xhci-mem.c 70.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * xHCI host controller driver
 *
 * Copyright (C) 2008 Intel Corp.
 *
 * Author: Sarah Sharp
 * Some code borrowed from the Linux EHCI driver.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/usb.h>
24
#include <linux/pci.h>
25
#include <linux/slab.h>
26
#include <linux/dmapool.h>
27 28 29

#include "xhci.h"

30 31 32 33 34 35 36 37 38 39 40 41 42 43
/*
 * Allocates a generic ring segment from the ring pool, sets the dma address,
 * initializes the segment to zero, and sets the private next pointer to NULL.
 *
 * Section 4.11.1.1:
 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
 */
static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
{
	struct xhci_segment *seg;
	dma_addr_t	dma;

	seg = kzalloc(sizeof *seg, flags);
	if (!seg)
44
		return NULL;
45 46 47 48

	seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
	if (!seg->trbs) {
		kfree(seg);
49
		return NULL;
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
	}

	memset(seg->trbs, 0, SEGMENT_SIZE);
	seg->dma = dma;
	seg->next = NULL;

	return seg;
}

static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
{
	if (seg->trbs) {
		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
		seg->trbs = NULL;
	}
	kfree(seg);
}

/*
 * Make the prev segment point to the next segment.
 *
 * Change the last TRB in the prev segment to be a Link TRB which points to the
 * DMA address of the next segment.  The caller needs to set any Link TRB
 * related flags, such as End TRB, Toggle Cycle, and no snoop.
 */
static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
76
		struct xhci_segment *next, bool link_trbs, bool isoc)
77 78 79 80 81 82 83
{
	u32 val;

	if (!prev || !next)
		return;
	prev->next = next;
	if (link_trbs) {
84 85
		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
			cpu_to_le64(next->dma);
86 87

		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
M
Matt Evans 已提交
88
		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
89 90
		val &= ~TRB_TYPE_BITMASK;
		val |= TRB_TYPE(TRB_LINK);
91
		/* Always set the chain bit with 0.95 hardware */
92 93 94
		/* Set chain bit for isoc rings on AMD 0.96 host */
		if (xhci_link_trb_quirk(xhci) ||
				(isoc && (xhci->quirks & XHCI_AMD_0x96_HOST)))
95
			val |= TRB_CHAIN;
M
Matt Evans 已提交
96
		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
97 98 99 100
	}
}

/* XXX: Do we need the hcd structure in all these functions? */
101
void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
102 103 104 105
{
	struct xhci_segment *seg;
	struct xhci_segment *first_seg;

106
	if (!ring)
107
		return;
108 109 110 111 112 113 114 115 116 117
	if (ring->first_seg) {
		first_seg = ring->first_seg;
		seg = first_seg->next;
		while (seg != first_seg) {
			struct xhci_segment *next = seg->next;
			xhci_segment_free(xhci, seg);
			seg = next;
		}
		xhci_segment_free(xhci, first_seg);
		ring->first_seg = NULL;
118 119 120 121
	}
	kfree(ring);
}

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
static void xhci_initialize_ring_info(struct xhci_ring *ring)
{
	/* The ring is empty, so the enqueue pointer == dequeue pointer */
	ring->enqueue = ring->first_seg->trbs;
	ring->enq_seg = ring->first_seg;
	ring->dequeue = ring->enqueue;
	ring->deq_seg = ring->first_seg;
	/* The ring is initialized to 0. The producer must write 1 to the cycle
	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
	 */
	ring->cycle_state = 1;
	/* Not necessary for new rings, but needed for re-initialized rings */
	ring->enq_updates = 0;
	ring->deq_updates = 0;
}

139 140 141 142 143 144 145 146
/**
 * Create a new ring with zero or more segments.
 *
 * Link each segment together into a ring.
 * Set the end flag and the cycle toggle bit on the last segment.
 * See section 4.9.1 and figures 15 and 16.
 */
static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
147
		unsigned int num_segs, bool link_trbs, bool isoc, gfp_t flags)
148 149 150 151 152 153
{
	struct xhci_ring	*ring;
	struct xhci_segment	*prev;

	ring = kzalloc(sizeof *(ring), flags);
	if (!ring)
154
		return NULL;
155

156
	INIT_LIST_HEAD(&ring->td_list);
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
	if (num_segs == 0)
		return ring;

	ring->first_seg = xhci_segment_alloc(xhci, flags);
	if (!ring->first_seg)
		goto fail;
	num_segs--;

	prev = ring->first_seg;
	while (num_segs > 0) {
		struct xhci_segment	*next;

		next = xhci_segment_alloc(xhci, flags);
		if (!next)
			goto fail;
172
		xhci_link_segments(xhci, prev, next, link_trbs, isoc);
173 174 175 176

		prev = next;
		num_segs--;
	}
177
	xhci_link_segments(xhci, prev, ring->first_seg, link_trbs, isoc);
178 179 180

	if (link_trbs) {
		/* See section 4.9.2.1 and 6.4.4.1 */
181 182
		prev->trbs[TRBS_PER_SEGMENT-1].link.control |=
			cpu_to_le32(LINK_TOGGLE);
183
	}
184
	xhci_initialize_ring_info(ring);
185 186 187 188
	return ring;

