cpufreq-dt.c 11.8 KB
Newer Older
1 2 3
/*
 * Copyright (C) 2012 Freescale Semiconductor, Inc.
 *
4 5 6
 * Copyright (C) 2014 Linaro.
 * Viresh Kumar <viresh.kumar@linaro.org>
 *
7
 * The OPP code in function set_target() is reused from
8 9 10 11 12 13 14 15 16 17
 * drivers/cpufreq/omap-cpufreq.c
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt

#include <linux/clk.h>
18
#include <linux/cpu.h>
19
#include <linux/cpu_cooling.h>
20
#include <linux/cpufreq.h>
21
#include <linux/cpufreq-dt.h>
22
#include <linux/cpumask.h>
23 24 25
#include <linux/err.h>
#include <linux/module.h>
#include <linux/of.h>
26
#include <linux/pm_opp.h>
27
#include <linux/platform_device.h>
28 29
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
30
#include <linux/thermal.h>
31

32 33 34 35 36 37
struct private_data {
	struct device *cpu_dev;
	struct regulator *cpu_reg;
	struct thermal_cooling_device *cdev;
	unsigned int voltage_tolerance; /* in percentage */
};
38

39 40 41 42 43 44
static struct freq_attr *cpufreq_dt_attr[] = {
	&cpufreq_freq_attr_scaling_available_freqs,
	NULL,   /* Extra space for boost-attr if required */
	NULL,
};

45
static int set_target(struct cpufreq_policy *policy, unsigned int index)
46
{
47
	struct dev_pm_opp *opp;
48 49 50 51 52
	struct cpufreq_frequency_table *freq_table = policy->freq_table;
	struct clk *cpu_clk = policy->clk;
	struct private_data *priv = policy->driver_data;
	struct device *cpu_dev = priv->cpu_dev;
	struct regulator *cpu_reg = priv->cpu_reg;
53
	unsigned long volt = 0, volt_old = 0, tol = 0;
54
	unsigned int old_freq, new_freq;
55
	long freq_Hz, freq_exact;
56 57 58
	int ret;

	freq_Hz = clk_round_rate(cpu_clk, freq_table[index].frequency * 1000);
59
	if (freq_Hz <= 0)
60 61
		freq_Hz = freq_table[index].frequency * 1000;

62 63 64
	freq_exact = freq_Hz;
	new_freq = freq_Hz / 1000;
	old_freq = clk_get_rate(cpu_clk) / 1000;
65

66
	if (!IS_ERR(cpu_reg)) {
67 68
		unsigned long opp_freq;

69
		rcu_read_lock();
70
		opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_Hz);
71
		if (IS_ERR(opp)) {
72
			rcu_read_unlock();
73 74
			dev_err(cpu_dev, "failed to find OPP for %ld\n",
				freq_Hz);
75
			return PTR_ERR(opp);
76
		}
77
		volt = dev_pm_opp_get_voltage(opp);
78
		opp_freq = dev_pm_opp_get_freq(opp);
79
		rcu_read_unlock();
80
		tol = volt * priv->voltage_tolerance / 100;
81
		volt_old = regulator_get_voltage(cpu_reg);
82 83
		dev_dbg(cpu_dev, "Found OPP: %ld kHz, %ld uV\n",
			opp_freq / 1000, volt);
84 85
	}

86
	dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
87
		old_freq / 1000, (volt_old > 0) ? volt_old / 1000 : -1,
88
		new_freq / 1000, volt ? volt / 1000 : -1);
89 90

	/* scaling up?  scale voltage before frequency */
91
	if (!IS_ERR(cpu_reg) && new_freq > old_freq) {
92 93
		ret = regulator_set_voltage_tol(cpu_reg, volt, tol);
		if (ret) {
94 95
			dev_err(cpu_dev, "failed to scale voltage up: %d\n",
				ret);
96
			return ret;
97 98 99
		}
	}

100
	ret = clk_set_rate(cpu_clk, freq_exact);
101
	if (ret) {
102
		dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
103
		if (!IS_ERR(cpu_reg) && volt_old > 0)
104
			regulator_set_voltage_tol(cpu_reg, volt_old, tol);
105
		return ret;
106 107 108
	}

