ohci.c 72.9 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/compiler.h>
22
#include <linux/delay.h>
S
Stefan Richter 已提交
23
#include <linux/device.h>
A
Andrew Morton 已提交
24
#include <linux/dma-mapping.h>
25
#include <linux/firewire.h>
S
Stefan Richter 已提交
26
#include <linux/firewire-constants.h>
S
Stefan Richter 已提交
27
#include <linux/gfp.h>
28 29
#include <linux/init.h>
#include <linux/interrupt.h>
S
Stefan Richter 已提交
30
#include <linux/io.h>
31
#include <linux/kernel.h>
S
Stefan Richter 已提交
32
#include <linux/list.h>
A
Al Viro 已提交
33
#include <linux/mm.h>
34
#include <linux/module.h>
35
#include <linux/moduleparam.h>
36
#include <linux/pci.h>
37
#include <linux/pci_ids.h>
S
Stefan Richter 已提交
38
#include <linux/spinlock.h>
S
Stefan Richter 已提交
39
#include <linux/string.h>
A
Andrew Morton 已提交
40

41
#include <asm/atomic.h>
S
Stefan Richter 已提交
42
#include <asm/byteorder.h>
S
Stefan Richter 已提交
43
#include <asm/page.h>
44
#include <asm/system.h>
45

46 47 48 49
#ifdef CONFIG_PPC_PMAC
#include <asm/pmac_feature.h>
#endif

50 51
#include "core.h"
#include "ohci.h"
52

53 54 55 56 57 58 59 60 61 62 63 64 65
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
66 67 68 69 70 71 72 73 74 75

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

76 77 78 79 80 81 82 83 84 85 86 87 88 89
struct db_descriptor {
	__le16 first_size;
	__le16 control;
	__le16 second_req_count;
	__le16 first_req_count;
	__le32 branch_address;
	__le16 second_res_count;
	__le16 first_res_count;
	__le32 reserved0;
	__le32 first_buffer;
	__le32 second_buffer;
	__le32 reserved1;
} __attribute__((aligned(16)));

90 91 92 93
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
94

95
struct ar_buffer {
96
	struct descriptor descriptor;
97 98 99
	struct ar_buffer *next;
	__le32 data[0];
};
100

101 102 103 104 105
struct ar_context {
	struct fw_ohci *ohci;
	struct ar_buffer *current_buffer;
	struct ar_buffer *last_buffer;
	void *pointer;
106
	u32 regs;
107 108 109
	struct tasklet_struct tasklet;
};

110 111 112 113 114
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
115 116 117 118 119 120 121 122 123 124 125 126 127

/*
 * A buffer that contains a block of DMA-able coherent memory used for
 * storing a portion of a DMA descriptor program.
 */
struct descriptor_buffer {
	struct list_head list;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	size_t used;
	struct descriptor buffer[0];
};

128
struct context {
S
Stefan Richter 已提交
129
	struct fw_ohci *ohci;
130
	u32 regs;
131
	int total_allocation;
S
Stefan Richter 已提交
132

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
	/*
	 * List of page-sized buffers for storing DMA descriptors.
	 * Head of list contains buffers in use and tail of list contains
	 * free buffers.
	 */
	struct list_head buffer_list;

	/*
	 * Pointer to a buffer inside buffer_list that contains the tail
	 * end of the current DMA program.
	 */
	struct descriptor_buffer *buffer_tail;

	/*
	 * The descriptor containing the branch address of the first
	 * descriptor that has not yet been filled by the device.
	 */
	struct descriptor *last;

	/*
	 * The last descriptor in the DMA program.  It contains the branch
	 * address that must be updated upon appending a new descriptor.
	 */
	struct descriptor *prev;
157 158 159

	descriptor_callback_t callback;

S
Stefan Richter 已提交
160
	struct tasklet_struct tasklet;
161 162
};

163 164 165 166 167 168
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
169 170 171

struct iso_context {
	struct fw_iso_context base;
172
	struct context context;
173
	int excess_bytes;
174 175
	void *header;
	size_t header_length;
176 177 178 179 180 181 182 183 184 185 186
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

	__iomem char *registers;
	dma_addr_t self_id_bus;
	__le32 *self_id_cpu;
	struct tasklet_struct bus_reset_tasklet;
187
	int node_id;
188
	int generation;
189
	int request_generation;	/* for timestamping incoming requests */
190
	atomic_t bus_seconds;
191 192

	bool use_dualbuffer;
193
	bool old_uninorth;
194
	bool bus_reset_packet_quirk;
195

196 197 198 199
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
200 201 202 203 204 205 206 207 208 209 210 211
	spinlock_t lock;
	u32 self_id_buffer[512];

	/* Config rom buffers */
	__be32 *config_rom;
	dma_addr_t config_rom_bus;
	__be32 *next_config_rom;
	dma_addr_t next_config_rom_bus;
	u32 next_header;

	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
212 213
	struct context at_request_ctx;
	struct context at_response_ctx;
214 215 216

	u32 it_context_mask;
	struct iso_context *it_context_list;
217
	u64 ir_context_channels;
218 219 220 221
	u32 ir_context_mask;
	struct iso_context *ir_context_list;
};

A
Adrian Bunk 已提交
222
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
223 224 225 226
{
	return container_of(card, struct fw_ohci, card);
}

227 228 229 230 231 232
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
233 234 235 236 237 238

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

239
#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
240 241 242 243 244 245 246
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI_LOOP_COUNT			500
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
247
#define OHCI_TCODE_PHY_PACKET		0x0e
248
#define OHCI_VERSION_1_1		0x010010
249

250 251
static char ohci_driver_name[] = KBUILD_MODNAME;

252 253
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG

254
#define OHCI_PARAM_DEBUG_AT_AR		1
255
#define OHCI_PARAM_DEBUG_SELFIDS	2
256 257
#define OHCI_PARAM_DEBUG_IRQS		4
#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
258 259 260 261 262

static int param_debug;
module_param_named(debug, param_debug, int, 0644);
MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
263 264 265
	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
266 267 268 269
	", or a combination, or all = -1)");

static void log_irqs(u32 evt)
{
270 271 272 273 274 275
	if (likely(!(param_debug &
			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
		return;

	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
	    !(evt & OHCI1394_busReset))
276 277
		return;

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
	fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
	    evt & OHCI1394_isochRx		? " IR"			: "",
	    evt & OHCI1394_isochTx		? " IT"			: "",
	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
	    evt & OHCI1394_busReset		? " busReset"		: "",
	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
		    OHCI1394_respTxComplete | OHCI1394_isochRx |
		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
		    OHCI1394_regAccessFail | OHCI1394_busReset)
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
						? " ?"			: "");
}

static const char *speed[] = {
	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
};
static const char *power[] = {
	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
};
static const char port[] = { '.', '-', 'p', 'c', };

static char _p(u32 *s, int shift)
{
	return port[*s >> shift & 3];
}

314
static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
315 316 317 318
{
	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
		return;