fail:
	xhci_ring_free(xhci, ring);
189
	return NULL;
190 191
}

192 193 194 195 196 197 198 199 200 201
void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		unsigned int ep_index)
{
	int rings_cached;

	rings_cached = virt_dev->num_rings_cached;
	if (rings_cached < XHCI_MAX_RINGS_CACHED) {
		virt_dev->ring_cache[rings_cached] =
			virt_dev->eps[ep_index].ring;
202
		virt_dev->num_rings_cached++;
203 204
		xhci_dbg(xhci, "Cached old ring, "
				"%d ring%s cached\n",
205 206
				virt_dev->num_rings_cached,
				(virt_dev->num_rings_cached > 1) ? "s" : "");
207 208 209 210 211 212 213 214 215
	} else {
		xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
		xhci_dbg(xhci, "Ring cache full (%d rings), "
				"freeing ring\n",
				virt_dev->num_rings_cached);
	}
	virt_dev->eps[ep_index].ring = NULL;
}

216 217 218 219
/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
 * pointers to the beginning of the ring.
 */
static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
220
		struct xhci_ring *ring, bool isoc)
221 222 223 224 225 226
{
	struct xhci_segment	*seg = ring->first_seg;
	do {
		memset(seg->trbs, 0,
				sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
		/* All endpoint rings have link TRBs */
227
		xhci_link_segments(xhci, seg, seg->next, 1, isoc);
228 229 230 231 232 233 234 235 236
		seg = seg->next;
	} while (seg != ring->first_seg);
	xhci_initialize_ring_info(ring);
	/* td list should be empty since all URBs have been cancelled,
	 * but just in case...
	 */
	INIT_LIST_HEAD(&ring->td_list);
}

237 238
#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)

239
static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
						    int type, gfp_t flags)
{
	struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
	if (!ctx)
		return NULL;

	BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
	ctx->type = type;
	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
	if (type == XHCI_CTX_TYPE_INPUT)
		ctx->size += CTX_SIZE(xhci->hcc_params);

	ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
	memset(ctx->bytes, 0, ctx->size);
	return ctx;
}

257
static void xhci_free_container_ctx(struct xhci_hcd *xhci,
258 259
			     struct xhci_container_ctx *ctx)
{
260 261
	if (!ctx)
		return;
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
	kfree(ctx);
}

struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
					      struct xhci_container_ctx *ctx)
{
	BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
	return (struct xhci_input_control_ctx *)ctx->bytes;
}

struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
					struct xhci_container_ctx *ctx)
{
	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
		return (struct xhci_slot_ctx *)ctx->bytes;

	return (struct xhci_slot_ctx *)
		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
}

struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
				    struct xhci_container_ctx *ctx,
				    unsigned int ep_index)
{
	/* increment ep index by offset of start of ep ctx array */
	ep_index++;
	if (ctx->type == XHCI_CTX_TYPE_INPUT)
		ep_index++;

	return (struct xhci_ep_ctx *)
		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
}

296 297 298

/***************** Streams structures manipulation *************************/

299
static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
300 301 302 303 304 305
		unsigned int num_stream_ctxs,
		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
{
	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);

	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
306
		dma_free_coherent(&pdev->dev,
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
				stream_ctx, dma);
	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
		return dma_pool_free(xhci->small_streams_pool,
				stream_ctx, dma);
	else
		return dma_pool_free(xhci->medium_streams_pool,
				stream_ctx, dma);
}

/*
 * The stream context array for each endpoint with bulk streams enabled can
 * vary in size, based on:
 *  - how many streams the endpoint supports,
 *  - the maximum primary stream array size the host controller supports,
 *  - and how many streams the device driver asks for.
 *
 * The stream context array must be a power of 2, and can be as small as
 * 64 bytes or as large as 1MB.
 */
327
static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
328 329 330 331 332 333
		unsigned int num_stream_ctxs, dma_addr_t *dma,
		gfp_t mem_flags)
{
	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);

	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
334
		return dma_alloc_coherent(&pdev->dev,
335
				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
336
				dma, mem_flags);
337 338 339 340 341 342 343 344
	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
		return dma_pool_alloc(xhci->small_streams_pool,
				mem_flags, dma);
	else
		return dma_pool_alloc(xhci->medium_streams_pool,
				mem_flags, dma);
}

345 346 347 348 349 350 351 352 353 354 355
struct xhci_ring *xhci_dma_to_transfer_ring(
		struct xhci_virt_ep *ep,
		u64 address)
{
	if (ep->ep_state & EP_HAS_STREAMS)
		return radix_tree_lookup(&ep->stream_info->trb_address_map,
				address >> SEGMENT_SHIFT);
	return ep->ring;
}

/* Only use this when you know stream_info is valid */
356
#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
357
static struct xhci_ring *dma_to_stream_ring(
358 359 360 361 362 363 364 365
		struct xhci_stream_info *stream_info,
		u64 address)
{
	return radix_tree_lookup(&stream_info->trb_address_map,
			address >> SEGMENT_SHIFT);
}
#endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
struct xhci_ring *xhci_stream_id_to_ring(
		struct xhci_virt_device *dev,
		unsigned int ep_index,
		unsigned int stream_id)
{
	struct xhci_virt_ep *ep = &dev->eps[ep_index];

	if (stream_id == 0)
		return ep->ring;
	if (!ep->stream_info)
		return NULL;

	if (stream_id > ep->stream_info->num_streams)
		return NULL;
	return ep->stream_info->stream_rings[stream_id];
}

