 506
}

static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
{
	if (item) {
		__btrfs_remove_delayed_item(item);
		if (atomic_dec_and_test(&item->refs))
			kfree(item);
	}
}

507
static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
508 509 510 511 512 513 514 515 516 517 518 519
					struct btrfs_delayed_node *delayed_node)
{
	struct rb_node *p;
	struct btrfs_delayed_item *item = NULL;

	p = rb_first(&delayed_node->ins_root);
	if (p)
		item = rb_entry(p, struct btrfs_delayed_item, rb_node);

	return item;
}

520
static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
521 522 523 524 525 526 527 528 529 530 531 532
					struct btrfs_delayed_node *delayed_node)
{
	struct rb_node *p;
	struct btrfs_delayed_item *item = NULL;

	p = rb_first(&delayed_node->del_root);
	if (p)
		item = rb_entry(p, struct btrfs_delayed_item, rb_node);

	return item;
}

533
static struct btrfs_delayed_item *__btrfs_next_delayed_item(
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
						struct btrfs_delayed_item *item)
{
	struct rb_node *p;
	struct btrfs_delayed_item *next = NULL;

	p = rb_next(&item->rb_node);
	if (p)
		next = rb_entry(p, struct btrfs_delayed_item, rb_node);

	return next;
}

static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
					       struct btrfs_root *root,
					       struct btrfs_delayed_item *item)
{
	struct btrfs_block_rsv *src_rsv;
	struct btrfs_block_rsv *dst_rsv;
	u64 num_bytes;
	int ret;

	if (!trans->bytes_reserved)
		return 0;

	src_rsv = trans->block_rsv;
559
	dst_rsv = &root->fs_info->delayed_block_rsv;
560 561 562

	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
J
Josef Bacik 已提交
563 564 565 566
	if (!ret) {
		trace_btrfs_space_reservation(root->fs_info, "delayed_item",
					      item->key.objectid,
					      num_bytes, 1);
567
		item->bytes_reserved = num_bytes;
J
Josef Bacik 已提交
568
	}
569 570 571 572 573 574 575

	return ret;
}

static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
						struct btrfs_delayed_item *item)
{
576 577
	struct btrfs_block_rsv *rsv;

578 579 580
	if (!item->bytes_reserved)
		return;

581
	rsv = &root->fs_info->delayed_block_rsv;
J
Josef Bacik 已提交
582 583 584
	trace_btrfs_space_reservation(root->fs_info, "delayed_item",
				      item->key.objectid, item->bytes_reserved,
				      0);
585
	btrfs_block_rsv_release(root, rsv,
586 587 588 589 590 591
				item->bytes_reserved);
}

static int btrfs_delayed_inode_reserve_metadata(
					struct btrfs_trans_handle *trans,
					struct btrfs_root *root,
592
					struct inode *inode,
593 594 595 596 597 598
					struct btrfs_delayed_node *node)
{
	struct btrfs_block_rsv *src_rsv;
	struct btrfs_block_rsv *dst_rsv;
	u64 num_bytes;
	int ret;
J
Josef Bacik 已提交
599
	bool release = false;
600 601

	src_rsv = trans->block_rsv;
602
	dst_rsv = &root->fs_info->delayed_block_rsv;
603 604

	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
605 606 607 608 609 610 611 612 613 614

	/*
	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
	 * which doesn't reserve space for speed.  This is a problem since we
	 * still need to reserve space for this update, so try to reserve the
	 * space.
	 *
	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
	 * we're accounted for.
	 */
615
	if (!src_rsv || (!trans->bytes_reserved &&
616
			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
M
Miao Xie 已提交
617 618
		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
					  BTRFS_RESERVE_NO_FLUSH);
619 620 621 622 623 624 625 626
		/*
		 * Since we're under a transaction reserve_metadata_bytes could
		 * try to commit the transaction which will make it return
		 * EAGAIN to make us stop the transaction we have, so return
		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
		 */
		if (ret == -EAGAIN)
			ret = -ENOSPC;
J
Josef Bacik 已提交
627
		if (!ret) {
628
			node->bytes_reserved = num_bytes;
J
Josef Bacik 已提交
629 630 631 632 633
			trace_btrfs_space_reservation(root->fs_info,
						      "delayed_inode",
						      btrfs_ino(inode),
						      num_bytes, 1);
		}
634
		return ret;
635
	} else if (src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
636
		spin_lock(&BTRFS_I(inode)->lock);
637 638
		if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
				       &BTRFS_I(inode)->runtime_flags)) {
639 640 641 642 643 644 645 646 647 648 649 650 651 652
			spin_unlock(&BTRFS_I(inode)->lock);
			release = true;
			goto migrate;
		}
		spin_unlock(&BTRFS_I(inode)->lock);

		/* Ok we didn't have space pre-reserved.  This shouldn't happen
		 * too often but it can happen if we do delalloc to an existing
		 * inode which gets dirtied because of the time update, and then
		 * isn't touched again until after the transaction commits and
		 * then we try to write out the data.  First try to be nice and
		 * reserve something strictly for us.  If not be a pain and try
		 * to steal from the delalloc block rsv.
		 */
M
Miao Xie 已提交
653 654
		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
					  BTRFS_RESERVE_NO_FLUSH);
655 656 657 658
		if (!ret)
			goto out;

		ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
659
		if (!WARN_ON(ret))
660 661 662 663 664 665 666 667 668
			goto out;