319 320
	fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
		  self_id_count, generation, node_id);
321 322 323

	for (; self_id_count--; ++s)
		if ((*s & 1 << 23) == 0)
324 325 326 327 328 329
			fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
			    "%s gc=%d %s %s%s%s\n",
			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
			    speed[*s >> 14 & 3], *s >> 16 & 63,
			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
330
		else
331 332 333 334
			fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
			    *s, *s >> 24 & 63,
			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
}

static const char *evts[] = {
	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
	[0x10] = "-reserved-",		[0x11] = "ack_complete",
	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
	[0x18] = "-reserved-",		[0x19] = "-reserved-",
	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
	[0x20] = "pending/cancelled",
};
static const char *tcodes[] = {
	[0x0] = "QW req",		[0x1] = "BW req",
	[0x2] = "W resp",		[0x3] = "-reserved-",
	[0x4] = "QR req",		[0x5] = "BR req",
	[0x6] = "QR resp",		[0x7] = "BR resp",
	[0x8] = "cycle start",		[0x9] = "Lk req",
	[0xa] = "async stream packet",	[0xb] = "Lk resp",
	[0xc] = "-reserved-",		[0xd] = "-reserved-",
	[0xe] = "link internal",	[0xf] = "-reserved-",
};
static const char *phys[] = {
	[0x0] = "phy config packet",	[0x1] = "link-on packet",
	[0x2] = "self-id packet",	[0x3] = "-reserved-",
};

static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
{
	int tcode = header[0] >> 4 & 0xf;
	char specific[12];

	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
		return;

	if (unlikely(evt >= ARRAY_SIZE(evts)))
			evt = 0x1f;

382
	if (evt == OHCI1394_evt_bus_reset) {
383 384
		fw_notify("A%c evt_bus_reset, generation %d\n",
		    dir, (header[2] >> 16) & 0xff);
385 386 387
		return;
	}

388
	if (header[0] == ~header[1]) {
389 390
		fw_notify("A%c %s, %s, %08x\n",
		    dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
		return;
	}

	switch (tcode) {
	case 0x0: case 0x6: case 0x8:
		snprintf(specific, sizeof(specific), " = %08x",
			 be32_to_cpu((__force __be32)header[3]));
		break;
	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
		snprintf(specific, sizeof(specific), " %x,%x",
			 header[3] >> 16, header[3] & 0xffff);
		break;
	default:
		specific[0] = '\0';
	}

	switch (tcode) {
	case 0xe: case 0xa:
409
		fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
410 411
		break;
	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
412 413 414 415 416 417
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s, %04x%08x%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], header[1] & 0xffff, header[2], specific);
418 419
		break;
	default:
420 421 422 423 424 425
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], specific);
426 427 428 429 430 431
	}
}

#else

#define log_irqs(evt)
432
#define log_selfids(node_id, generation, self_id_count, sid)
433 434 435 436
#define log_ar_at_event(dir, speed, header, evt)

#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */

A
Adrian Bunk 已提交
437
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
438 439 440 441
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
442
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
443 444 445 446
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
447
static inline void flush_writes(const struct fw_ohci *ohci)
448 449 450 451 452
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

453 454
static int ohci_update_phy_reg(struct fw_card *card, int addr,
			       int clear_bits, int set_bits)
455 456 457 458 459
{
	struct fw_ohci *ohci = fw_ohci(card);
	u32 val, old;

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
460
	flush_writes(ohci);
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
	msleep(2);
	val = reg_read(ohci, OHCI1394_PhyControl);
	if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
		fw_error("failed to set phy reg bits.\n");
		return -EBUSY;
	}

	old = OHCI1394_PhyControl_ReadData(val);
	old = (old & ~clear_bits) | set_bits;
	reg_write(ohci, OHCI1394_PhyControl,
		  OHCI1394_PhyControl_Write(addr, old));

	return 0;
}

476
static int ar_context_add_page(struct ar_context *ctx)
477
{
478 479
	struct device *dev = ctx->ohci->card.device;
	struct ar_buffer *ab;
480
	dma_addr_t uninitialized_var(ab_bus);
481 482
	size_t offset;

483
	ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
484 485 486
	if (ab == NULL)
		return -ENOMEM;

487
	ab->next = NULL;
488
	memset(&ab->descriptor, 0, sizeof(ab->descriptor));
489 490 491
	ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						    DESCRIPTOR_STATUS |
						    DESCRIPTOR_BRANCH_ALWAYS);
492 493 494 495 496 497
	offset = offsetof(struct ar_buffer, data);
	ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
	ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.branch_address = 0;

498
	ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
499 500 501
	ctx->last_buffer->next = ab;
	ctx->last_buffer = ab;

502
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
503
	flush_writes(ctx->ohci);
504 505

	return 0;
506 507
}

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
static void ar_context_release(struct ar_context *ctx)
{
	struct ar_buffer *ab, *ab_next;
	size_t offset;
	dma_addr_t ab_bus;

	for (ab = ctx->current_buffer; ab; ab = ab_next) {
		ab_next = ab->next;
		offset = offsetof(struct ar_buffer, data);
		ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
		dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
				  ab, ab_bus);
	}
}

523 524 525 526 527 528 529
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
#define cond_le32_to_cpu(v) \
	(ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
#else
#define cond_le32_to_cpu(v) le32_to_cpu(v)
#endif

530
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
531 532
{
	struct fw_ohci *ohci = ctx->ohci;
533 534
	struct fw_packet p;
	u32 status, length, tcode;
535
	int evt;
536

537 538 539
	p.header[0] = cond_le32_to_cpu(buffer[0]);
	p.header[1] = cond_le32_to_cpu(buffer[1]);
	p.header[2] = cond_le32_to_cpu(buffer[2]);
540 541 542 543 544

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
545
		p.header[3] = (__force __u32) buffer[3];
546
		p.header_length = 16;
547
		p.payload_length = 0;
548 549 550
		break;

	case TCODE_READ_BLOCK_REQUEST :
551
		p.header[3] = cond_le32_to_cpu(buffer[3]);
552 553 554 555 556
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
557 558 559
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
560
		p.header[3] = cond_le32_to_cpu(buffer[3]);
561
		p.header_length = 16;
562
		p.payload_length = p.header[3] >> 16;
563 564 565 566
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
567
	case OHCI_TCODE_PHY_PACKET:
568
		p.header_length = 12;
569
		p.payload_length = 0;
570
		break;
571 572 573 574 575

	default:
		/* FIXME: Stop context, discard everything, and restart? */
		p.header_length = 0;
		p.payload_length = 0;
576
	}
577

578 579 580 581
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
582
	status = cond_le32_to_cpu(buffer[length]);
583
	evt    = (status >> 16) & 0x1f;
584

585
	p.ack        = evt - 16;
586 587 588
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
589

590
	log_ar_at_event('R', p.speed, p.header, evt);
591

592 593
	/*
	 * The OHCI bus reset handler synthesizes a phy packet with
594 595 596 597 598
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
599
	 * request.
600 601 602 603
	 *
	 * Alas some chips sometimes emit bus reset packets with a
	 * wrong generation.  We set the correct generation for these
	 * at a slightly incorrect time (in bus_reset_tasklet).
604
	 */
605 606 607 608
	if (evt == OHCI1394_evt_bus_reset) {
		if (!ohci->bus_reset_packet_quirk)
			ohci->request_generation = (p.header[2] >> 16) & 0xff;
	} else if (ctx == &ohci->ar_request_ctx) {
609
		fw_core_handle_request(&ohci->card, &p);
610
	} else {
611
		fw_core_handle_response(&ohci->card, &p);
612
	}
613

614 615
	return buffer + length + 1;
}
616

617 618 619 620 621 622 623 624 625 626 627 628 629
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
	struct fw_ohci *ohci = ctx->ohci;
	struct ar_buffer *ab;
	struct descriptor *d;
	void *buffer, *end;

	ab = ctx->current_buffer;
	d = &ab->descriptor;

	if (d->res_count == 0) {
		size_t size, rest, offset;
630 631
		dma_addr_t start_bus;
		void *start;
632