383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
static int xhci_test_radix_tree(struct xhci_hcd *xhci,
		unsigned int num_streams,
		struct xhci_stream_info *stream_info)
{
	u32 cur_stream;
	struct xhci_ring *cur_ring;
	u64 addr;

	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
		struct xhci_ring *mapped_ring;
		int trb_size = sizeof(union xhci_trb);

		cur_ring = stream_info->stream_rings[cur_stream];
		for (addr = cur_ring->first_seg->dma;
				addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
				addr += trb_size) {
			mapped_ring = dma_to_stream_ring(stream_info, addr);
			if (cur_ring != mapped_ring) {
				xhci_warn(xhci, "WARN: DMA address 0x%08llx "
						"didn't map to stream ID %u; "
						"mapped to ring %p\n",
						(unsigned long long) addr,
						cur_stream,
						mapped_ring);
				return -EINVAL;
			}
		}
		/* One TRB after the end of the ring segment shouldn't return a
		 * pointer to the current ring (although it may be a part of a
		 * different ring).
		 */
		mapped_ring = dma_to_stream_ring(stream_info, addr);
		if (mapped_ring != cur_ring) {
			/* One TRB before should also fail */
			addr = cur_ring->first_seg->dma - trb_size;
			mapped_ring = dma_to_stream_ring(stream_info, addr);
		}
		if (mapped_ring == cur_ring) {
			xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
					"mapped to valid stream ID %u; "
					"mapped ring = %p\n",
					(unsigned long long) addr,
					cur_stream,
					mapped_ring);
			return -EINVAL;
		}
	}
	return 0;
}
#endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */

/*
 * Change an endpoint's internal structure so it supports stream IDs.  The
 * number of requested streams includes stream 0, which cannot be used by device
 * drivers.
 *
 * The number of stream contexts in the stream context array may be bigger than
 * the number of streams the driver wants to use.  This is because the number of
 * stream context array entries must be a power of two.
 *
 * We need a radix tree for mapping physical addresses of TRBs to which stream
 * ID they belong to.  We need to do this because the host controller won't tell
 * us which stream ring the TRB came from.  We could store the stream ID in an
 * event data TRB, but that doesn't help us for the cancellation case, since the
 * endpoint may stop before it reaches that event data TRB.
 *
 * The radix tree maps the upper portion of the TRB DMA address to a ring
 * segment that has the same upper portion of DMA addresses.  For example, say I
 * have segments of size 1KB, that are always 64-byte aligned.  A segment may
 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
 * pass the radix tree a key to get the right stream ID:
 *
 * 	0x10c90fff >> 10 = 0x43243
 * 	0x10c912c0 >> 10 = 0x43244
 * 	0x10c91400 >> 10 = 0x43245
 *
 * Obviously, only those TRBs with DMA addresses that are within the segment
 * will make the radix tree return the stream ID for that ring.
 *
 * Caveats for the radix tree:
 *
 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
 * extended systems (where the DMA address can be bigger than 32-bits),
 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
 */
struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
		unsigned int num_stream_ctxs,
		unsigned int num_streams, gfp_t mem_flags)
{
	struct xhci_stream_info *stream_info;
	u32 cur_stream;
	struct xhci_ring *cur_ring;
	unsigned long key;
	u64 addr;
	int ret;

	xhci_dbg(xhci, "Allocating %u streams and %u "
			"stream context array entries.\n",
			num_streams, num_stream_ctxs);
	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
		return NULL;
	}
	xhci->cmd_ring_reserved_trbs++;

	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
	if (!stream_info)
		goto cleanup_trbs;

	stream_info->num_streams = num_streams;
	stream_info->num_stream_ctxs = num_stream_ctxs;

	/* Initialize the array of virtual pointers to stream rings. */
	stream_info->stream_rings = kzalloc(
			sizeof(struct xhci_ring *)*num_streams,
			mem_flags);
	if (!stream_info->stream_rings)
		goto cleanup_info;

	/* Initialize the array of DMA addresses for stream rings for the HW. */
	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
			num_stream_ctxs, &stream_info->ctx_array_dma,
			mem_flags);
	if (!stream_info->stream_ctx_array)
		goto cleanup_ctx;
	memset(stream_info->stream_ctx_array, 0,
			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);

	/* Allocate everything needed to free the stream rings later */
	stream_info->free_streams_command =
		xhci_alloc_command(xhci, true, true, mem_flags);
	if (!stream_info->free_streams_command)
		goto cleanup_ctx;

	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);