		/*
		 * Ok this is a problem, let's just steal from the global rsv
		 * since this really shouldn't happen that often.
		 */
		ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
					      dst_rsv, num_bytes);
		goto out;
669 670
	}

671
migrate:
672
	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687

out:
	/*
	 * Migrate only takes a reservation, it doesn't touch the size of the
	 * block_rsv.  This is to simplify people who don't normally have things
	 * migrated from their block rsv.  If they go to release their
	 * reservation, that will decrease the size as well, so if migrate
	 * reduced size we'd end up with a negative size.  But for the
	 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
	 * but we could in fact do this reserve/migrate dance several times
	 * between the time we did the original reservation and we'd clean it
	 * up.  So to take care of this, release the space for the meta
	 * reservation here.  I think it may be time for a documentation page on
	 * how block rsvs. work.
	 */
J
Josef Bacik 已提交
688 689 690
	if (!ret) {
		trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
					      btrfs_ino(inode), num_bytes, 1);
691
		node->bytes_reserved = num_bytes;
J
Josef Bacik 已提交
692
	}
693

J
Josef Bacik 已提交
694 695 696
	if (release) {
		trace_btrfs_space_reservation(root->fs_info, "delalloc",
					      btrfs_ino(inode), num_bytes, 0);
697
		btrfs_block_rsv_release(root, src_rsv, num_bytes);
J
Josef Bacik 已提交
698
	}
699 700 701 702 703 704 705 706 707 708 709 710

	return ret;
}

static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
						struct btrfs_delayed_node *node)
{
	struct btrfs_block_rsv *rsv;

	if (!node->bytes_reserved)
		return;

711
	rsv = &root->fs_info->delayed_block_rsv;
J
Josef Bacik 已提交
712 713
	trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
				      node->inode_id, node->bytes_reserved, 0);
714 715 716 717 718 719 720 721 722
	btrfs_block_rsv_release(root, rsv,
				node->bytes_reserved);
	node->bytes_reserved = 0;
}

/*
 * This helper will insert some continuous items into the same leaf according
 * to the free space of the leaf.
 */
723 724 725
static int btrfs_batch_insert_items(struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct btrfs_delayed_item *item)
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
{
	struct btrfs_delayed_item *curr, *next;
	int free_space;
	int total_data_size = 0, total_size = 0;
	struct extent_buffer *leaf;
	char *data_ptr;
	struct btrfs_key *keys;
	u32 *data_size;
	struct list_head head;
	int slot;
	int nitems;
	int i;
	int ret = 0;

	BUG_ON(!path->nodes[0]);

	leaf = path->nodes[0];
	free_space = btrfs_leaf_free_space(root, leaf);
	INIT_LIST_HEAD(&head);

	next = item;
747
	nitems = 0;
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779

	/*
	 * count the number of the continuous items that we can insert in batch
	 */
	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
	       free_space) {
		total_data_size += next->data_len;
		total_size += next->data_len + sizeof(struct btrfs_item);
		list_add_tail(&next->tree_list, &head);
		nitems++;

		curr = next;
		next = __btrfs_next_delayed_item(curr);
		if (!next)
			break;

		if (!btrfs_is_continuous_delayed_item(curr, next))
			break;
	}

	if (!nitems) {
		ret = 0;
		goto out;
	}

	/*
	 * we need allocate some memory space, but it might cause the task
	 * to sleep, so we set all locked nodes in the path to blocking locks
	 * first.
	 */
	btrfs_set_path_blocking(path);

780
	keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
781 782 783 784 785
	if (!keys) {
		ret = -ENOMEM;
		goto out;
	}

786
	data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
787 788 789 790 791 792 793 794 795 796 797 798 799 800
	if (!data_size) {
		ret = -ENOMEM;
		goto error;
	}

	/* get keys of all the delayed items */
	i = 0;
	list_for_each_entry(next, &head, tree_list) {
		keys[i] = next->key;
		data_size[i] = next->data_len;
		i++;
	}

	/* reset all the locked nodes in the patch to spinning locks. */
801
	btrfs_clear_path_blocking(path, NULL, 0);
802 803

	/* insert the keys of the items */
804
	setup_items_for_insert(root, path, keys, data_size,
805
			       total_data_size, total_size, nitems);
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878

	/* insert the dir index items */
	slot = path->slots[0];
	list_for_each_entry_safe(curr, next, &head, tree_list) {
		data_ptr = btrfs_item_ptr(leaf, slot, char);
		write_extent_buffer(leaf, &curr->data,
				    (unsigned long)data_ptr,
				    curr->data_len);
		slot++;

		btrfs_delayed_item_release_metadata(root, curr);

		list_del(&curr->tree_list);
		btrfs_release_delayed_item(curr);
	}

error:
	kfree(data_size);
	kfree(keys);
out:
	return ret;
}

/*
 * This helper can just do simple insertion that needn't extend item for new
 * data, such as directory name index insertion, inode insertion.
 */
static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
				     struct btrfs_root *root,
				     struct btrfs_path *path,
				     struct btrfs_delayed_item *delayed_item)
{
	struct extent_buffer *leaf;
	char *ptr;
	int ret;

	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
				      delayed_item->data_len);
	if (ret < 0 && ret != -EEXIST)
		return ret;

	leaf = path->nodes[0];

	ptr = btrfs_item_ptr(leaf, path->slots[0], char);