633 634
		/*
		 * This descriptor is finished and we may have a
635
		 * packet split across this and the next buffer. We
636 637
		 * reuse the page for reassembling the split packet.
		 */
638 639

		offset = offsetof(struct ar_buffer, data);
640 641
		start = buffer = ab;
		start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
642 643 644 645 646 647 648 649 650 651 652 653 654 655

		ab = ab->next;
		d = &ab->descriptor;
		size = buffer + PAGE_SIZE - ctx->pointer;
		rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
		memmove(buffer, ctx->pointer, size);
		memcpy(buffer + size, ab->data, rest);
		ctx->current_buffer = ab;
		ctx->pointer = (void *) ab->data + rest;
		end = buffer + size + rest;

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);

656
		dma_free_coherent(ohci->card.device, PAGE_SIZE,
657
				  start, start_bus);
658 659 660 661 662 663 664 665 666
		ar_context_add_page(ctx);
	} else {
		buffer = ctx->pointer;
		ctx->pointer = end =
			(void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);
	}
667 668
}

669 670
static int ar_context_init(struct ar_context *ctx,
			   struct fw_ohci *ohci, u32 regs)
671
{
672
	struct ar_buffer ab;
673

674 675 676
	ctx->regs        = regs;
	ctx->ohci        = ohci;
	ctx->last_buffer = &ab;
677 678
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

679 680 681 682 683
	ar_context_add_page(ctx);
	ar_context_add_page(ctx);
	ctx->current_buffer = ab.next;
	ctx->pointer = ctx->current_buffer->data;

684 685 686 687 688 689 690 691 692 693
	return 0;
}

static void ar_context_run(struct ar_context *ctx)
{
	struct ar_buffer *ab = ctx->current_buffer;
	dma_addr_t ab_bus;
	size_t offset;

	offset = offsetof(struct ar_buffer, data);
694
	ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
695 696

	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
697
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
698
	flush_writes(ctx->ohci);
699
}
S
Stefan Richter 已提交
700

701
static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
702 703 704 705 706 707 708 709 710 711 712 713 714
{
	int b, key;

	b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
	key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;

	/* figure out which descriptor the branch address goes in */
	if (z == 2 && (b == 3 || key == 2))
		return d;
	else
		return d + z - 1;
}

715 716 717 718 719 720
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct descriptor *d, *last;
	u32 address;
	int z;
721
	struct descriptor_buffer *desc;
722

723 724 725
	desc = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);
	last = ctx->last;
726
	while (last->branch_address != 0) {
727
		struct descriptor_buffer *old_desc = desc;
728 729
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
730 731 732 733 734 735 736 737 738
		address &= ~0xf;

		/* If the branch address points to a buffer outside of the
		 * current buffer, advance to the next buffer. */
		if (address < desc->buffer_bus ||
				address >= desc->buffer_bus + desc->used)
			desc = list_entry(desc->list.next,
					struct descriptor_buffer, list);
		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
739
		last = find_branch_descriptor(d, z);
740 741 742 743

		if (!ctx->callback(ctx, d, last))
			break;

744 745 746 747 748 749 750 751 752 753
		if (old_desc != desc) {
			/* If we've advanced to the next buffer, move the
			 * previous buffer to the free list. */
			unsigned long flags;
			old_desc->used = 0;
			spin_lock_irqsave(&ctx->ohci->lock, flags);
			list_move_tail(&old_desc->list, &ctx->buffer_list);
			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		}
		ctx->last = last;
754 755 756
	}
}

757 758 759 760
/*
 * Allocate a new buffer and add it to the list of free buffers for this
 * context.  Must be called with ohci->lock held.
 */
761
static int context_add_buffer(struct context *ctx)
762 763
{
	struct descriptor_buffer *desc;
764
	dma_addr_t uninitialized_var(bus_addr);
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
	int offset;

	/*
	 * 16MB of descriptors should be far more than enough for any DMA
	 * program.  This will catch run-away userspace or DoS attacks.
	 */
	if (ctx->total_allocation >= 16*1024*1024)
		return -ENOMEM;

	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
			&bus_addr, GFP_ATOMIC);
	if (!desc)
		return -ENOMEM;

	offset = (void *)&desc->buffer - (void *)desc;
	desc->buffer_size = PAGE_SIZE - offset;
	desc->buffer_bus = bus_addr + offset;
	desc->used = 0;

	list_add_tail(&desc->list, &ctx->buffer_list);
	ctx->total_allocation += PAGE_SIZE;

	return 0;
}

790 791
static int context_init(struct context *ctx, struct fw_ohci *ohci,
			u32 regs, descriptor_callback_t callback)
792 793 794
{
	ctx->ohci = ohci;
	ctx->regs = regs;
795 796 797 798
	ctx->total_allocation = 0;

	INIT_LIST_HEAD(&ctx->buffer_list);
	if (context_add_buffer(ctx) < 0)
799 800
		return -ENOMEM;

801 802 803
	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);

804 805 806
	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

807 808
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
809
	 * branch address and looks like it's been sent.  That way we
810
	 * have a descriptor to append DMA programs to.
811
	 */
812 813 814 815 816 817
	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
	ctx->last = ctx->buffer_tail->buffer;
	ctx->prev = ctx->buffer_tail->buffer;
818 819 820 821

	return 0;
}

822
static void context_release(struct context *ctx)
823 824
{
	struct fw_card *card = &ctx->ohci->card;
825
	struct descriptor_buffer *desc, *tmp;
826

827 828 829 830
	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
		dma_free_coherent(card->device, PAGE_SIZE, desc,
			desc->buffer_bus -
			((void *)&desc->buffer - (void *)desc));
831 832
}

833
/* Must be called with ohci->lock held */
834 835
static struct descriptor *context_get_descriptors(struct context *ctx,
						  int z, dma_addr_t *d_bus)
836
{
837 838 839 840 841 842 843 844 845
	struct descriptor *d = NULL;
	struct descriptor_buffer *desc = ctx->buffer_tail;

	if (z * sizeof(*d) > desc->buffer_size)
		return NULL;

	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
		/* No room for the descriptor in this buffer, so advance to the
		 * next one. */
846

847 848 849 850 851 852 853 854 855 856
		if (desc->list.next == &ctx->buffer_list) {
			/* If there is no free buffer next in the list,
			 * allocate one. */
			if (context_add_buffer(ctx) < 0)
				return NULL;
		}
		desc = list_entry(desc->list.next,
				struct descriptor_buffer, list);
		ctx->buffer_tail = desc;
	}
857

858
	d = desc->buffer + desc->used / sizeof(*d);
859
	memset(d, 0, z * sizeof(*d));
860
	*d_bus = desc->buffer_bus + desc->used;
861 862 863 864

	return d;
}

865
static void context_run(struct context *ctx, u32 extra)
866 867 868
{
	struct fw_ohci *ohci = ctx->ohci;

869
	reg_write(ohci, COMMAND_PTR(ctx->regs),
870
		  le32_to_cpu(ctx->last->branch_address));
871 872
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
873 874 875 876 877 878 879
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;
880
	struct descriptor_buffer *desc = ctx->buffer_tail;
881

882
	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
883

884 885 886
	desc->used += (z + extra) * sizeof(*d);
	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev = find_branch_descriptor(d, z);
887

888
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
889 890 891 892 893 894
	flush_writes(ctx->ohci);
}

static void context_stop(struct context *ctx)
{
	u32 reg;
895
	int i;
896

897
	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
898
	flush_writes(ctx->ohci);
899

900
	for (i = 0; i < 10; i++) {
901
		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
902
		if ((reg & CONTEXT_ACTIVE) == 0)
903
			return;
904

905
		mdelay(1);
906
	}
907
	fw_error("Error: DMA context still active (0x%08x)\n", reg);
908
}
909

