cpufreq-dt.c 10.3 KB
Newer Older
1 2 3
/*
 * Copyright (C) 2012 Freescale Semiconductor, Inc.
 *
4 5 6
 * Copyright (C) 2014 Linaro.
 * Viresh Kumar <viresh.kumar@linaro.org>
 *
7
 * The OPP code in function set_target() is reused from
8 9 10 11 12 13 14 15 16 17
 * drivers/cpufreq/omap-cpufreq.c
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt

#include <linux/clk.h>
18
#include <linux/cpu.h>
19
#include <linux/cpu_cooling.h>
20
#include <linux/cpufreq.h>
21
#include <linux/cpufreq-dt.h>
22
#include <linux/cpumask.h>
23 24 25
#include <linux/err.h>
#include <linux/module.h>
#include <linux/of.h>
26
#include <linux/pm_opp.h>
27
#include <linux/platform_device.h>
28 29
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
30
#include <linux/thermal.h>
31

32 33 34 35 36 37
struct private_data {
	struct device *cpu_dev;
	struct regulator *cpu_reg;
	struct thermal_cooling_device *cdev;
	unsigned int voltage_tolerance; /* in percentage */
};
38

39
static int set_target(struct cpufreq_policy *policy, unsigned int index)
40
{
41
	struct dev_pm_opp *opp;
42 43 44 45 46
	struct cpufreq_frequency_table *freq_table = policy->freq_table;
	struct clk *cpu_clk = policy->clk;
	struct private_data *priv = policy->driver_data;
	struct device *cpu_dev = priv->cpu_dev;
	struct regulator *cpu_reg = priv->cpu_reg;
47
	unsigned long volt = 0, volt_old = 0, tol = 0;
48
	unsigned int old_freq, new_freq;
49
	long freq_Hz, freq_exact;
50 51 52
	int ret;

	freq_Hz = clk_round_rate(cpu_clk, freq_table[index].frequency * 1000);
53
	if (freq_Hz <= 0)
54 55
		freq_Hz = freq_table[index].frequency * 1000;

56 57 58
	freq_exact = freq_Hz;
	new_freq = freq_Hz / 1000;
	old_freq = clk_get_rate(cpu_clk) / 1000;
59

60
	if (!IS_ERR(cpu_reg)) {
61 62
		unsigned long opp_freq;

63
		rcu_read_lock();
64
		opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_Hz);
65
		if (IS_ERR(opp)) {
66
			rcu_read_unlock();
67 68
			dev_err(cpu_dev, "failed to find OPP for %ld\n",
				freq_Hz);
69
			return PTR_ERR(opp);
70
		}
71
		volt = dev_pm_opp_get_voltage(opp);
72
		opp_freq = dev_pm_opp_get_freq(opp);
73
		rcu_read_unlock();
74
		tol = volt * priv->voltage_tolerance / 100;
75
		volt_old = regulator_get_voltage(cpu_reg);
76 77
		dev_dbg(cpu_dev, "Found OPP: %ld kHz, %ld uV\n",
			opp_freq / 1000, volt);
78 79
	}

80
	dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
81
		old_freq / 1000, (volt_old > 0) ? volt_old / 1000 : -1,
82
		new_freq / 1000, volt ? volt / 1000 : -1);
83 84

	/* scaling up?  scale voltage before frequency */
85
	if (!IS_ERR(cpu_reg) && new_freq > old_freq) {
86 87
		ret = regulator_set_voltage_tol(cpu_reg, volt, tol);
		if (ret) {
88 89
			dev_err(cpu_dev, "failed to scale voltage up: %d\n",
				ret);
90
			return ret;
91 92 93
		}
	}

94
	ret = clk_set_rate(cpu_clk, freq_exact);
95
	if (ret) {
96
		dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
97
		if (!IS_ERR(cpu_reg) && volt_old > 0)
98
			regulator_set_voltage_tol(cpu_reg, volt_old, tol);
99
		return ret;
100 101 102
	}

	/* scaling down?  scale voltage after frequency */
103
	if (!IS_ERR(cpu_reg) && new_freq < old_freq) {
104 105
		ret = regulator_set_voltage_tol(cpu_reg, volt, tol);
		if (ret) {
106 107
			dev_err(cpu_dev, "failed to scale voltage down: %d\n",
				ret);
108
			clk_set_rate(cpu_clk, old_freq * 1000);
109 110 111
		}
	}

112
	return ret;
113 114
}

115
static int allocate_resources(int cpu, struct device **cdev,
116
			      struct regulator **creg, struct clk **cclk)
117
{
118 119 120 121
	struct device *cpu_dev;
	struct regulator *cpu_reg;
	struct clk *cpu_clk;
	int ret = 0;
122
	char *reg_cpu0 = "cpu0", *reg_cpu = "cpu", *reg;
123

124
	cpu_dev = get_cpu_device(cpu);
125
	if (!cpu_dev) {
126
		pr_err("failed to get cpu%d device\n", cpu);
127 128
		return -ENODEV;
	}
129