	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
			    delayed_item->data_len);
	btrfs_mark_buffer_dirty(leaf);

	btrfs_delayed_item_release_metadata(root, delayed_item);
	return 0;
}

/*
 * we insert an item first, then if there are some continuous items, we try
 * to insert those items into the same leaf.
 */
static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
				      struct btrfs_path *path,
				      struct btrfs_root *root,
				      struct btrfs_delayed_node *node)
{
	struct btrfs_delayed_item *curr, *prev;
	int ret = 0;

do_again:
	mutex_lock(&node->mutex);
	curr = __btrfs_first_delayed_insertion_item(node);
	if (!curr)
		goto insert_end;

	ret = btrfs_insert_delayed_item(trans, root, path, curr);
	if (ret < 0) {
879
		btrfs_release_path(path);
880 881 882 883 884 885 886 887
		goto insert_end;
	}

	prev = curr;
	curr = __btrfs_next_delayed_item(prev);
	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
		/* insert the continuous items into the same leaf */
		path->slots[0]++;
888
		btrfs_batch_insert_items(root, path, curr);
889 890 891 892
	}
	btrfs_release_delayed_item(prev);
	btrfs_mark_buffer_dirty(path->nodes[0]);

893
	btrfs_release_path(path);
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
	mutex_unlock(&node->mutex);
	goto do_again;

insert_end:
	mutex_unlock(&node->mutex);
	return ret;
}

static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct btrfs_delayed_item *item)
{
	struct btrfs_delayed_item *curr, *next;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	struct list_head head;
	int nitems, i, last_item;
	int ret = 0;

	BUG_ON(!path->nodes[0]);

	leaf = path->nodes[0];

	i = path->slots[0];
	last_item = btrfs_header_nritems(leaf) - 1;
	if (i > last_item)
		return -ENOENT;	/* FIXME: Is errno suitable? */

	next = item;
	INIT_LIST_HEAD(&head);
	btrfs_item_key_to_cpu(leaf, &key, i);
	nitems = 0;
	/*
	 * count the number of the dir index items that we can delete in batch
	 */
	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
		list_add_tail(&next->tree_list, &head);
		nitems++;

		curr = next;
		next = __btrfs_next_delayed_item(curr);
		if (!next)
			break;

		if (!btrfs_is_continuous_delayed_item(curr, next))
			break;

		i++;
		if (i > last_item)
			break;
		btrfs_item_key_to_cpu(leaf, &key, i);
	}

	if (!nitems)
		return 0;

	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
	if (ret)
		goto out;

	list_for_each_entry_safe(curr, next, &head, tree_list) {
		btrfs_delayed_item_release_metadata(root, curr);
		list_del(&curr->tree_list);
		btrfs_release_delayed_item(curr);
	}

out:
	return ret;
}

static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
				      struct btrfs_path *path,
				      struct btrfs_root *root,
				      struct btrfs_delayed_node *node)
{
	struct btrfs_delayed_item *curr, *prev;
	int ret = 0;

do_again:
	mutex_lock(&node->mutex);
	curr = __btrfs_first_delayed_deletion_item(node);
	if (!curr)
		goto delete_fail;

	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
	if (ret < 0)
		goto delete_fail;
	else if (ret > 0) {
		/*
		 * can't find the item which the node points to, so this node
		 * is invalid, just drop it.
		 */
		prev = curr;
		curr = __btrfs_next_delayed_item(prev);
		btrfs_release_delayed_item(prev);
		ret = 0;
991
		btrfs_release_path(path);
992 993
		if (curr) {
			mutex_unlock(&node->mutex);
994
			goto do_again;
995
		} else
996 997 998 999
			goto delete_fail;
	}

	btrfs_batch_delete_items(trans, root, path, curr);
1000
	btrfs_release_path(path);
1001 1002 1003 1004
	mutex_unlock(&node->mutex);
	goto do_again;

delete_fail:
1005
	btrfs_release_path(path);
1006 1007 1008 1009 1010 1011 1012 1013
	mutex_unlock(&node->mutex);
	return ret;
}

static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
{
	struct btrfs_delayed_root *delayed_root;

1014 1015
	if (delayed_node &&
	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1016
		BUG_ON(!delayed_node->root);
1017
		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1018 1019 1020
		delayed_node->count--;

		delayed_root = delayed_node->root->fs_info->delayed_root;
1021
		finish_one_item(delayed_root);
1022 1023 1024
	}
}

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
{
	struct btrfs_delayed_root *delayed_root;

	ASSERT(delayed_node->root);
	clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
	delayed_node->count--;

	delayed_root = delayed_node->root->fs_info->delayed_root;
	finish_one_item(delayed_root);
}

1037 1038 1039 1040
static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
					struct btrfs_root *root,
					struct btrfs_path *path,
					struct btrfs_delayed_node *node)
1041 1042 1043 1044
{
	struct btrfs_key key;
	struct btrfs_inode_item *inode_item;
	struct extent_buffer *leaf;
1045
	int mod;
1046 1047 1048
	int ret;

	key.objectid = node->inode_id;
1049
	key.type = BTRFS_INODE_ITEM_KEY;
1050
	key.offset = 0;
1051

1052 1053 1054 1055 1056 1057
	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
		mod = -1;
	else
		mod = 1;

	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1058
	if (ret > 0) {
1059
		btrfs_release_path(path);
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
		return -ENOENT;
	} else if (ret < 0) {
		return ret;
	}

	leaf = path->nodes[0];
	inode_item = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_inode_item);
	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
			    sizeof(struct btrfs_inode_item));
	btrfs_mark_buffer_dirty(leaf);