910 911 912
struct driver_data {
	struct fw_packet *packet;
};
913

914 915
/*
 * This function apppends a packet to the DMA queue for transmission.
916
 * Must always be called with the ochi->lock held to ensure proper
917 918
 * generation handling and locking around packet queue manipulation.
 */
919 920
static int at_context_queue_packet(struct context *ctx,
				   struct fw_packet *packet)
921 922
{
	struct fw_ohci *ohci = ctx->ohci;
923
	dma_addr_t d_bus, uninitialized_var(payload_bus);
924 925 926
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
927
	int z, tcode;
928
	u32 reg;
929

930 931 932 933
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
934 935
	}

936
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
937 938
	d[0].res_count = cpu_to_le16(packet->timestamp);

939 940
	/*
	 * The DMA format for asyncronous link packets is different
941 942
	 * from the IEEE1394 layout, so shift the fields around
	 * accordingly.  If header_length is 8, it's a PHY packet, to
943 944
	 * which we need to prepend an extra quadlet.
	 */
945 946

	header = (__le32 *) &d[1];
947 948 949
	switch (packet->header_length) {
	case 16:
	case 12:
950 951 952 953 954
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
955 956 957

		tcode = (packet->header[0] >> 4) & 0x0f;
		if (TCODE_IS_BLOCK_PACKET(tcode))
958
			header[3] = cpu_to_le32(packet->header[3]);
959
		else
960 961 962
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
963 964 965
		break;

	case 8:
966 967 968 969 970
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0]);
		header[2] = cpu_to_le32(packet->header[1]);
		d[0].req_count = cpu_to_le16(12);
971 972 973 974 975 976 977 978 979 980 981 982 983
		break;

	case 4:
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
		d[0].req_count = cpu_to_le16(8);
		break;

	default:
		/* BUG(); */
		packet->ack = RCODE_SEND_ERROR;
		return -1;
984 985
	}

986 987
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
988
	packet->driver_data = driver_data;
989

990 991 992 993
	if (packet->payload_length > 0) {
		payload_bus =
			dma_map_single(ohci->card.device, packet->payload,
				       packet->payload_length, DMA_TO_DEVICE);
994
		if (dma_mapping_error(ohci->card.device, payload_bus)) {
995 996 997
			packet->ack = RCODE_SEND_ERROR;
			return -1;
		}
998
		packet->payload_bus = payload_bus;
999 1000 1001 1002 1003

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
1004
	} else {
1005 1006
		last = &d[0];
		z = 2;
1007 1008
	}

1009 1010 1011
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
1012

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
	/*
	 * If the controller and packet generations don't match, we need to
	 * bail out and try again.  If IntEvent.busReset is set, the AT context
	 * is halted, so appending to the context and trying to run it is
	 * futile.  Most controllers do the right thing and just flush the AT
	 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
	 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
	 * up stalling out.  So we just bail out in software and try again
	 * later, and everyone is happy.
	 * FIXME: Document how the locking works.
	 */
	if (ohci->generation != packet->generation ||
	    reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1026 1027 1028
		if (packet->payload_length > 0)
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
1029 1030 1031 1032 1033
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
1034

1035
	/* If the context isn't already running, start it up. */
1036
	reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1037
	if ((reg & CONTEXT_RUN) == 0)
1038 1039 1040
		context_run(ctx, 0);

	return 0;
1041 1042
}

1043 1044 1045
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1046
{
1047
	struct driver_data *driver_data;
1048
	struct fw_packet *packet;
1049
	struct fw_ohci *ohci = context->ohci;
1050 1051
	int evt;

1052 1053 1054
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
1055

1056 1057 1058 1059 1060
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
1061

1062 1063
	if (packet->payload_bus)
		dma_unmap_single(ohci->card.device, packet->payload_bus,
1064 1065
				 packet->payload_length, DMA_TO_DEVICE);

1066 1067
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
1068

1069 1070
	log_ar_at_event('T', packet->speed, packet->header, evt);

1071 1072 1073 1074 1075
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
1076

1077
	case OHCI1394_evt_flushed:
1078 1079 1080 1081
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
1082 1083
		packet->ack = RCODE_GENERATION;
		break;
1084

1085
	case OHCI1394_evt_missing_ack:
1086 1087 1088 1089
		/*
		 * Using a valid (current) generation count, but the
		 * node is not on the bus or not sending acks.
		 */
1090 1091
		packet->ack = RCODE_NO_ACK;
		break;
1092

1093 1094 1095 1096 1097 1098 1099 1100 1101
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
1102

1103 1104 1105 1106
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
1107

1108
	packet->callback(packet, &ohci->card, packet->ack);
1109

1110
	return 1;
1111 1112
}

1113 1114 1115 1116 1117
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1118

1119 1120
static void handle_local_rom(struct fw_ohci *ohci,
			     struct fw_packet *packet, u32 csr)
1121 1122 1123 1124
{
	struct fw_packet response;
	int tcode, length, i;

1125
	tcode = HEADER_GET_TCODE(packet->header[0]);
1126
	if (TCODE_IS_BLOCK_PACKET(tcode))
1127
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

1146 1147
static void handle_local_lock(struct fw_ohci *ohci,
			      struct fw_packet *packet, u32 csr)
1148 1149 1150 1151 1152 1153
{
	struct fw_packet response;
	int tcode, length, ext_tcode, sel;
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

1154 1155
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1156
	payload = packet->payload;
1157
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

	if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
		lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
	else
		fw_notify("swap not done yet\n");

	fw_fill_response(&response, packet->header,
1183
			 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1184 1185 1186 1187
 out:
	fw_core_handle_response(&ohci->card, &response);
}

1188
static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1189 1190 1191 1192
{
	u64 offset;
	u32 csr;

1193 1194 1195 1196
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1197 1198 1199

	offset =
		((unsigned long long)
1200
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
1221 1222 1223 1224 1225

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1226
}
1227

1228
static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1229 1230
{
	unsigned long flags;
1231
	int ret;
1232 1233 1234

	spin_lock_irqsave(&ctx->ohci->lock, flags);

1235
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1236
	    ctx->ohci->generation == packet->generation) {
1237 1238 1239
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
1240
	}
1241

1242
	ret = at_context_queue_packet(ctx, packet);
1243 1244
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

1245
	if (ret < 0)
1246
		packet->callback(packet, &ctx->ohci->card, packet->ack);
1247

1248 1249 1250 1251 1252
}

static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
1253
	int self_id_count, i, j, reg;
1254 1255
	int generation, new_generation;
	unsigned long flags;
1256 1257
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
1258 1259 1260

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1261
		fw_notify("node ID not valid, new bus reset in progress\n");
1262 1263
		return;
	}
1264 1265 1266 1267 1268 1269
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
		fw_notify("malconfigured bus\n");
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
1270

1271 1272 1273 1274 1275
	reg = reg_read(ohci, OHCI1394_SelfIDCount);
	if (reg & OHCI1394_SelfIDCount_selfIDError) {
		fw_notify("inconsistent self IDs\n");
		return;
	}
1276 1277
	/*
	 * The count in the SelfIDCount register is the number of
1278 1279
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
1280 1281
	 * bit extra to get the actual number of self IDs.
	 */
1282
	self_id_count = (reg >> 3) & 0x3ff;
1283 1284 1285 1286
	if (self_id_count == 0) {
		fw_notify("inconsistent self IDs\n");
		return;
	}
1287
	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1288
	rmb();
1289 1290

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1291 1292 1293 1294
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
			fw_notify("inconsistent self IDs\n");
			return;
		}
1295 1296
		ohci->self_id_buffer[j] =
				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1297
	}
1298
	rmb();
1299