	/* scaling down?  scale voltage after frequency */
109
	if (!IS_ERR(cpu_reg) && new_freq < old_freq) {
110 111
		ret = regulator_set_voltage_tol(cpu_reg, volt, tol);
		if (ret) {
112 113
			dev_err(cpu_dev, "failed to scale voltage down: %d\n",
				ret);
114
			clk_set_rate(cpu_clk, old_freq * 1000);
115 116 117
		}
	}

118
	return ret;
119 120
}

121
static int allocate_resources(int cpu, struct device **cdev,
122
			      struct regulator **creg, struct clk **cclk)
123
{
124 125 126 127
	struct device *cpu_dev;
	struct regulator *cpu_reg;
	struct clk *cpu_clk;
	int ret = 0;
128
	char *reg_cpu0 = "cpu0", *reg_cpu = "cpu", *reg;
129

130
	cpu_dev = get_cpu_device(cpu);
131
	if (!cpu_dev) {
132
		pr_err("failed to get cpu%d device\n", cpu);
133 134
		return -ENODEV;
	}
135

136
	/* Try "cpu0" for older DTs */
137 138 139 140
	if (!cpu)
		reg = reg_cpu0;
	else
		reg = reg_cpu;
141 142 143

try_again:
	cpu_reg = regulator_get_optional(cpu_dev, reg);
144 145
	if (IS_ERR(cpu_reg)) {
		/*
146
		 * If cpu's regulator supply node is present, but regulator is
147 148 149
		 * not yet registered, we should try defering probe.
		 */
		if (PTR_ERR(cpu_reg) == -EPROBE_DEFER) {
150 151
			dev_dbg(cpu_dev, "cpu%d regulator not ready, retry\n",
				cpu);
152
			return -EPROBE_DEFER;
153
		}
154 155 156 157 158 159 160

		/* Try with "cpu-supply" */
		if (reg == reg_cpu0) {
			reg = reg_cpu;
			goto try_again;
		}

161 162
		dev_dbg(cpu_dev, "no regulator for cpu%d: %ld\n",
			cpu, PTR_ERR(cpu_reg));
163 164
	}

165
	cpu_clk = clk_get(cpu_dev, NULL);
166
	if (IS_ERR(cpu_clk)) {
167 168 169 170
		/* put regulator */
		if (!IS_ERR(cpu_reg))
			regulator_put(cpu_reg);

171
		ret = PTR_ERR(cpu_clk);
172 173 174 175 176 177

		/*
		 * If cpu's clk node is present, but clock is not yet
		 * registered, we should try defering probe.
		 */
		if (ret == -EPROBE_DEFER)
178
			dev_dbg(cpu_dev, "cpu%d clock not ready, retry\n", cpu);
179
		else
180 181
			dev_err(cpu_dev, "failed to get cpu%d clock: %d\n", cpu,
				ret);
182 183 184 185 186 187 188 189 190
	} else {
		*cdev = cpu_dev;
		*creg = cpu_reg;
		*cclk = cpu_clk;
	}

	return ret;
}

191
static int cpufreq_init(struct cpufreq_policy *policy)
192 193 194 195 196 197 198
{
	struct cpufreq_frequency_table *freq_table;
	struct device_node *np;
	struct private_data *priv;
	struct device *cpu_dev;
	struct regulator *cpu_reg;
	struct clk *cpu_clk;
199
	unsigned long min_uV = ~0, max_uV = 0;
200
	unsigned int transition_latency;
201
	bool need_update = false;
202 203
	int ret;

204
	ret = allocate_resources(policy->cpu, &cpu_dev, &cpu_reg, &cpu_clk);
205
	if (ret) {
206
		pr_err("%s: Failed to allocate resources: %d\n", __func__, ret);
207 208
		return ret;
	}
209

210 211 212 213 214
	np = of_node_get(cpu_dev->of_node);
	if (!np) {
		dev_err(cpu_dev, "failed to find cpu%d node\n", policy->cpu);
		ret = -ENOENT;
		goto out_put_reg_clk;
215 216
	}

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
	/* Get OPP-sharing information from "operating-points-v2" bindings */
	ret = of_get_cpus_sharing_opps(cpu_dev, policy->cpus);
	if (ret) {
		/*
		 * operating-points-v2 not supported, fallback to old method of
		 * finding shared-OPPs for backward compatibility.
		 */
		if (ret == -ENOENT)
			need_update = true;
		else
			goto out_node_put;
	}