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
		goto no_iref;

	path->slots[0]++;
	if (path->slots[0] >= btrfs_header_nritems(leaf))
		goto search;
again:
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
	if (key.objectid != node->inode_id)
		goto out;

	if (key.type != BTRFS_INODE_REF_KEY &&
	    key.type != BTRFS_INODE_EXTREF_KEY)
		goto out;

	/*
	 * Delayed iref deletion is for the inode who has only one link,
	 * so there is only one iref. The case that several irefs are
	 * in the same item doesn't exist.
	 */
	btrfs_del_item(trans, root, path);
out:
	btrfs_release_delayed_iref(node);
no_iref:
	btrfs_release_path(path);
err_out:
1098 1099 1100
	btrfs_delayed_inode_release_metadata(root, node);
	btrfs_release_delayed_inode(node);

1101 1102 1103 1104 1105
	return ret;

search:
	btrfs_release_path(path);

1106
	key.type = BTRFS_INODE_EXTREF_KEY;
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
	key.offset = -1;
	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
	if (ret < 0)
		goto err_out;
	ASSERT(ret);

	ret = 0;
	leaf = path->nodes[0];
	path->slots[0]--;
	goto again;
1117 1118
}

1119 1120 1121 1122 1123 1124 1125 1126
static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
					     struct btrfs_root *root,
					     struct btrfs_path *path,
					     struct btrfs_delayed_node *node)
{
	int ret;

	mutex_lock(&node->mutex);
1127
	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1128 1129 1130 1131 1132 1133 1134 1135 1136
		mutex_unlock(&node->mutex);
		return 0;
	}

	ret = __btrfs_update_delayed_inode(trans, root, path, node);
	mutex_unlock(&node->mutex);
	return ret;
}

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
static inline int
__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
				   struct btrfs_path *path,
				   struct btrfs_delayed_node *node)
{
	int ret;

	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
	if (ret)
		return ret;

	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
	if (ret)
		return ret;

	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
	return ret;
}

1156 1157 1158 1159 1160 1161
/*
 * Called when committing the transaction.
 * Returns 0 on success.
 * Returns < 0 on error and returns with an aborted transaction with any
 * outstanding delayed items cleaned up.
 */
1162 1163
static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
				     struct btrfs_root *root, int nr)
1164 1165 1166 1167
{
	struct btrfs_delayed_root *delayed_root;
	struct btrfs_delayed_node *curr_node, *prev_node;
	struct btrfs_path *path;
1168
	struct btrfs_block_rsv *block_rsv;
1169
	int ret = 0;
1170
	bool count = (nr > 0);
1171

1172 1173 1174
	if (trans->aborted)
		return -EIO;

1175 1176 1177 1178 1179
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
	path->leave_spinning = 1;

1180
	block_rsv = trans->block_rsv;
1181
	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1182

1183 1184 1185
	delayed_root = btrfs_get_delayed_root(root);

	curr_node = btrfs_first_delayed_node(delayed_root);
1186
	while (curr_node && (!count || (count && nr--))) {
1187 1188
		ret = __btrfs_commit_inode_delayed_items(trans, path,
							 curr_node);
1189 1190
		if (ret) {
			btrfs_release_delayed_node(curr_node);
1191
			curr_node = NULL;
1192
			btrfs_abort_transaction(trans, root, ret);
1193 1194 1195 1196 1197 1198 1199 1200
			break;
		}

		prev_node = curr_node;
		curr_node = btrfs_next_delayed_node(curr_node);
		btrfs_release_delayed_node(prev_node);
	}

1201 1202
	if (curr_node)
		btrfs_release_delayed_node(curr_node);
1203
	btrfs_free_path(path);
1204
	trans->block_rsv = block_rsv;
1205

1206 1207 1208
	return ret;
}

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root)
{
	return __btrfs_run_delayed_items(trans, root, -1);
}

int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root, int nr)
{
	return __btrfs_run_delayed_items(trans, root, nr);
}

1221 1222 1223 1224
int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
				     struct inode *inode)
{
	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1225 1226
	struct btrfs_path *path;
	struct btrfs_block_rsv *block_rsv;
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
	int ret;

	if (!delayed_node)
		return 0;

	mutex_lock(&delayed_node->mutex);
	if (!delayed_node->count) {
		mutex_unlock(&delayed_node->mutex);
		btrfs_release_delayed_node(delayed_node);
		return 0;
	}
	mutex_unlock(&delayed_node->mutex);

1240
	path = btrfs_alloc_path();
1241 1242
	if (!path) {
		btrfs_release_delayed_node(delayed_node);
1243
		return -ENOMEM;
1244
	}
1245 1246 1247 1248 1249 1250 1251
	path->leave_spinning = 1;

	block_rsv = trans->block_rsv;
	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;

	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);

1252
	btrfs_release_delayed_node(delayed_node);
1253 1254 1255
	btrfs_free_path(path);
	trans->block_rsv = block_rsv;