1300 1301
	/*
	 * Check the consistency of the self IDs we just read.  The
1302 1303 1304 1305 1306 1307 1308 1309 1310
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
1311 1312
	 * of self IDs.
	 */
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
1325 1326
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
1327 1328
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

1329 1330 1331
	if (ohci->bus_reset_packet_quirk)
		ohci->request_generation = generation;

1332 1333
	/*
	 * This next bit is unrelated to the AT context stuff but we
1334 1335 1336 1337
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
1338 1339
	 * next_config_rom pointer so a new udpate can take place.
	 */
1340 1341

	if (ohci->next_config_rom != NULL) {
1342 1343 1344 1345
		if (ohci->next_config_rom != ohci->config_rom) {
			free_rom      = ohci->config_rom;
			free_rom_bus  = ohci->config_rom_bus;
		}
1346 1347 1348 1349
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

1350 1351
		/*
		 * Restore config_rom image and manually update
1352 1353
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
1354 1355
		 * do that last.
		 */
1356 1357 1358 1359 1360 1361
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
		ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
		reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
	}

1362 1363 1364 1365 1366
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
#endif

1367 1368
	spin_unlock_irqrestore(&ohci->lock, flags);

1369 1370 1371 1372
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

1373 1374
	log_selfids(ohci->node_id, generation,
		    self_id_count, ohci->self_id_buffer);
1375

1376
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1377 1378 1379 1380 1381 1382
				 self_id_count, ohci->self_id_buffer);
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
1383
	u32 event, iso_event, cycle_time;
1384 1385 1386 1387
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

1388
	if (!event || !~event)
1389 1390
		return IRQ_NONE;

1391 1392
	/* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
	reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1393
	log_irqs(event);
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

1410
	iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1411 1412 1413 1414
	reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1415
		tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1416 1417 1418
		iso_event &= ~(1 << i);
	}

1419
	iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1420 1421 1422 1423
	reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1424
		tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1425 1426 1427
		iso_event &= ~(1 << i);
	}

1428 1429 1430 1431
	if (unlikely(event & OHCI1394_regAccessFail))
		fw_error("Register access failure - "
			 "please notify linux1394-devel@lists.sf.net\n");

1432 1433 1434
	if (unlikely(event & OHCI1394_postedWriteErr))
		fw_error("PCI posted write error\n");

1435 1436 1437 1438 1439 1440 1441
	if (unlikely(event & OHCI1394_cycleTooLong)) {
		if (printk_ratelimit())
			fw_notify("isochronous cycle too long\n");
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	}

1442 1443 1444
	if (event & OHCI1394_cycle64Seconds) {
		cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		if ((cycle_time & 0x80000000) == 0)
1445
			atomic_inc(&ohci->bus_seconds);
1446 1447
	}

1448 1449 1450
	return IRQ_HANDLED;
}

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
static int software_reset(struct fw_ohci *ohci)
{
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);

	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
		if ((reg_read(ohci, OHCI1394_HCControlSet) &
		     OHCI1394_HCControl_softReset) == 0)
			return 0;
		msleep(1);
	}

	return -EBUSY;
}

1467 1468 1469 1470
static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);
1471 1472
	u32 lps;
	int i;
1473

1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
1484 1485
	 * full link enabled.  However, with some cards (well, at least
	 * a JMicron PCIe card), we have to try again sometimes.
1486 1487 1488 1489 1490
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501

	for (lps = 0, i = 0; !lps && i < 3; i++) {
		msleep(50);
		lps = reg_read(ohci, OHCI1394_HCControlSet) &
		      OHCI1394_HCControl_LPS;
	}

	if (!lps) {
		fw_error("Failed to set Link Power Status\n");
		return -EIO;
	}
1502 1503 1504 1505

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

1506
	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1507 1508
	reg_write(ohci, OHCI1394_LinkControlClear,
		  OHCI1394_LinkControl_rcvPhyPkt);
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));

	ar_context_run(&ohci->ar_request_ctx);
	ar_context_run(&ohci->ar_response_ctx);

	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskSet,
		  OHCI1394_selfIDComplete |
		  OHCI1394_RQPkt | OHCI1394_RSPkt |
		  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		  OHCI1394_isochRx | OHCI1394_isochTx |
1530
		  OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1531 1532
		  OHCI1394_cycle64Seconds | OHCI1394_regAccessFail |
		  OHCI1394_masterIntEnable);
1533 1534
	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1535 1536 1537 1538 1539 1540

	/* Activate link_on bit and contender bit in our self ID packets.*/
	if (ohci_update_phy_reg(card, 4, 0,
				PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
		return -EIO;

1541 1542
	/*
	 * When the link is not yet enabled, the atomic config rom
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

1560 1561 1562 1563 1564 1565 1566
	if (config_rom) {
		ohci->next_config_rom =
			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					   &ohci->next_config_rom_bus,
					   GFP_KERNEL);
		if (ohci->next_config_rom == NULL)
			return -ENOMEM;
1567

1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
		memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
		fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
	} else {
		/*
		 * In the suspend case, config_rom is NULL, which
		 * means that we just reuse the old config rom.
		 */
		ohci->next_config_rom = ohci->config_rom;
		ohci->next_config_rom_bus = ohci->config_rom_bus;
	}
1578

1579
	ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]);
1580 1581
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1582 1583
	reg_write(ohci, OHCI1394_BusOptions,
		  be32_to_cpu(ohci->next_config_rom[2]));
1584 1585 1586 1587 1588
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

	if (request_irq(dev->irq, irq_handler,
1589
			IRQF_SHARED, ohci_driver_name, ohci)) {
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
		fw_error("Failed to allocate shared interrupt %d.\n",
			 dev->irq);
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		return -EIO;
	}

	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
	flush_writes(ohci);

1602 1603 1604 1605
	/*
	 * We are ready to go, initiate bus reset to finish the
	 * initialization.
	 */
1606 1607 1608 1609 1610 1611

	fw_core_initiate_bus_reset(&ohci->card, 1);

	return 0;
}

1612 1613
static int ohci_set_config_rom(struct fw_card *card,
			       u32 *config_rom, size_t length)
1614 1615 1616
{
	struct fw_ohci *ohci;
	unsigned long flags;
1617
	int ret = -EBUSY;
1618
	__be32 *next_config_rom;
1619
	dma_addr_t uninitialized_var(next_config_rom_bus);
1620 1621 1622

	ohci = fw_ohci(card);

1623 1624
	/*
	 * When the OHCI controller is enabled, the config rom update
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;

		memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
		fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
				  length * 4);

		ohci->next_header = config_rom[0];
		ohci->next_config_rom[0] = 0;

		reg_write(ohci, OHCI1394_ConfigROMmap,
			  ohci->next_config_rom_bus);
1671
		ret = 0;
1672 1673 1674 1675
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

1676 1677
	/*
	 * Now initiate a bus reset to have the changes take
1678 1679 1680
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
1681 1682
	 * takes effect.
	 */
1683
	if (ret == 0)
1684
		fw_core_initiate_bus_reset(&ohci->card, 1);
1685 1686 1687
	else
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);
1688

1689
	return ret;
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

1706 1707 1708
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
1709 1710
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
1711
	int ret = -ENOENT;
1712

1713
	tasklet_disable(&ctx->tasklet);
1714

1715 1716
	if (packet->ack != 0)
		goto out;
1717

1718 1719 1720 1721
	if (packet->payload_bus)
		dma_unmap_single(ohci->card.device, packet->payload_bus,
				 packet->payload_length, DMA_TO_DEVICE);