	/* Allocate rings for all the streams that the driver will use,
	 * and add their segment DMA addresses to the radix tree.
	 * Stream 0 is reserved.
	 */
	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
		stream_info->stream_rings[cur_stream] =
531
			xhci_ring_alloc(xhci, 1, true, false, mem_flags);
532 533 534
		cur_ring = stream_info->stream_rings[cur_stream];
		if (!cur_ring)
			goto cleanup_rings;
535
		cur_ring->stream_id = cur_stream;
536 537 538 539
		/* Set deq ptr, cycle bit, and stream context type */
		addr = cur_ring->first_seg->dma |
			SCT_FOR_CTX(SCT_PRI_TR) |
			cur_ring->cycle_state;
540 541
		stream_info->stream_ctx_array[cur_stream].stream_ring =
			cpu_to_le64(addr);
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
				cur_stream, (unsigned long long) addr);

		key = (unsigned long)
			(cur_ring->first_seg->dma >> SEGMENT_SHIFT);
		ret = radix_tree_insert(&stream_info->trb_address_map,
				key, cur_ring);
		if (ret) {
			xhci_ring_free(xhci, cur_ring);
			stream_info->stream_rings[cur_stream] = NULL;
			goto cleanup_rings;
		}
	}
	/* Leave the other unused stream ring pointers in the stream context
	 * array initialized to zero.  This will cause the xHC to give us an
	 * error if the device asks for a stream ID we don't have setup (if it
	 * was any other way, the host controller would assume the ring is
	 * "empty" and wait forever for data to be queued to that stream ID).
	 */
#if XHCI_DEBUG
	/* Do a little test on the radix tree to make sure it returns the
	 * correct values.
	 */
	if (xhci_test_radix_tree(xhci, num_streams, stream_info))
		goto cleanup_rings;
#endif

	return stream_info;

cleanup_rings:
	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
		cur_ring = stream_info->stream_rings[cur_stream];
		if (cur_ring) {
			addr = cur_ring->first_seg->dma;
			radix_tree_delete(&stream_info->trb_address_map,
					addr >> SEGMENT_SHIFT);
			xhci_ring_free(xhci, cur_ring);
			stream_info->stream_rings[cur_stream] = NULL;
		}
	}
	xhci_free_command(xhci, stream_info->free_streams_command);
cleanup_ctx:
	kfree(stream_info->stream_rings);
cleanup_info:
	kfree(stream_info);
cleanup_trbs:
	xhci->cmd_ring_reserved_trbs--;
	return NULL;
}
/*
 * Sets the MaxPStreams field and the Linear Stream Array field.
 * Sets the dequeue pointer to the stream context array.
 */
void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
		struct xhci_ep_ctx *ep_ctx,
		struct xhci_stream_info *stream_info)
{
	u32 max_primary_streams;
	/* MaxPStreams is the number of stream context array entries, not the
	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
	 */
	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
	xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
			1 << (max_primary_streams + 1));
M
Matt Evans 已提交
607 608 609 610
	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
				       | EP_HAS_LSA);
	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
611 612 613 614 615 616 617 618 619 620 621 622
}

/*
 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
 * not at the beginning of the ring).
 */
void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
		struct xhci_ep_ctx *ep_ctx,
		struct xhci_virt_ep *ep)
{
	dma_addr_t addr;
M
Matt Evans 已提交
623
	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
624
	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
M
Matt Evans 已提交
625
	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
}

/* Frees all stream contexts associated with the endpoint,
 *
 * Caller should fix the endpoint context streams fields.
 */
void xhci_free_stream_info(struct xhci_hcd *xhci,
		struct xhci_stream_info *stream_info)
{
	int cur_stream;
	struct xhci_ring *cur_ring;
	dma_addr_t addr;

	if (!stream_info)
		return;

	for (cur_stream = 1; cur_stream < stream_info->num_streams;
			cur_stream++) {
		cur_ring = stream_info->stream_rings[cur_stream];
		if (cur_ring) {
			addr = cur_ring->first_seg->dma;
			radix_tree_delete(&stream_info->trb_address_map,
					addr >> SEGMENT_SHIFT);
			xhci_ring_free(xhci, cur_ring);
			stream_info->stream_rings[cur_stream] = NULL;
		}
	}
	xhci_free_command(xhci, stream_info->free_streams_command);
	xhci->cmd_ring_reserved_trbs--;
	if (stream_info->stream_ctx_array)
		xhci_free_stream_ctx(xhci,
				stream_info->num_stream_ctxs,
				stream_info->stream_ctx_array,
				stream_info->ctx_array_dma);

	if (stream_info)
		kfree(stream_info->stream_rings);
	kfree(stream_info);
}


/***************** Device context manipulation *************************/

669 670 671 672 673 674 675 676 677
static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
		struct xhci_virt_ep *ep)
{
	init_timer(&ep->stop_cmd_timer);
	ep->stop_cmd_timer.data = (unsigned long) ep;
	ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
	ep->xhci = xhci;
}

678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
static void xhci_free_tt_info(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		int slot_id)
{
	struct list_head *tt;
	struct list_head *tt_list_head;
	struct list_head *tt_next;
	struct xhci_tt_bw_info *tt_info;

	/* If the device never made it past the Set Address stage,
	 * it may not have the real_port set correctly.
	 */
	if (virt_dev->real_port == 0 ||
			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
		xhci_dbg(xhci, "Bad real port.\n");
		return;
	}