1256 1257 1258
	return ret;
}

1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
int btrfs_commit_inode_delayed_inode(struct inode *inode)
{
	struct btrfs_trans_handle *trans;
	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
	struct btrfs_path *path;
	struct btrfs_block_rsv *block_rsv;
	int ret;

	if (!delayed_node)
		return 0;

	mutex_lock(&delayed_node->mutex);
1271
	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
		mutex_unlock(&delayed_node->mutex);
		btrfs_release_delayed_node(delayed_node);
		return 0;
	}
	mutex_unlock(&delayed_node->mutex);

	trans = btrfs_join_transaction(delayed_node->root);
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
		goto out;
	}

	path = btrfs_alloc_path();
	if (!path) {
		ret = -ENOMEM;
		goto trans_out;
	}
	path->leave_spinning = 1;

	block_rsv = trans->block_rsv;
	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;

	mutex_lock(&delayed_node->mutex);
1295
	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
						   path, delayed_node);
	else
		ret = 0;
	mutex_unlock(&delayed_node->mutex);

	btrfs_free_path(path);
	trans->block_rsv = block_rsv;
trans_out:
	btrfs_end_transaction(trans, delayed_node->root);
	btrfs_btree_balance_dirty(delayed_node->root);
out:
	btrfs_release_delayed_node(delayed_node);

	return ret;
}

1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
void btrfs_remove_delayed_node(struct inode *inode)
{
	struct btrfs_delayed_node *delayed_node;

	delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
	if (!delayed_node)
		return;

	BTRFS_I(inode)->delayed_node = NULL;
	btrfs_release_delayed_node(delayed_node);
}

1325 1326 1327
struct btrfs_async_delayed_work {
	struct btrfs_delayed_root *delayed_root;
	int nr;
1328
	struct btrfs_work work;
1329 1330
};

1331
static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1332
{
1333 1334
	struct btrfs_async_delayed_work *async_work;
	struct btrfs_delayed_root *delayed_root;
1335 1336 1337 1338
	struct btrfs_trans_handle *trans;
	struct btrfs_path *path;
	struct btrfs_delayed_node *delayed_node = NULL;
	struct btrfs_root *root;
1339
	struct btrfs_block_rsv *block_rsv;
1340
	int total_done = 0;
1341

1342 1343
	async_work = container_of(work, struct btrfs_async_delayed_work, work);
	delayed_root = async_work->delayed_root;
1344 1345 1346 1347 1348

	path = btrfs_alloc_path();
	if (!path)
		goto out;

1349 1350 1351 1352 1353 1354 1355 1356 1357
again:
	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
		goto free_path;

	delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
	if (!delayed_node)
		goto free_path;

	path->leave_spinning = 1;
1358 1359
	root = delayed_node->root;

C
Chris Mason 已提交
1360
	trans = btrfs_join_transaction(root);
1361
	if (IS_ERR(trans))
1362
		goto release_path;
1363

1364
	block_rsv = trans->block_rsv;
1365
	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1366

1367
	__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1368

1369
	trans->block_rsv = block_rsv;
1370
	btrfs_end_transaction(trans, root);
1371
	btrfs_btree_balance_dirty_nodelay(root);
1372 1373 1374 1375 1376 1377 1378 1379 1380

release_path:
	btrfs_release_path(path);
	total_done++;

	btrfs_release_prepared_delayed_node(delayed_node);
	if (async_work->nr == 0 || total_done < async_work->nr)
		goto again;

1381 1382 1383
free_path:
	btrfs_free_path(path);
out:
1384 1385
	wake_up(&delayed_root->wait);
	kfree(async_work);
1386 1387
}

1388

1389
static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1390
				     struct btrfs_fs_info *fs_info, int nr)
1391
{
1392
	struct btrfs_async_delayed_work *async_work;
1393

1394
	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1395 1396
		return 0;

1397 1398
	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
	if (!async_work)
1399 1400
		return -ENOMEM;

1401
	async_work->delayed_root = delayed_root;
1402 1403
	btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
			btrfs_async_run_delayed_root, NULL, NULL);
1404
	async_work->nr = nr;
1405

1406
	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1407 1408 1409
	return 0;
}

1410 1411 1412 1413 1414 1415 1416
void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
{
	struct btrfs_delayed_root *delayed_root;
	delayed_root = btrfs_get_delayed_root(root);
	WARN_ON(btrfs_first_delayed_node(delayed_root));
}

1417
static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1418 1419 1420
{
	int val = atomic_read(&delayed_root->items_seq);

1421
	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1422
		return 1;
1423 1424 1425 1426

	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
		return 1;

1427 1428 1429
	return 0;
}

1430 1431 1432
void btrfs_balance_delayed_items(struct btrfs_root *root)
{
	struct btrfs_delayed_root *delayed_root;
1433
	struct btrfs_fs_info *fs_info = root->fs_info;
1434 1435 1436 1437 1438 1439 1440

	delayed_root = btrfs_get_delayed_root(root);

	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
		return;

	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1441
		int seq;
1442
		int ret;
1443 1444

		seq = atomic_read(&delayed_root->items_seq);
1445

1446
		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1447 1448 1449
		if (ret)
			return;

1450 1451
		wait_event_interruptible(delayed_root->wait,
					 could_end_wait(delayed_root, seq));
1452
		return;
1453 1454
	}

1455
	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1456 1457
}

1458
/* Will return 0 or -ENOMEM */
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
				   struct btrfs_root *root, const char *name,
				   int name_len, struct inode *dir,
				   struct btrfs_disk_key *disk_key, u8 type,
				   u64 index)
{
	struct btrfs_delayed_node *delayed_node;
	struct btrfs_delayed_item *delayed_item;
	struct btrfs_dir_item *dir_item;
	int ret;

	delayed_node = btrfs_get_or_create_delayed_node(dir);
	if (IS_ERR(delayed_node))
		return PTR_ERR(delayed_node);