1722
	log_ar_at_event('T', packet->speed, packet->header, 0x20);
1723 1724 1725
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
1726
	ret = 0;
1727 1728
 out:
	tasklet_enable(&ctx->tasklet);
1729

1730
	return ret;
1731 1732
}

1733 1734
static int ohci_enable_phys_dma(struct fw_card *card,
				int node_id, int generation)
1735
{
1736 1737 1738
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	return 0;
#else
1739 1740
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
1741
	int n, ret = 0;
1742

1743 1744 1745 1746
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
1747 1748 1749 1750

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
1751
		ret = -ESTALE;
1752 1753 1754
		goto out;
	}

1755 1756 1757 1758
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
1759 1760 1761 1762 1763 1764 1765

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

1766 1767
	flush_writes(ohci);
 out:
1768
	spin_unlock_irqrestore(&ohci->lock, flags);
1769 1770

	return ret;
1771
#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1772
}
S
Stefan Richter 已提交
1773

1774
static u64 ohci_get_bus_time(struct fw_card *card)
1775 1776 1777 1778 1779 1780
{
	struct fw_ohci *ohci = fw_ohci(card);
	u32 cycle_time;
	u64 bus_time;

	cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1781
	bus_time = ((u64)atomic_read(&ohci->bus_seconds) << 32) | cycle_time;
1782 1783 1784 1785

	return bus_time;
}

1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
static void copy_iso_headers(struct iso_context *ctx, void *p)
{
	int i = ctx->header_length;

	if (i + ctx->base.header_size > PAGE_SIZE)
		return;

	/*
	 * The iso header is byteswapped to little endian by
	 * the controller, but the remaining header quadlets
	 * are big endian.  We want to present all the headers
	 * as big endian, so we have to swap the first quadlet.
	 */
	if (ctx->base.header_size > 0)
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
	if (ctx->base.header_size > 4)
		*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
	if (ctx->base.header_size > 8)
		memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
	ctx->header_length += ctx->base.header_size;
}

1808 1809 1810
static int handle_ir_dualbuffer_packet(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
1811
{
1812 1813 1814
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
	struct db_descriptor *db = (struct db_descriptor *) d;
1815
	__le32 *ir_header;
1816
	size_t header_length;
1817
	void *p, *end;
1818

S
Stefan Richter 已提交
1819
	if (db->first_res_count != 0 && db->second_res_count != 0) {
1820 1821 1822 1823 1824 1825
		if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
			/* This descriptor isn't done yet, stop iteration. */
			return 0;
		}
		ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
	}
1826

1827 1828 1829 1830 1831
	header_length = le16_to_cpu(db->first_req_count) -
		le16_to_cpu(db->first_res_count);

	p = db + 1;
	end = p + header_length;
1832 1833
	while (p < end) {
		copy_iso_headers(ctx, p);
1834
		ctx->excess_bytes +=
S
Stefan Richter 已提交
1835
			(le32_to_cpu(*(__le32 *)(p + 4)) >> 16) & 0xffff;
1836
		p += max(ctx->base.header_size, (size_t)8);
1837
	}
1838

1839 1840 1841
	ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
		le16_to_cpu(db->second_res_count);

1842
	if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1843 1844 1845
		ir_header = (__le32 *) (db + 1);
		ctx->base.callback(&ctx->base,
				   le32_to_cpu(ir_header[0]) & 0xffff,
1846
				   ctx->header_length, ctx->header,
1847
				   ctx->base.callback_data);
1848 1849
		ctx->header_length = 0;
	}
1850

1851
	return 1;
1852 1853
}

1854 1855 1856 1857 1858 1859
static int handle_ir_packet_per_buffer(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
1860
	struct descriptor *pd;
1861
	__le32 *ir_header;
1862
	void *p;
1863

1864 1865 1866 1867 1868
	for (pd = d; pd <= last; pd++) {
		if (pd->transfer_status)
			break;
	}
	if (pd > last)
1869 1870 1871
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

1872 1873
	p = last + 1;
	copy_iso_headers(ctx, p);
1874

1875 1876
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
		ir_header = (__le32 *) p;
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
		ctx->base.callback(&ctx->base,
				   le32_to_cpu(ir_header[0]) & 0xffff,
				   ctx->header_length, ctx->header,
				   ctx->base.callback_data);
		ctx->header_length = 0;
	}

	return 1;
}

1887 1888 1889
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1890
{
1891 1892
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
S
Stefan Richter 已提交
1893

1894 1895 1896 1897
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;

1898
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1899 1900
		ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
				   0, NULL, ctx->base.callback_data);
1901 1902

	return 1;
1903 1904
}

1905
static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
1906
				int type, int channel, size_t header_size)
1907 1908 1909
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct iso_context *ctx, *list;
1910
	descriptor_callback_t callback;
1911
	u64 *channels, dont_care = ~0ULL;
1912
	u32 *mask, regs;
1913
	unsigned long flags;
1914
	int index, ret = -ENOMEM;
1915 1916

	if (type == FW_ISO_CONTEXT_TRANSMIT) {
1917
		channels = &dont_care;
1918 1919
		mask = &ohci->it_context_mask;
		list = ohci->it_context_list;
1920
		callback = handle_it_packet;
1921
	} else {
1922
		channels = &ohci->ir_context_channels;
S
Stefan Richter 已提交
1923 1924
		mask = &ohci->ir_context_mask;
		list = ohci->ir_context_list;
1925
		if (ohci->use_dualbuffer)
1926 1927 1928
			callback = handle_ir_dualbuffer_packet;
		else
			callback = handle_ir_packet_per_buffer;
1929 1930 1931
	}

	spin_lock_irqsave(&ohci->lock, flags);
1932 1933 1934
	index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
	if (index >= 0) {
		*channels &= ~(1ULL << channel);
1935
		*mask &= ~(1 << index);
1936
	}
1937 1938 1939 1940 1941
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
		return ERR_PTR(-EBUSY);

S
Stefan Richter 已提交
1942 1943 1944 1945 1946
	if (type == FW_ISO_CONTEXT_TRANSMIT)
		regs = OHCI1394_IsoXmitContextBase(index);
	else
		regs = OHCI1394_IsoRcvContextBase(index);

1947
	ctx = &list[index];
1948
	memset(ctx, 0, sizeof(*ctx));
1949 1950 1951 1952 1953
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
	if (ctx->header == NULL)
		goto out;

1954 1955
	ret = context_init(&ctx->context, ohci, regs, callback);
	if (ret < 0)
1956
		goto out_with_header;
1957 1958

	return &ctx->base;
1959 1960 1961 1962 1963 1964 1965 1966

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
	*mask |= 1 << index;
	spin_unlock_irqrestore(&ohci->lock, flags);

1967
	return ERR_PTR(ret);
1968 1969
}

1970 1971
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
1972
{
S
Stefan Richter 已提交
1973
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1974
	struct fw_ohci *ohci = ctx->context.ohci;
1975
	u32 control, match;
1976 1977
	int index;

1978 1979
	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
1980 1981 1982
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1983
				(cycle & 0x7fff) << 16;
1984

1985 1986
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1987
		context_run(&ctx->context, match);
1988 1989
	} else {
		index = ctx - ohci->ir_context_list;
1990
		control = IR_CONTEXT_ISOCH_HEADER;
1991
		if (ohci->use_dualbuffer)
1992
			control |= IR_CONTEXT_DUAL_BUFFER_MODE;
1993 1994 1995 1996 1997
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
1998

1999 2000
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2001
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2002
		context_run(&ctx->context, control);
2003
	}
2004 2005 2006 2007

	return 0;
}

2008 2009 2010
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2011
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
	int index;