	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
	if (list_empty(tt_list_head))
		return;

	list_for_each(tt, tt_list_head) {
		tt_info = list_entry(tt, struct xhci_tt_bw_info, tt_list);
		if (tt_info->slot_id == slot_id)
			break;
	}
	/* Cautionary measure in case the hub was disconnected before we
	 * stored the TT information.
	 */
	if (tt_info->slot_id != slot_id)
		return;

	tt_next = tt->next;
	tt_info = list_entry(tt, struct xhci_tt_bw_info,
			tt_list);
	/* Multi-TT hubs will have more than one entry */
	do {
		list_del(tt);
		kfree(tt_info);
		tt = tt_next;
		if (list_empty(tt_list_head))
			break;
		tt_next = tt->next;
		tt_info = list_entry(tt, struct xhci_tt_bw_info,
				tt_list);
	} while (tt_info->slot_id == slot_id);
}

int xhci_alloc_tt_info(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		struct usb_device *hdev,
		struct usb_tt *tt, gfp_t mem_flags)
{
	struct xhci_tt_bw_info		*tt_info;
	unsigned int			num_ports;
	int				i, j;

	if (!tt->multi)
		num_ports = 1;
	else
		num_ports = hdev->maxchild;

	for (i = 0; i < num_ports; i++, tt_info++) {
		struct xhci_interval_bw_table *bw_table;

		tt_info = kzalloc(sizeof(*tt_info), mem_flags);
		if (!tt_info)
			goto free_tts;
		INIT_LIST_HEAD(&tt_info->tt_list);
		list_add(&tt_info->tt_list,
				&xhci->rh_bw[virt_dev->real_port - 1].tts);
		tt_info->slot_id = virt_dev->udev->slot_id;
		if (tt->multi)
			tt_info->ttport = i+1;
		bw_table = &tt_info->bw_table;
		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
	}
	return 0;

free_tts:
	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
	return -ENOMEM;
}


/* All the xhci_tds in the ring's TD list should be freed at this point.
 * Should be called with xhci->lock held if there is any chance the TT lists
 * will be manipulated by the configure endpoint, allocate device, or update
 * hub functions while this function is removing the TT entries from the list.
 */
770 771 772 773
void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
{
	struct xhci_virt_device *dev;
	int i;
774
	int old_active_eps = 0;
775 776 777 778 779 780

	/* Slot ID 0 is reserved */
	if (slot_id == 0 || !xhci->devs[slot_id])
		return;

	dev = xhci->devs[slot_id];
781
	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
782 783 784
	if (!dev)
		return;

785 786 787
	if (dev->tt_info)
		old_active_eps = dev->tt_info->active_eps;

788
	for (i = 0; i < 31; ++i) {
789 790
		if (dev->eps[i].ring)
			xhci_ring_free(xhci, dev->eps[i].ring);
791 792 793
		if (dev->eps[i].stream_info)
			xhci_free_stream_info(xhci,
					dev->eps[i].stream_info);
794 795 796 797 798 799 800 801 802
		/* Endpoints on the TT/root port lists should have been removed
		 * when usb_disable_device() was called for the device.
		 * We can't drop them anyway, because the udev might have gone
		 * away by this point, and we can't tell what speed it was.
		 */
		if (!list_empty(&dev->eps[i].bw_endpoint_list))
			xhci_warn(xhci, "Slot %u endpoint %u "
					"not removed from BW list!\n",
					slot_id, i);
803
	}
804 805
	/* If this is a hub, free the TT(s) from the TT list */
	xhci_free_tt_info(xhci, dev, slot_id);
806 807
	/* If necessary, update the number of active TTs on this root port */
	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
808

809 810 811 812 813 814
	if (dev->ring_cache) {
		for (i = 0; i < dev->num_rings_cached; i++)
			xhci_ring_free(xhci, dev->ring_cache[i]);
		kfree(dev->ring_cache);
	}

815
	if (dev->in_ctx)
816
		xhci_free_container_ctx(xhci, dev->in_ctx);
817
	if (dev->out_ctx)
818 819
		xhci_free_container_ctx(xhci, dev->out_ctx);

820
	kfree(xhci->devs[slot_id]);
821
	xhci->devs[slot_id] = NULL;
822 823 824 825 826 827
}

int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
		struct usb_device *udev, gfp_t flags)
{
	struct xhci_virt_device *dev;
828
	int i;
829 830 831 832 833 834 835 836 837 838 839 840

	/* Slot ID 0 is reserved */
	if (slot_id == 0 || xhci->devs[slot_id]) {
		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
		return 0;
	}

	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
	if (!xhci->devs[slot_id])
		return 0;
	dev = xhci->devs[slot_id];

841 842
	/* Allocate the (output) device context that will be used in the HC. */
	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
843 844
	if (!dev->out_ctx)
		goto fail;
845

846
	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
847
			(unsigned long long)dev->out_ctx->dma);
848 849

	/* Allocate the (input) device context for address device command */
850
	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
851 852
	if (!dev->in_ctx)
		goto fail;
853

854
	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
855
			(unsigned long long)dev->in_ctx->dma);
856

857 858 859
	/* Initialize the cancellation list and watchdog timers for each ep */
	for (i = 0; i < 31; i++) {
		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
860
		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
861
		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
862
	}
863

864
	/* Allocate endpoint 0 ring */
865
	dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, false, flags);
866
	if (!dev->eps[0].ring)
867 868
		goto fail;