	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
	if (!delayed_item) {
		ret = -ENOMEM;
		goto release_node;
	}

1480
	delayed_item->key.objectid = btrfs_ino(dir);
1481
	delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1482 1483 1484 1485
	delayed_item->key.offset = index;

	dir_item = (struct btrfs_dir_item *)delayed_item->data;
	dir_item->location = *disk_key;
1486 1487 1488 1489
	btrfs_set_stack_dir_transid(dir_item, trans->transid);
	btrfs_set_stack_dir_data_len(dir_item, 0);
	btrfs_set_stack_dir_name_len(dir_item, name_len);
	btrfs_set_stack_dir_type(dir_item, type);
1490 1491
	memcpy((char *)(dir_item + 1), name, name_len);

J
Josef Bacik 已提交
1492 1493 1494 1495 1496 1497 1498 1499
	ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
	/*
	 * we have reserved enough space when we start a new transaction,
	 * so reserving metadata failure is impossible
	 */
	BUG_ON(ret);


1500 1501 1502
	mutex_lock(&delayed_node->mutex);
	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
	if (unlikely(ret)) {
1503
		btrfs_err(root->fs_info, "err add delayed dir index item(name: %.*s) "
1504
				"into the insertion tree of the delayed node"
1505
				"(root id: %llu, inode id: %llu, errno: %d)",
1506
				name_len, name, delayed_node->root->objectid,
1507
				delayed_node->inode_id, ret);
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
		BUG();
	}
	mutex_unlock(&delayed_node->mutex);

release_node:
	btrfs_release_delayed_node(delayed_node);
	return ret;
}

static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
					       struct btrfs_delayed_node *node,
					       struct btrfs_key *key)
{
	struct btrfs_delayed_item *item;

	mutex_lock(&node->mutex);
	item = __btrfs_lookup_delayed_insertion_item(node, key);
	if (!item) {
		mutex_unlock(&node->mutex);
		return 1;
	}

	btrfs_delayed_item_release_metadata(root, item);
	btrfs_release_delayed_item(item);
	mutex_unlock(&node->mutex);
	return 0;
}

int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
				   struct btrfs_root *root, struct inode *dir,
				   u64 index)
{
	struct btrfs_delayed_node *node;
	struct btrfs_delayed_item *item;
	struct btrfs_key item_key;
	int ret;

	node = btrfs_get_or_create_delayed_node(dir);
	if (IS_ERR(node))
		return PTR_ERR(node);

1549
	item_key.objectid = btrfs_ino(dir);
1550
	item_key.type = BTRFS_DIR_INDEX_KEY;
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
	item_key.offset = index;

	ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
	if (!ret)
		goto end;

	item = btrfs_alloc_delayed_item(0);
	if (!item) {
		ret = -ENOMEM;
		goto end;
	}

	item->key = item_key;

	ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
	/*
	 * we have reserved enough space when we start a new transaction,
	 * so reserving metadata failure is impossible.
	 */
	BUG_ON(ret);

	mutex_lock(&node->mutex);
	ret = __btrfs_add_delayed_deletion_item(node, item);
	if (unlikely(ret)) {
1575
		btrfs_err(root->fs_info, "err add delayed dir index item(index: %llu) "
1576
				"into the deletion tree of the delayed node"
1577
				"(root id: %llu, inode id: %llu, errno: %d)",
1578
				index, node->root->objectid, node->inode_id,
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
				ret);
		BUG();
	}
	mutex_unlock(&node->mutex);
end:
	btrfs_release_delayed_node(node);
	return ret;
}

int btrfs_inode_delayed_dir_index_count(struct inode *inode)
{
1590
	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1591 1592 1593 1594 1595 1596 1597 1598 1599

	if (!delayed_node)
		return -ENOENT;

	/*
	 * Since we have held i_mutex of this directory, it is impossible that
	 * a new directory index is added into the delayed node and index_cnt
	 * is updated now. So we needn't lock the delayed node.
	 */
1600 1601
	if (!delayed_node->index_cnt) {
		btrfs_release_delayed_node(delayed_node);
1602
		return -EINVAL;
1603
	}
1604 1605

	BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1606 1607
	btrfs_release_delayed_node(delayed_node);
	return 0;
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
}

void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
			     struct list_head *del_list)
{
	struct btrfs_delayed_node *delayed_node;
	struct btrfs_delayed_item *item;

	delayed_node = btrfs_get_delayed_node(inode);
	if (!delayed_node)
		return;

	mutex_lock(&delayed_node->mutex);
	item = __btrfs_first_delayed_insertion_item(delayed_node);
	while (item) {
		atomic_inc(&item->refs);
		list_add_tail(&item->readdir_list, ins_list);
		item = __btrfs_next_delayed_item(item);
	}

	item = __btrfs_first_delayed_deletion_item(delayed_node);
	while (item) {
		atomic_inc(&item->refs);
		list_add_tail(&item->readdir_list, del_list);
		item = __btrfs_next_delayed_item(item);
	}
	mutex_unlock(&delayed_node->mutex);
	/*
	 * This delayed node is still cached in the btrfs inode, so refs
	 * must be > 1 now, and we needn't check it is going to be freed
	 * or not.
	 *
	 * Besides that, this function is used to read dir, we do not
	 * insert/delete delayed items in this period. So we also needn't
	 * requeue or dequeue this delayed node.
	 */
	atomic_dec(&delayed_node->refs);
}

void btrfs_put_delayed_items(struct list_head *ins_list,
			     struct list_head *del_list)
{
	struct btrfs_delayed_item *curr, *next;