	/*
	 * Initialize OPP tables for all policy->cpus. They will be shared by
	 * all CPUs which have marked their CPUs shared with OPP bindings.
	 *
	 * For platforms not using operating-points-v2 bindings, we do this
	 * before updating policy->cpus. Otherwise, we will end up creating
	 * duplicate OPPs for policy->cpus.
	 *
	 * OPPs might be populated at runtime, don't check for error here
	 */
	of_cpumask_init_opp_table(policy->cpus);

242 243 244 245 246 247 248 249 250 251 252
	/*
	 * But we need OPP table to function so if it is not there let's
	 * give platform code chance to provide it for us.
	 */
	ret = dev_pm_opp_get_opp_count(cpu_dev);
	if (ret <= 0) {
		pr_debug("OPP table is not ready, deferring probe\n");
		ret = -EPROBE_DEFER;
		goto out_free_opp;
	}

253 254 255 256 257 258 259 260 261 262
	if (need_update) {
		struct cpufreq_dt_platform_data *pd = cpufreq_get_driver_data();

		if (!pd || !pd->independent_clocks)
			cpumask_setall(policy->cpus);

		/*
		 * OPP tables are initialized only for policy->cpu, do it for
		 * others as well.
		 */
263 264 265 266
		ret = set_cpus_sharing_opps(cpu_dev, policy->cpus);
		if (ret)
			dev_err(cpu_dev, "%s: failed to mark OPPs as shared: %d\n",
				__func__, ret);
267 268 269 270 271

		of_property_read_u32(np, "clock-latency", &transition_latency);
	} else {
		transition_latency = dev_pm_opp_get_max_clock_latency(cpu_dev);
	}
272

273 274 275
	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
	if (!priv) {
		ret = -ENOMEM;
276
		goto out_free_opp;
277 278
	}

279
	of_property_read_u32(np, "voltage-tolerance", &priv->voltage_tolerance);
280

281
	if (!transition_latency)
282 283
		transition_latency = CPUFREQ_ETERNAL;

284
	if (!IS_ERR(cpu_reg)) {
285
		unsigned long opp_freq = 0;
286 287

		/*
288 289 290
		 * Disable any OPPs where the connected regulator isn't able to
		 * provide the specified voltage and record minimum and maximum
		 * voltage levels.
291
		 */
292 293 294 295 296 297 298 299 300 301 302 303 304 305
		while (1) {
			struct dev_pm_opp *opp;
			unsigned long opp_uV, tol_uV;

			rcu_read_lock();
			opp = dev_pm_opp_find_freq_ceil(cpu_dev, &opp_freq);
			if (IS_ERR(opp)) {
				rcu_read_unlock();
				break;
			}
			opp_uV = dev_pm_opp_get_voltage(opp);
			rcu_read_unlock();

			tol_uV = opp_uV * priv->voltage_tolerance / 100;
306 307
			if (regulator_is_supported_voltage(cpu_reg,
							   opp_uV - tol_uV,
308 309 310 311 312 313 314 315 316 317 318 319
							   opp_uV + tol_uV)) {
				if (opp_uV < min_uV)
					min_uV = opp_uV;
				if (opp_uV > max_uV)
					max_uV = opp_uV;
			} else {
				dev_pm_opp_disable(cpu_dev, opp_freq);
			}

			opp_freq++;
		}

320 321 322 323 324
		ret = regulator_set_voltage_time(cpu_reg, min_uV, max_uV);
		if (ret > 0)
			transition_latency += ret * 1000;
	}

325 326 327 328 329 330
	ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
	if (ret) {
		pr_err("failed to init cpufreq table: %d\n", ret);
		goto out_free_priv;
	}

331 332 333 334 335
	priv->cpu_dev = cpu_dev;
	priv->cpu_reg = cpu_reg;
	policy->driver_data = priv;

	policy->clk = cpu_clk;
336 337 338 339
	ret = cpufreq_table_validate_and_show(policy, freq_table);
	if (ret) {
		dev_err(cpu_dev, "%s: invalid frequency table: %d\n", __func__,
			ret);
340
		goto out_free_cpufreq_table;
341 342 343 344 345 346 347 348
	}

	/* Support turbo/boost mode */
	if (policy_has_boost_freq(policy)) {
		/* This gets disabled by core on driver unregister */
		ret = cpufreq_enable_boost_support();
		if (ret)
			goto out_free_cpufreq_table;
349
		cpufreq_dt_attr[1] = &cpufreq_freq_attr_scaling_boost_freqs;
350 351 352 353
	}

	policy->cpuinfo.transition_latency = transition_latency;