869 870 871 872 873 874 875 876
	/* Allocate pointers to the ring cache */
	dev->ring_cache = kzalloc(
			sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
			flags);
	if (!dev->ring_cache)
		goto fail;
	dev->num_rings_cached = 0;

877
	init_completion(&dev->cmd_completion);
878
	INIT_LIST_HEAD(&dev->cmd_list);
879
	dev->udev = udev;
880

881
	/* Point to output device context in dcbaa. */
M
Matt Evans 已提交
882
	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
883
	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
M
Matt Evans 已提交
884 885
		 slot_id,
		 &xhci->dcbaa->dev_context_ptrs[slot_id],
886
		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
887 888 889 890 891 892 893

	return 1;
fail:
	xhci_free_virt_device(xhci, slot_id);
	return 0;
}

894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
		struct usb_device *udev)
{
	struct xhci_virt_device *virt_dev;
	struct xhci_ep_ctx	*ep0_ctx;
	struct xhci_ring	*ep_ring;

	virt_dev = xhci->devs[udev->slot_id];
	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
	ep_ring = virt_dev->eps[0].ring;
	/*
	 * FIXME we don't keep track of the dequeue pointer very well after a
	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
	 * host to our enqueue pointer.  This should only be called after a
	 * configured device has reset, so all control transfers should have
	 * been completed or cancelled before the reset.
	 */
M
Matt Evans 已提交
911 912 913
	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
							ep_ring->enqueue)
				   | ep_ring->cycle_state);
914 915
}

916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
/*
 * The xHCI roothub may have ports of differing speeds in any order in the port
 * status registers.  xhci->port_array provides an array of the port speed for
 * each offset into the port status registers.
 *
 * The xHCI hardware wants to know the roothub port number that the USB device
 * is attached to (or the roothub port its ancestor hub is attached to).  All we
 * know is the index of that port under either the USB 2.0 or the USB 3.0
 * roothub, but that doesn't give us the real index into the HW port status
 * registers.  Scan through the xHCI roothub port array, looking for the Nth
 * entry of the correct port speed.  Return the port number of that entry.
 */
static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
		struct usb_device *udev)
{
	struct usb_device *top_dev;
	unsigned int num_similar_speed_ports;
	unsigned int faked_port_num;
	int i;

	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
			top_dev = top_dev->parent)
		/* Found device below root hub */;
	faked_port_num = top_dev->portnum;
	for (i = 0, num_similar_speed_ports = 0;
			i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
		u8 port_speed = xhci->port_array[i];

		/*
		 * Skip ports that don't have known speeds, or have duplicate
		 * Extended Capabilities port speed entries.
		 */
948
		if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
			continue;

		/*
		 * USB 3.0 ports are always under a USB 3.0 hub.  USB 2.0 and
		 * 1.1 ports are under the USB 2.0 hub.  If the port speed
		 * matches the device speed, it's a similar speed port.
		 */
		if ((port_speed == 0x03) == (udev->speed == USB_SPEED_SUPER))
			num_similar_speed_ports++;
		if (num_similar_speed_ports == faked_port_num)
			/* Roothub ports are numbered from 1 to N */
			return i+1;
	}
	return 0;
}

965 966 967 968 969
/* Setup an xHCI virtual device for a Set Address command */
int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
{
	struct xhci_virt_device *dev;
	struct xhci_ep_ctx	*ep0_ctx;
970
	struct xhci_slot_ctx    *slot_ctx;
971 972
	u32			port_num;
	struct usb_device *top_dev;
973 974 975 976 977 978 979 980

	dev = xhci->devs[udev->slot_id];
	/* Slot ID 0 is reserved */
	if (udev->slot_id == 0 || !dev) {
		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
				udev->slot_id);
		return -EINVAL;
	}
981 982
	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
983 984

	/* 3) Only the control endpoint is valid - one endpoint context */
985
	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
986 987
	switch (udev->speed) {
	case USB_SPEED_SUPER:
988
		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
989 990
		break;
	case USB_SPEED_HIGH:
991
		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
992 993
		break;
	case USB_SPEED_FULL:
994
		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
995 996
		break;
	case USB_SPEED_LOW:
997
		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
998
		break;
999
	case USB_SPEED_WIRELESS:
1000 1001 1002 1003 1004 1005 1006 1007
		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
		return -EINVAL;
		break;
	default:
		/* Speed was set earlier, this shouldn't happen. */
		BUG();
	}
	/* Find the root hub port this device is under */
1008 1009 1010
	port_num = xhci_find_real_port_number(xhci, udev);
	if (!port_num)
		return -EINVAL;
1011
	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1012
	/* Set the port number in the virtual_device to the faked port number */
1013 1014 1015
	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
			top_dev = top_dev->parent)
		/* Found device below root hub */;
1016
	dev->fake_port = top_dev->portnum;
1017
	dev->real_port = port_num;
1018
	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1019
	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1020