	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
		list_del(&curr->readdir_list);
		if (atomic_dec_and_test(&curr->refs))
			kfree(curr);
	}

	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
		list_del(&curr->readdir_list);
		if (atomic_dec_and_test(&curr->refs))
			kfree(curr);
	}
}

int btrfs_should_delete_dir_index(struct list_head *del_list,
				  u64 index)
{
	struct btrfs_delayed_item *curr, *next;
	int ret;

	if (list_empty(del_list))
		return 0;

	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
		if (curr->key.offset > index)
			break;

		list_del(&curr->readdir_list);
		ret = (curr->key.offset == index);

		if (atomic_dec_and_test(&curr->refs))
			kfree(curr);

		if (ret)
			return 1;
		else
			continue;
	}
	return 0;
}

/*
 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
 *
 */
A
Al Viro 已提交
1696
int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
				    struct list_head *ins_list)
{
	struct btrfs_dir_item *di;
	struct btrfs_delayed_item *curr, *next;
	struct btrfs_key location;
	char *name;
	int name_len;
	int over = 0;
	unsigned char d_type;

	if (list_empty(ins_list))
		return 0;

	/*
	 * Changing the data of the delayed item is impossible. So
	 * we needn't lock them. And we have held i_mutex of the
	 * directory, nobody can delete any directory indexes now.
	 */
	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
		list_del(&curr->readdir_list);

A
Al Viro 已提交
1718
		if (curr->key.offset < ctx->pos) {
1719 1720 1721 1722 1723
			if (atomic_dec_and_test(&curr->refs))
				kfree(curr);
			continue;
		}

A
Al Viro 已提交
1724
		ctx->pos = curr->key.offset;
1725 1726 1727

		di = (struct btrfs_dir_item *)curr->data;
		name = (char *)(di + 1);
1728
		name_len = btrfs_stack_dir_name_len(di);
1729 1730 1731 1732

		d_type = btrfs_filetype_table[di->type];
		btrfs_disk_key_to_cpu(&location, &di->location);

A
Al Viro 已提交
1733
		over = !dir_emit(ctx, name, name_len,
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
			       location.objectid, d_type);

		if (atomic_dec_and_test(&curr->refs))
			kfree(curr);

		if (over)
			return 1;
	}
	return 0;
}

static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
				  struct btrfs_inode_item *inode_item,
				  struct inode *inode)
{
1749 1750
	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1751 1752 1753 1754 1755 1756
	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
	btrfs_set_stack_inode_generation(inode_item,
					 BTRFS_I(inode)->generation);
1757
	btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1758 1759 1760
	btrfs_set_stack_inode_transid(inode_item, trans->transid);
	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
C
Chris Mason 已提交
1761
	btrfs_set_stack_inode_block_group(inode_item, 0);
1762

1763
	btrfs_set_stack_timespec_sec(&inode_item->atime,
1764
				     inode->i_atime.tv_sec);
1765
	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1766 1767
				      inode->i_atime.tv_nsec);

1768
	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1769
				     inode->i_mtime.tv_sec);
1770
	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1771 1772
				      inode->i_mtime.tv_nsec);

1773
	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1774
				     inode->i_ctime.tv_sec);
1775
	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1776
				      inode->i_ctime.tv_nsec);
1777 1778 1779 1780 1781

	btrfs_set_stack_timespec_sec(&inode_item->otime,
				     BTRFS_I(inode)->i_otime.tv_sec);
	btrfs_set_stack_timespec_nsec(&inode_item->otime,
				     BTRFS_I(inode)->i_otime.tv_nsec);
1782 1783
}

1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
int btrfs_fill_inode(struct inode *inode, u32 *rdev)
{
	struct btrfs_delayed_node *delayed_node;
	struct btrfs_inode_item *inode_item;

	delayed_node = btrfs_get_delayed_node(inode);
	if (!delayed_node)
		return -ENOENT;

	mutex_lock(&delayed_node->mutex);
1794
	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1795 1796 1797 1798 1799 1800 1801
		mutex_unlock(&delayed_node->mutex);
		btrfs_release_delayed_node(delayed_node);
		return -ENOENT;
	}

	inode_item = &delayed_node->inode_item;

1802 1803
	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1804 1805
	btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
	inode->i_mode = btrfs_stack_inode_mode(inode_item);
M
Miklos Szeredi 已提交
1806
	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1807 1808
	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1809 1810
        BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);

1811
	inode->i_version = btrfs_stack_inode_sequence(inode_item);
1812 1813 1814 1815
	inode->i_rdev = 0;
	*rdev = btrfs_stack_inode_rdev(inode_item);
	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);

1816 1817
	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1818

1819 1820
	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1821

1822 1823
	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1824

1825 1826 1827 1828 1829
	BTRFS_I(inode)->i_otime.tv_sec =
		btrfs_stack_timespec_sec(&inode_item->otime);
	BTRFS_I(inode)->i_otime.tv_nsec =
		btrfs_stack_timespec_nsec(&inode_item->otime);