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
	} else {
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
	}
	flush_writes(ohci);
	context_stop(&ctx->context);

	return 0;
}

2027 2028 2029
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2030
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2031 2032 2033
	unsigned long flags;
	int index;

2034 2035
	ohci_stop_iso(base);
	context_release(&ctx->context);
2036
	free_page((unsigned long)ctx->header);
2037

2038 2039 2040 2041 2042 2043 2044 2045
	spin_lock_irqsave(&ohci->lock, flags);

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
	} else {
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
2046
		ohci->ir_context_channels |= 1ULL << base->channel;
2047 2048 2049 2050 2051
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

2052 2053 2054 2055
static int ohci_queue_iso_transmit(struct fw_iso_context *base,
				   struct fw_iso_packet *packet,
				   struct fw_iso_buffer *buffer,
				   unsigned long payload)
2056
{
S
Stefan Richter 已提交
2057
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2058
	struct descriptor *d, *last, *pd;
2059 2060
	struct fw_iso_packet *p;
	__le32 *header;
2061
	dma_addr_t d_bus, page_bus;
2062 2063
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
2064
	int page, end_page, i, length, offset;
2065

2066 2067 2068 2069
	/*
	 * FIXME: Cycle lost behavior should be configurable: lose
	 * packet, retransmit or terminate..
	 */
2070 2071

	p = packet;
2072
	payload_index = payload;
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
2091
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2092

2093 2094 2095
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
2096 2097

	if (!p->skip) {
2098
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2099 2100 2101
		d[0].req_count = cpu_to_le16(8);

		header = (__le32 *) &d[1];
2102 2103 2104 2105 2106
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
2107
		header[1] =
2108
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2109 2110 2111 2112 2113
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
2114
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
2127 2128 2129

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
2130 2131 2132 2133 2134

		payload_index += length;
	}

	if (p->interrupt)
2135
		irq = DESCRIPTOR_IRQ_ALWAYS;
2136
	else
2137
		irq = DESCRIPTOR_NO_IRQ;
2138

2139
	last = z == 2 ? d : d + z - 1;
2140 2141 2142
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
2143
				     irq);
2144

2145
	context_append(&ctx->context, d, z, header_z);
2146 2147 2148

	return 0;
}
S
Stefan Richter 已提交
2149

2150 2151 2152 2153
static int ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
					     struct fw_iso_packet *packet,
					     struct fw_iso_buffer *buffer,
					     unsigned long payload)
2154 2155 2156 2157 2158 2159 2160
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
	struct db_descriptor *db = NULL;
	struct descriptor *d;
	struct fw_iso_packet *p;
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, length, rest;
2161
	int page, offset, packet_count, header_size;
S
Stefan Richter 已提交
2162

2163 2164 2165 2166
	/*
	 * FIXME: Cycle lost behavior should be configurable: lose
	 * packet, retransmit or terminate..
	 */
2167 2168 2169 2170

	p = packet;
	z = 2;

2171
	/*
2172 2173
	 * The OHCI controller puts the isochronous header and trailer in the
	 * buffer, so we need at least 8 bytes.
2174
	 */
2175
	packet_count = p->header_length / ctx->base.header_size;
2176
	header_size = packet_count * max(ctx->base.header_size, (size_t)8);
2177

2178
	/* Get header size in number of descriptors. */
2179
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
	rest     = p->payload_length;

	/* FIXME: make packet-per-buffer/dual-buffer a context option */
	while (rest > 0) {
		d = context_get_descriptors(&ctx->context,
					    z + header_z, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		db = (struct db_descriptor *) d;
2192 2193
		db->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_BRANCH_ALWAYS);
2194 2195
		db->first_size =
		    cpu_to_le16(max(ctx->base.header_size, (size_t)8));
2196 2197 2198 2199 2200 2201
		if (p->skip && rest == p->payload_length) {
			db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
			db->first_req_count = db->first_size;
		} else {
			db->first_req_count = cpu_to_le16(header_size);
		}
2202
		db->first_res_count = db->first_req_count;
2203
		db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
S
Stefan Richter 已提交
2204

2205 2206 2207
		if (p->skip && rest == p->payload_length)
			length = 4;
		else if (offset + rest < PAGE_SIZE)
2208 2209 2210 2211
			length = rest;
		else
			length = PAGE_SIZE - offset;

2212 2213
		db->second_req_count = cpu_to_le16(length);
		db->second_res_count = db->second_req_count;
2214 2215 2216
		page_bus = page_private(buffer->pages[page]);
		db->second_buffer = cpu_to_le32(page_bus + offset);

2217
		if (p->interrupt && length == rest)
2218
			db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2219

2220 2221 2222
		context_append(&ctx->context, d, z, header_z);
		offset = (offset + length) & ~PAGE_MASK;
		rest -= length;
2223 2224
		if (offset == 0)
			page++;
2225 2226
	}

2227 2228
	return 0;
}
2229

2230 2231 2232 2233
static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
					struct fw_iso_packet *packet,
					struct fw_iso_buffer *buffer,
					unsigned long payload)
2234 2235 2236
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
	struct descriptor *d = NULL, *pd = NULL;
2237
	struct fw_iso_packet *p = packet;
2238 2239
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, rest;
2240 2241
	int i, j, length;
	int page, offset, packet_count, header_size, payload_per_buffer;
2242 2243

	/*
2244 2245
	 * The OHCI controller puts the isochronous header and trailer in the
	 * buffer, so we need at least 8 bytes.
2246 2247
	 */
	packet_count = p->header_length / ctx->base.header_size;
2248
	header_size  = max(ctx->base.header_size, (size_t)8);
2249 2250 2251 2252 2253

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
2254
	payload_per_buffer = p->payload_length / packet_count;
2255 2256 2257

	for (i = 0; i < packet_count; i++) {
		/* d points to the header descriptor */
2258
		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2259
		d = context_get_descriptors(&ctx->context,
2260
				z + header_z, &d_bus);
2261 2262 2263
		if (d == NULL)
			return -ENOMEM;

2264 2265 2266 2267
		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
					      DESCRIPTOR_INPUT_MORE);
		if (p->skip && i == 0)
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2268 2269
		d->req_count    = cpu_to_le16(header_size);
		d->res_count    = d->req_count;
2270
		d->transfer_status = 0;
2271 2272
		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));

2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
		rest = payload_per_buffer;
		for (j = 1; j < z; j++) {
			pd = d + j;
			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
						  DESCRIPTOR_INPUT_MORE);

			if (offset + rest < PAGE_SIZE)
				length = rest;
			else
				length = PAGE_SIZE - offset;
			pd->req_count = cpu_to_le16(length);
			pd->res_count = pd->req_count;
			pd->transfer_status = 0;

			page_bus = page_private(buffer->pages[page]);
			pd->data_address = cpu_to_le32(page_bus + offset);

			offset = (offset + length) & ~PAGE_MASK;
			rest -= length;
			if (offset == 0)
				page++;
		}
2295 2296 2297
		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_INPUT_LAST |
					  DESCRIPTOR_BRANCH_ALWAYS);
2298
		if (p->interrupt && i == packet_count - 1)
2299 2300 2301 2302 2303 2304 2305 2306
			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		context_append(&ctx->context, d, z, header_z);
	}

	return 0;
}

2307 2308 2309 2310
static int ohci_queue_iso(struct fw_iso_context *base,
			  struct fw_iso_packet *packet,
			  struct fw_iso_buffer *buffer,
			  unsigned long payload)
2311
{
2312
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2313
	unsigned long flags;
2314
	int ret;
2315