130
	/* Try "cpu0" for older DTs */
131 132 133 134
	if (!cpu)
		reg = reg_cpu0;
	else
		reg = reg_cpu;
135 136 137

try_again:
	cpu_reg = regulator_get_optional(cpu_dev, reg);
138 139
	if (IS_ERR(cpu_reg)) {
		/*
140
		 * If cpu's regulator supply node is present, but regulator is
141 142 143
		 * not yet registered, we should try defering probe.
		 */
		if (PTR_ERR(cpu_reg) == -EPROBE_DEFER) {
144 145
			dev_dbg(cpu_dev, "cpu%d regulator not ready, retry\n",
				cpu);
146
			return -EPROBE_DEFER;
147
		}
148 149 150 151 152 153 154

		/* Try with "cpu-supply" */
		if (reg == reg_cpu0) {
			reg = reg_cpu;
			goto try_again;
		}

155 156
		dev_dbg(cpu_dev, "no regulator for cpu%d: %ld\n",
			cpu, PTR_ERR(cpu_reg));
157 158
	}

159
	cpu_clk = clk_get(cpu_dev, NULL);
160
	if (IS_ERR(cpu_clk)) {
161 162 163 164
		/* put regulator */
		if (!IS_ERR(cpu_reg))
			regulator_put(cpu_reg);

165
		ret = PTR_ERR(cpu_clk);
166 167 168 169 170 171

		/*
		 * If cpu's clk node is present, but clock is not yet
		 * registered, we should try defering probe.
		 */
		if (ret == -EPROBE_DEFER)
172
			dev_dbg(cpu_dev, "cpu%d clock not ready, retry\n", cpu);
173
		else
174 175
			dev_err(cpu_dev, "failed to get cpu%d clock: %d\n", cpu,
				ret);
176 177 178 179 180 181 182 183 184
	} else {
		*cdev = cpu_dev;
		*creg = cpu_reg;
		*cclk = cpu_clk;
	}

	return ret;
}

185
static int cpufreq_init(struct cpufreq_policy *policy)
186
{
187
	struct cpufreq_dt_platform_data *pd;
188 189 190 191 192 193
	struct cpufreq_frequency_table *freq_table;
	struct device_node *np;
	struct private_data *priv;
	struct device *cpu_dev;
	struct regulator *cpu_reg;
	struct clk *cpu_clk;
194
	unsigned long min_uV = ~0, max_uV = 0;
195 196 197
	unsigned int transition_latency;
	int ret;

198
	ret = allocate_resources(policy->cpu, &cpu_dev, &cpu_reg, &cpu_clk);
199
	if (ret) {
200
		pr_err("%s: Failed to allocate resources: %d\n", __func__, ret);
201 202
		return ret;
	}
203

204 205 206 207 208
	np = of_node_get(cpu_dev->of_node);
	if (!np) {
		dev_err(cpu_dev, "failed to find cpu%d node\n", policy->cpu);
		ret = -ENOENT;
		goto out_put_reg_clk;
209 210
	}

211 212
	/* OPPs might be populated at runtime, don't check for error here */
	of_init_opp_table(cpu_dev);
213

214 215 216 217 218 219 220 221 222 223 224
	/*
	 * But we need OPP table to function so if it is not there let's
	 * give platform code chance to provide it for us.
	 */
	ret = dev_pm_opp_get_opp_count(cpu_dev);
	if (ret <= 0) {
		pr_debug("OPP table is not ready, deferring probe\n");
		ret = -EPROBE_DEFER;
		goto out_free_opp;
	}

225 226 227
	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
	if (!priv) {
		ret = -ENOMEM;
228
		goto out_free_opp;
229 230
	}

231
	of_property_read_u32(np, "voltage-tolerance", &priv->voltage_tolerance);
232 233 234 235

	if (of_property_read_u32(np, "clock-latency", &transition_latency))
		transition_latency = CPUFREQ_ETERNAL;

236
	if (!IS_ERR(cpu_reg)) {
237
		unsigned long opp_freq = 0;
238 239

		/*
240 241 242
		 * Disable any OPPs where the connected regulator isn't able to
		 * provide the specified voltage and record minimum and maximum
		 * voltage levels.
243
		 */
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
		while (1) {
			struct dev_pm_opp *opp;
			unsigned long opp_uV, tol_uV;

			rcu_read_lock();
			opp = dev_pm_opp_find_freq_ceil(cpu_dev, &opp_freq);
			if (IS_ERR(opp)) {
				rcu_read_unlock();
				break;
			}
			opp_uV = dev_pm_opp_get_voltage(opp);
			rcu_read_unlock();

			tol_uV = opp_uV * priv->voltage_tolerance / 100;
			if (regulator_is_supported_voltage(cpu_reg, opp_uV,
							   opp_uV + tol_uV)) {
				if (opp_uV < min_uV)
					min_uV = opp_uV;
				if (opp_uV > max_uV)
					max_uV = opp_uV;
			} else {
				dev_pm_opp_disable(cpu_dev, opp_freq);
			}

			opp_freq++;
		}

271 272 273 274 275
		ret = regulator_set_voltage_time(cpu_reg, min_uV, max_uV);
		if (ret > 0)
			transition_latency += ret * 1000;
	}