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
	/* Find the right bandwidth table that this device will be a part of.
	 * If this is a full speed device attached directly to a root port (or a
	 * decendent of one), it counts as a primary bandwidth domain, not a
	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
	 * will never be created for the HS root hub.
	 */
	if (!udev->tt || !udev->tt->hub->parent) {
		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
	} else {
		struct xhci_root_port_bw_info *rh_bw;
		struct xhci_tt_bw_info *tt_bw;

		rh_bw = &xhci->rh_bw[port_num - 1];
		/* Find the right TT. */
		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
			if (tt_bw->slot_id != udev->tt->hub->slot_id)
				continue;

			if (!dev->udev->tt->multi ||
					(udev->tt->multi &&
					 tt_bw->ttport == dev->udev->ttport)) {
				dev->bw_table = &tt_bw->bw_table;
				dev->tt_info = tt_bw;
				break;
			}
		}
		if (!dev->tt_info)
			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
	}

S
Sarah Sharp 已提交
1051 1052
	/* Is this a LS/FS device under an external HS hub? */
	if (udev->tt && udev->tt->hub->parent) {
M
Matt Evans 已提交
1053 1054
		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
						(udev->ttport << 8));
1055
		if (udev->tt->multi)
M
Matt Evans 已提交
1056
			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1057
	}
1058
	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1059 1060 1061 1062
	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);

	/* Step 4 - ring already allocated */
	/* Step 5 */
M
Matt Evans 已提交
1063
	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1064 1065 1066
	/*
	 * XXX: Not sure about wireless USB devices.
	 */
1067 1068
	switch (udev->speed) {
	case USB_SPEED_SUPER:
M
Matt Evans 已提交
1069
		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512));
1070 1071 1072 1073
		break;
	case USB_SPEED_HIGH:
	/* USB core guesses at a 64-byte max packet first for FS devices */
	case USB_SPEED_FULL:
M
Matt Evans 已提交
1074
		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64));
1075 1076
		break;
	case USB_SPEED_LOW:
M
Matt Evans 已提交
1077
		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8));
1078
		break;
1079
	case USB_SPEED_WIRELESS:
1080 1081 1082 1083 1084 1085 1086
		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
		return -EINVAL;
		break;
	default:
		/* New speed? */
		BUG();
	}
1087
	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
M
Matt Evans 已提交
1088
	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
1089

M
Matt Evans 已提交
1090 1091
	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
				   dev->eps[0].ring->cycle_state);
1092 1093 1094 1095 1096 1097

	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */

	return 0;
}

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
/*
 * Convert interval expressed as 2^(bInterval - 1) == interval into
 * straight exponent value 2^n == interval.
 *
 */
static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
		struct usb_host_endpoint *ep)
{
	unsigned int interval;

	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
	if (interval != ep->desc.bInterval - 1)
		dev_warn(&udev->dev,
1111
			 "ep %#x - rounding interval to %d %sframes\n",
1112
			 ep->desc.bEndpointAddress,
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
			 1 << interval,
			 udev->speed == USB_SPEED_FULL ? "" : "micro");

	if (udev->speed == USB_SPEED_FULL) {
		/*
		 * Full speed isoc endpoints specify interval in frames,
		 * not microframes. We are using microframes everywhere,
		 * so adjust accordingly.
		 */
		interval += 3;	/* 1 frame = 2^3 uframes */
	}
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148

	return interval;
}

/*
 * Convert bInterval expressed in frames (in 1-255 range) to exponent of
 * microframes, rounded down to nearest power of 2.
 */
static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
		struct usb_host_endpoint *ep)
{
	unsigned int interval;

	interval = fls(8 * ep->desc.bInterval) - 1;
	interval = clamp_val(interval, 3, 10);
	if ((1 << interval) != 8 * ep->desc.bInterval)
		dev_warn(&udev->dev,
			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
			 ep->desc.bEndpointAddress,
			 1 << interval,
			 8 * ep->desc.bInterval);

	return interval;
}

1149 1150 1151 1152 1153 1154 1155 1156
/* Return the polling or NAK interval.
 *
 * The polling interval is expressed in "microframes".  If xHCI's Interval field
 * is set to N, it will service the endpoint every 2^(Interval)*125us.
 *
 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
 * is set to 0.
 */
1157
static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1158 1159 1160 1161 1162 1163 1164 1165
		struct usb_host_endpoint *ep)
{
	unsigned int interval = 0;

	switch (udev->speed) {
	case USB_SPEED_HIGH:
		/* Max NAK rate */
		if (usb_endpoint_xfer_control(&ep->desc) ||
1166
		    usb_endpoint_xfer_bulk(&ep->desc)) {
1167
			interval = ep->desc.bInterval;
1168 1169
			break;
		}
1170
		/* Fall through - SS and HS isoc/int have same decoding */
1171

1172 1173
	case USB_SPEED_SUPER:
		if (usb_endpoint_xfer_int(&ep->desc) ||
1174 1175
		    usb_endpoint_xfer_isoc(&ep->desc)) {
			interval = xhci_parse_exponent_interval(udev, ep);
1176 1177
		}
		break;
1178

1179
	case USB_SPEED_FULL:
1180
		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1181 1182 1183 1184
			interval = xhci_parse_exponent_interval(udev, ep);
			break;
		}
		/*
1185
		 * Fall through for interrupt endpoint interval decoding
1186 1187 1188 1189
		 * since it uses the same rules as low speed interrupt
		 * endpoints.
		 */