354 355
	of_node_put(np);

356 357
	return 0;

358
out_free_cpufreq_table:
359
	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
360 361
out_free_priv:
	kfree(priv);
362
out_free_opp:
363 364
	of_cpumask_free_opp_table(policy->cpus);
out_node_put:
365 366
	of_node_put(np);
out_put_reg_clk:
367
	clk_put(cpu_clk);
368 369
	if (!IS_ERR(cpu_reg))
		regulator_put(cpu_reg);
370 371 372 373

	return ret;
}

374
static int cpufreq_exit(struct cpufreq_policy *policy)
375 376 377
{
	struct private_data *priv = policy->driver_data;

378
	cpufreq_cooling_unregister(priv->cdev);
379
	dev_pm_opp_free_cpufreq_table(priv->cpu_dev, &policy->freq_table);
380
	of_cpumask_free_opp_table(policy->related_cpus);
381 382 383 384 385 386 387 388
	clk_put(policy->clk);
	if (!IS_ERR(priv->cpu_reg))
		regulator_put(priv->cpu_reg);
	kfree(priv);

	return 0;
}

389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
static void cpufreq_ready(struct cpufreq_policy *policy)
{
	struct private_data *priv = policy->driver_data;
	struct device_node *np = of_node_get(priv->cpu_dev->of_node);

	if (WARN_ON(!np))
		return;

	/*
	 * For now, just loading the cooling device;
	 * thermal DT code takes care of matching them.
	 */
	if (of_find_property(np, "#cooling-cells", NULL)) {
		priv->cdev = of_cpufreq_cooling_register(np,
							 policy->related_cpus);
		if (IS_ERR(priv->cdev)) {
			dev_err(priv->cpu_dev,
				"running cpufreq without cooling device: %ld\n",
				PTR_ERR(priv->cdev));

			priv->cdev = NULL;
		}
	}

	of_node_put(np);
}

416
static struct cpufreq_driver dt_cpufreq_driver = {
417 418
	.flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK,
	.verify = cpufreq_generic_frequency_table_verify,
419
	.target_index = set_target,
420
	.get = cpufreq_generic_get,
421 422
	.init = cpufreq_init,
	.exit = cpufreq_exit,
423
	.ready = cpufreq_ready,
424
	.name = "cpufreq-dt",
425
	.attr = cpufreq_dt_attr,
426 427
};

428
static int dt_cpufreq_probe(struct platform_device *pdev)
429 430 431 432 433 434 435 436 437 438 439 440 441
{
	struct device *cpu_dev;
	struct regulator *cpu_reg;
	struct clk *cpu_clk;
	int ret;

	/*
	 * All per-cluster (CPUs sharing clock/voltages) initialization is done
	 * from ->init(). In probe(), we just need to make sure that clk and
	 * regulators are available. Else defer probe and retry.
	 *
	 * FIXME: Is checking this only for CPU0 sufficient ?
	 */
442
	ret = allocate_resources(0, &cpu_dev, &cpu_reg, &cpu_clk);
443 444 445 446 447 448 449
	if (ret)
		return ret;

	clk_put(cpu_clk);
	if (!IS_ERR(cpu_reg))
		regulator_put(cpu_reg);

450 451
	dt_cpufreq_driver.driver_data = dev_get_platdata(&pdev->dev);

452
	ret = cpufreq_register_driver(&dt_cpufreq_driver);
453 454 455
	if (ret)
		dev_err(cpu_dev, "failed register driver: %d\n", ret);

456 457
	return ret;
}
458

459
static int dt_cpufreq_remove(struct platform_device *pdev)
460
{
461
	cpufreq_unregister_driver(&dt_cpufreq_driver);
462 463 464
	return 0;
}

465
static struct platform_driver dt_cpufreq_platdrv = {
466
	.driver = {
467
		.name	= "cpufreq-dt",
468
	},
469 470
	.probe		= dt_cpufreq_probe,
	.remove		= dt_cpufreq_remove,
471
};
472
module_platform_driver(dt_cpufreq_platdrv);
473

474
MODULE_ALIAS("platform:cpufreq-dt");
475
MODULE_AUTHOR("Viresh Kumar <viresh.kumar@linaro.org>");
476
MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
477
MODULE_DESCRIPTION("Generic cpufreq driver");
478
MODULE_LICENSE("GPL");