1830 1831 1832 1833 1834 1835 1836 1837
	inode->i_generation = BTRFS_I(inode)->generation;
	BTRFS_I(inode)->index_cnt = (u64)-1;

	mutex_unlock(&delayed_node->mutex);
	btrfs_release_delayed_node(delayed_node);
	return 0;
}

1838 1839 1840 1841
int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root, struct inode *inode)
{
	struct btrfs_delayed_node *delayed_node;
1842
	int ret = 0;
1843 1844 1845 1846 1847 1848

	delayed_node = btrfs_get_or_create_delayed_node(inode);
	if (IS_ERR(delayed_node))
		return PTR_ERR(delayed_node);

	mutex_lock(&delayed_node->mutex);
1849
	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1850 1851 1852 1853
		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
		goto release_node;
	}

1854 1855
	ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
						   delayed_node);
1856 1857
	if (ret)
		goto release_node;
1858 1859

	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1860
	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1861 1862 1863 1864 1865 1866 1867 1868
	delayed_node->count++;
	atomic_inc(&root->fs_info->delayed_root->items);
release_node:
	mutex_unlock(&delayed_node->mutex);
	btrfs_release_delayed_node(delayed_node);
	return ret;
}

1869 1870 1871 1872
int btrfs_delayed_delete_inode_ref(struct inode *inode)
{
	struct btrfs_delayed_node *delayed_node;

1873 1874 1875 1876 1877 1878 1879 1880
	/*
	 * we don't do delayed inode updates during log recovery because it
	 * leads to enospc problems.  This means we also can't do
	 * delayed inode refs
	 */
	if (BTRFS_I(inode)->root->fs_info->log_root_recovering)
		return -EAGAIN;

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
	delayed_node = btrfs_get_or_create_delayed_node(inode);
	if (IS_ERR(delayed_node))
		return PTR_ERR(delayed_node);

	/*
	 * We don't reserve space for inode ref deletion is because:
	 * - We ONLY do async inode ref deletion for the inode who has only
	 *   one link(i_nlink == 1), it means there is only one inode ref.
	 *   And in most case, the inode ref and the inode item are in the
	 *   same leaf, and we will deal with them at the same time.
	 *   Since we are sure we will reserve the space for the inode item,
	 *   it is unnecessary to reserve space for inode ref deletion.
	 * - If the inode ref and the inode item are not in the same leaf,
	 *   We also needn't worry about enospc problem, because we reserve
	 *   much more space for the inode update than it needs.
	 * - At the worst, we can steal some space from the global reservation.
	 *   It is very rare.
	 */
	mutex_lock(&delayed_node->mutex);
	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
		goto release_node;

	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
	delayed_node->count++;
	atomic_inc(&BTRFS_I(inode)->root->fs_info->delayed_root->items);
release_node:
	mutex_unlock(&delayed_node->mutex);
	btrfs_release_delayed_node(delayed_node);
	return 0;
}

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
{
	struct btrfs_root *root = delayed_node->root;
	struct btrfs_delayed_item *curr_item, *prev_item;

	mutex_lock(&delayed_node->mutex);
	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
	while (curr_item) {
		btrfs_delayed_item_release_metadata(root, curr_item);
		prev_item = curr_item;
		curr_item = __btrfs_next_delayed_item(prev_item);
		btrfs_release_delayed_item(prev_item);
	}

	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
	while (curr_item) {
		btrfs_delayed_item_release_metadata(root, curr_item);
		prev_item = curr_item;
		curr_item = __btrfs_next_delayed_item(prev_item);
		btrfs_release_delayed_item(prev_item);
	}

1934 1935 1936
	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
		btrfs_release_delayed_iref(delayed_node);

1937
	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
		btrfs_delayed_inode_release_metadata(root, delayed_node);
		btrfs_release_delayed_inode(delayed_node);
	}
	mutex_unlock(&delayed_node->mutex);
}

void btrfs_kill_delayed_inode_items(struct inode *inode)
{
	struct btrfs_delayed_node *delayed_node;

	delayed_node = btrfs_get_delayed_node(inode);
	if (!delayed_node)
		return;

	__btrfs_kill_delayed_node(delayed_node);
	btrfs_release_delayed_node(delayed_node);
}

void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
{
	u64 inode_id = 0;
	struct btrfs_delayed_node *delayed_nodes[8];
	int i, n;

	while (1) {
		spin_lock(&root->inode_lock);
		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
					   (void **)delayed_nodes, inode_id,
					   ARRAY_SIZE(delayed_nodes));
		if (!n) {
			spin_unlock(&root->inode_lock);
			break;
		}

		inode_id = delayed_nodes[n - 1]->inode_id + 1;

		for (i = 0; i < n; i++)
			atomic_inc(&delayed_nodes[i]->refs);
		spin_unlock(&root->inode_lock);

		for (i = 0; i < n; i++) {
			__btrfs_kill_delayed_node(delayed_nodes[i]);
			btrfs_release_delayed_node(delayed_nodes[i]);
		}
	}
}
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
{
	struct btrfs_delayed_root *delayed_root;
	struct btrfs_delayed_node *curr_node, *prev_node;

	delayed_root = btrfs_get_delayed_root(root);

	curr_node = btrfs_first_delayed_node(delayed_root);
	while (curr_node) {
		__btrfs_kill_delayed_node(curr_node);

		prev_node = curr_node;
		curr_node = btrfs_next_delayed_node(curr_node);
		btrfs_release_delayed_node(prev_node);
	}
}