276 277 278 279 280 281
	ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
	if (ret) {
		pr_err("failed to init cpufreq table: %d\n", ret);
		goto out_free_priv;
	}

282 283 284 285 286
	priv->cpu_dev = cpu_dev;
	priv->cpu_reg = cpu_reg;
	policy->driver_data = priv;

	policy->clk = cpu_clk;
287 288 289 290
	ret = cpufreq_table_validate_and_show(policy, freq_table);
	if (ret) {
		dev_err(cpu_dev, "%s: invalid frequency table: %d\n", __func__,
			ret);
291
		goto out_free_cpufreq_table;
292 293 294 295 296
	}

	policy->cpuinfo.transition_latency = transition_latency;

	pd = cpufreq_get_driver_data();
297
	if (!pd || !pd->independent_clocks)
298
		cpumask_setall(policy->cpus);
299

300 301
	of_node_put(np);

302 303
	return 0;

304
out_free_cpufreq_table:
305
	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
306 307
out_free_priv:
	kfree(priv);
308 309
out_free_opp:
	of_free_opp_table(cpu_dev);
310 311
	of_node_put(np);
out_put_reg_clk:
312
	clk_put(cpu_clk);
313 314
	if (!IS_ERR(cpu_reg))
		regulator_put(cpu_reg);
315 316 317 318

	return ret;
}

319
static int cpufreq_exit(struct cpufreq_policy *policy)
320 321 322
{
	struct private_data *priv = policy->driver_data;

323 324
	if (priv->cdev)
		cpufreq_cooling_unregister(priv->cdev);
325
	dev_pm_opp_free_cpufreq_table(priv->cpu_dev, &policy->freq_table);
326
	of_free_opp_table(priv->cpu_dev);
327 328 329 330 331 332 333 334
	clk_put(policy->clk);
	if (!IS_ERR(priv->cpu_reg))
		regulator_put(priv->cpu_reg);
	kfree(priv);

	return 0;
}

335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
static void cpufreq_ready(struct cpufreq_policy *policy)
{
	struct private_data *priv = policy->driver_data;
	struct device_node *np = of_node_get(priv->cpu_dev->of_node);

	if (WARN_ON(!np))
		return;

	/*
	 * For now, just loading the cooling device;
	 * thermal DT code takes care of matching them.
	 */
	if (of_find_property(np, "#cooling-cells", NULL)) {
		priv->cdev = of_cpufreq_cooling_register(np,
							 policy->related_cpus);
		if (IS_ERR(priv->cdev)) {
			dev_err(priv->cpu_dev,
				"running cpufreq without cooling device: %ld\n",
				PTR_ERR(priv->cdev));

			priv->cdev = NULL;
		}
	}

	of_node_put(np);
}

362
static struct cpufreq_driver dt_cpufreq_driver = {
363 364
	.flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK,
	.verify = cpufreq_generic_frequency_table_verify,
365
	.target_index = set_target,
366
	.get = cpufreq_generic_get,
367 368
	.init = cpufreq_init,
	.exit = cpufreq_exit,
369
	.ready = cpufreq_ready,
370
	.name = "cpufreq-dt",
371 372 373
	.attr = cpufreq_generic_attr,
};

374
static int dt_cpufreq_probe(struct platform_device *pdev)
375 376 377 378 379 380 381 382 383 384 385 386 387
{
	struct device *cpu_dev;
	struct regulator *cpu_reg;
	struct clk *cpu_clk;
	int ret;

	/*
	 * All per-cluster (CPUs sharing clock/voltages) initialization is done
	 * from ->init(). In probe(), we just need to make sure that clk and
	 * regulators are available. Else defer probe and retry.
	 *
	 * FIXME: Is checking this only for CPU0 sufficient ?
	 */
388
	ret = allocate_resources(0, &cpu_dev, &cpu_reg, &cpu_clk);
389 390 391 392 393 394 395
	if (ret)
		return ret;

	clk_put(cpu_clk);
	if (!IS_ERR(cpu_reg))
		regulator_put(cpu_reg);

396 397
	dt_cpufreq_driver.driver_data = dev_get_platdata(&pdev->dev);

398
	ret = cpufreq_register_driver(&dt_cpufreq_driver);
399 400 401
	if (ret)
		dev_err(cpu_dev, "failed register driver: %d\n", ret);

402 403
	return ret;
}
404

405
static int dt_cpufreq_remove(struct platform_device *pdev)
406
{
407
	cpufreq_unregister_driver(&dt_cpufreq_driver);
408 409 410
	return 0;
}

411
static struct platform_driver dt_cpufreq_platdrv = {
412
	.driver = {
413
		.name	= "cpufreq-dt",
414
	},
415 416
	.probe		= dt_cpufreq_probe,
	.remove		= dt_cpufreq_remove,
417
};
418
module_platform_driver(dt_cpufreq_platdrv);
419

420
MODULE_AUTHOR("Viresh Kumar <viresh.kumar@linaro.org>");
421
MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
422
MODULE_DESCRIPTION("Generic cpufreq driver");
423
MODULE_LICENSE("GPL");