2316
	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2317
	if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2318
		ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2319
	else if (ctx->context.ohci->use_dualbuffer)
2320 2321
		ret = ohci_queue_iso_receive_dualbuffer(base, packet,
							buffer, payload);
2322
	else
2323 2324
		ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
							buffer, payload);
2325 2326
	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);

2327
	return ret;
2328 2329
}

2330
static const struct fw_card_driver ohci_driver = {
2331 2332 2333 2334 2335
	.enable			= ohci_enable,
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
2336
	.cancel_packet		= ohci_cancel_packet,
2337
	.enable_phys_dma	= ohci_enable_phys_dma,
2338
	.get_bus_time		= ohci_get_bus_time,
2339 2340 2341 2342

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
	.queue_iso		= ohci_queue_iso,
2343
	.start_iso		= ohci_start_iso,
2344
	.stop_iso		= ohci_stop_iso,
2345 2346
};

2347
#ifdef CONFIG_PPC_PMAC
2348 2349
static void ohci_pmac_on(struct pci_dev *dev)
{
2350 2351 2352 2353 2354 2355 2356 2357
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
		}
	}
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
}

static void ohci_pmac_off(struct pci_dev *dev)
{
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
		}
	}
}
#else
#define ohci_pmac_on(dev)
#define ohci_pmac_off(dev)
2374 2375
#endif /* CONFIG_PPC_PMAC */

2376 2377 2378
#define PCI_VENDOR_ID_AGERE		PCI_VENDOR_ID_ATT
#define PCI_DEVICE_ID_AGERE_FW643	0x5901

2379 2380
static int __devinit pci_probe(struct pci_dev *dev,
			       const struct pci_device_id *ent)
2381 2382
{
	struct fw_ohci *ohci;
2383
	u32 bus_options, max_receive, link_speed, version;
2384 2385 2386 2387
	u64 guid;
	int err;
	size_t size;

2388
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2389
	if (ohci == NULL) {
2390 2391
		err = -ENOMEM;
		goto fail;
2392 2393 2394 2395
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

2396 2397
	ohci_pmac_on(dev);

2398 2399
	err = pci_enable_device(dev);
	if (err) {
2400
		fw_error("Failed to enable OHCI hardware\n");
2401
		goto fail_free;
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

2413 2414
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
2415
		fw_error("MMIO resource unavailable\n");
2416
		goto fail_disable;
2417 2418 2419 2420 2421
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
2422 2423
		err = -ENXIO;
		goto fail_iomem;
2424 2425
	}

2426 2427 2428
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	ohci->use_dualbuffer = version >= OHCI_VERSION_1_1;

2429 2430 2431 2432 2433
	/* dual-buffer mode is broken if more than one IR context is active */
	if (dev->vendor == PCI_VENDOR_ID_AGERE &&
	    dev->device == PCI_DEVICE_ID_AGERE_FW643)
		ohci->use_dualbuffer = false;

2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
/* x86-32 currently doesn't use highmem for dma_alloc_coherent */
#if !defined(CONFIG_X86_32)
	/* dual-buffer mode is broken with descriptor addresses above 2G */
	if (dev->vendor == PCI_VENDOR_ID_TI &&
	    dev->device == PCI_DEVICE_ID_TI_TSB43AB22)
		ohci->use_dualbuffer = false;
#endif

#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
	ohci->old_uninorth = dev->vendor == PCI_VENDOR_ID_APPLE &&
			     dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW;
#endif
	ohci->bus_reset_packet_quirk = dev->vendor == PCI_VENDOR_ID_TI;

2448 2449 2450 2451 2452 2453
	ar_context_init(&ohci->ar_request_ctx, ohci,
			OHCI1394_AsReqRcvContextControlSet);

	ar_context_init(&ohci->ar_response_ctx, ohci,
			OHCI1394_AsRspRcvContextControlSet);

2454
	context_init(&ohci->at_request_ctx, ohci,
2455
		     OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2456

2457
	context_init(&ohci->at_response_ctx, ohci,
2458
		     OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2459 2460 2461 2462 2463 2464 2465 2466

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
	ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
	size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2467
	ohci->ir_context_channels = ~0ULL;
2468 2469 2470 2471 2472 2473
	ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
	size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2474
		err = -ENOMEM;
2475
		goto fail_contexts;
2476 2477 2478 2479 2480 2481 2482 2483
	}

	/* self-id dma buffer allocation */
	ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
					       SELF_ID_BUF_SIZE,
					       &ohci->self_id_bus,
					       GFP_KERNEL);
	if (ohci->self_id_cpu == NULL) {
2484
		err = -ENOMEM;
2485
		goto fail_contexts;
2486 2487 2488 2489 2490 2491 2492 2493
	}

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

2494
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2495
	if (err)
2496
		goto fail_self_id;
2497

2498
	fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2499
		  dev_name(&dev->dev), version >> 16, version & 0xff);
2500

2501
	return 0;
2502 2503 2504 2505

 fail_self_id:
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
2506
 fail_contexts:
2507
	kfree(ohci->ir_context_list);
2508 2509 2510 2511 2512
	kfree(ohci->it_context_list);
	context_release(&ohci->at_response_ctx);
	context_release(&ohci->at_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
	ar_context_release(&ohci->ar_request_ctx);
2513 2514 2515 2516 2517
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
2518 2519
 fail_free:
	kfree(&ohci->card);
2520
	ohci_pmac_off(dev);
2521 2522 2523
 fail:
	if (err == -ENOMEM)
		fw_error("Out of memory\n");
2524 2525

	return err;
2526 2527 2528 2529 2530 2531 2532
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
2533 2534
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
2535 2536
	fw_core_remove_card(&ohci->card);

2537 2538 2539 2540
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
2541 2542 2543

	software_reset(ohci);
	free_irq(dev->irq, ohci);
2544 2545 2546 2547 2548 2549 2550

	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->next_config_rom, ohci->next_config_rom_bus);
	if (ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
2551 2552
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
2553 2554 2555 2556
	ar_context_release(&ohci->ar_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
	context_release(&ohci->at_request_ctx);
	context_release(&ohci->at_response_ctx);
2557 2558 2559 2560 2561
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
2562
	kfree(&ohci->card);
2563
	ohci_pmac_off(dev);
2564

2565 2566 2567
	fw_notify("Removed fw-ohci device.\n");
}

2568
#ifdef CONFIG_PM
2569
static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2570
{
2571
	struct fw_ohci *ohci = pci_get_drvdata(dev);
2572 2573 2574
	int err;

	software_reset(ohci);
2575 2576
	free_irq(dev->irq, ohci);
	err = pci_save_state(dev);
2577
	if (err) {
2578
		fw_error("pci_save_state failed\n");
2579 2580
		return err;
	}
2581
	err = pci_set_power_state(dev, pci_choose_state(dev, state));
2582 2583
	if (err)
		fw_error("pci_set_power_state failed with %d\n", err);
2584
	ohci_pmac_off(dev);
2585

2586 2587 2588
	return 0;
}

2589
static int pci_resume(struct pci_dev *dev)
2590
{
2591
	struct fw_ohci *ohci = pci_get_drvdata(dev);
2592 2593
	int err;

2594 2595 2596 2597
	ohci_pmac_on(dev);
	pci_set_power_state(dev, PCI_D0);
	pci_restore_state(dev);
	err = pci_enable_device(dev);
2598
	if (err) {
2599
		fw_error("pci_enable_device failed\n");
2600 2601 2602
		return err;
	}

2603
	return ohci_enable(&ohci->card, NULL, 0);
2604 2605 2606
}
#endif

2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
static struct pci_device_id pci_table[] = {
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
2619 2620 2621 2622
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
2623 2624 2625 2626 2627 2628
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

2629 2630 2631 2632 2633
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);