1190 1191
	case USB_SPEED_LOW:
		if (usb_endpoint_xfer_int(&ep->desc) ||
1192 1193 1194
		    usb_endpoint_xfer_isoc(&ep->desc)) {

			interval = xhci_parse_frame_interval(udev, ep);
1195 1196
		}
		break;
1197

1198 1199 1200 1201 1202 1203
	default:
		BUG();
	}
	return EP_INTERVAL(interval);
}

1204
/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1205 1206 1207 1208
 * High speed endpoint descriptors can define "the number of additional
 * transaction opportunities per microframe", but that goes in the Max Burst
 * endpoint context field.
 */
1209
static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1210 1211
		struct usb_host_endpoint *ep)
{
1212 1213
	if (udev->speed != USB_SPEED_SUPER ||
			!usb_endpoint_xfer_isoc(&ep->desc))
1214
		return 0;
1215
	return ep->ss_ep_comp.bmAttributes;
1216 1217
}

1218
static u32 xhci_get_endpoint_type(struct usb_device *udev,
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
		struct usb_host_endpoint *ep)
{
	int in;
	u32 type;

	in = usb_endpoint_dir_in(&ep->desc);
	if (usb_endpoint_xfer_control(&ep->desc)) {
		type = EP_TYPE(CTRL_EP);
	} else if (usb_endpoint_xfer_bulk(&ep->desc)) {
		if (in)
			type = EP_TYPE(BULK_IN_EP);
		else
			type = EP_TYPE(BULK_OUT_EP);
	} else if (usb_endpoint_xfer_isoc(&ep->desc)) {
		if (in)
			type = EP_TYPE(ISOC_IN_EP);
		else
			type = EP_TYPE(ISOC_OUT_EP);
	} else if (usb_endpoint_xfer_int(&ep->desc)) {
		if (in)
			type = EP_TYPE(INT_IN_EP);
		else
			type = EP_TYPE(INT_OUT_EP);
	} else {
		BUG();
	}
	return type;
}

1248 1249 1250 1251
/* Return the maximum endpoint service interval time (ESIT) payload.
 * Basically, this is the maxpacket size, multiplied by the burst size
 * and mult size.
 */
1252
static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
		struct usb_device *udev,
		struct usb_host_endpoint *ep)
{
	int max_burst;
	int max_packet;

	/* Only applies for interrupt or isochronous endpoints */
	if (usb_endpoint_xfer_control(&ep->desc) ||
			usb_endpoint_xfer_bulk(&ep->desc))
		return 0;

1264
	if (udev->speed == USB_SPEED_SUPER)
1265
		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1266

1267 1268
	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
	max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1269 1270 1271 1272
	/* A 0 in max burst means 1 transfer per ESIT */
	return max_packet * (max_burst + 1);
}

1273 1274 1275
/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
 * Drivers will have to call usb_alloc_streams() to do that.
 */
1276 1277 1278
int xhci_endpoint_init(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		struct usb_device *udev,
1279 1280
		struct usb_host_endpoint *ep,
		gfp_t mem_flags)
1281 1282 1283 1284 1285 1286
{
	unsigned int ep_index;
	struct xhci_ep_ctx *ep_ctx;
	struct xhci_ring *ep_ring;
	unsigned int max_packet;
	unsigned int max_burst;
1287
	u32 max_esit_payload;
1288 1289

	ep_index = xhci_get_endpoint_index(&ep->desc);
1290
	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1291 1292

	/* Set up the endpoint ring */
1293 1294 1295 1296 1297 1298 1299 1300
	/*
	 * Isochronous endpoint ring needs bigger size because one isoc URB
	 * carries multiple packets and it will insert multiple tds to the
	 * ring.
	 * This should be replaced with dynamic ring resizing in the future.
	 */
	if (usb_endpoint_xfer_isoc(&ep->desc))
		virt_dev->eps[ep_index].new_ring =
1301
			xhci_ring_alloc(xhci, 8, true, true, mem_flags);
1302 1303
	else
		virt_dev->eps[ep_index].new_ring =
1304
			xhci_ring_alloc(xhci, 1, true, false, mem_flags);
1305 1306 1307 1308 1309 1310 1311 1312
	if (!virt_dev->eps[ep_index].new_ring) {
		/* Attempt to use the ring cache */
		if (virt_dev->num_rings_cached == 0)
			return -ENOMEM;
		virt_dev->eps[ep_index].new_ring =
			virt_dev->ring_cache[virt_dev->num_rings_cached];
		virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
		virt_dev->num_rings_cached--;
1313 1314
		xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
			usb_endpoint_xfer_isoc(&ep->desc) ? true : false);
1315
	}
1316
	virt_dev->eps[ep_index].skip = false;
1317
	ep_ring = virt_dev->eps[ep_index].new_ring;
M
Matt Evans 已提交
1318
	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1319

M
Matt Evans 已提交
1320 1321
	ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
				      | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1322 1323 1324

	/* FIXME dig Mult and streams info out of ep companion desc */

1325
	/* Allow 3 retries for everything but isoc;
1326
	 * CErr shall be set to 0 for Isoch endpoints.
1327
	 */
1328
	if (!usb_endpoint_xfer_isoc(&ep->desc))
M
Matt Evans 已提交
1329
		ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3));
1330
	else
1331
		ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(0));
1332

M
Matt Evans 已提交
1333
	ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep));
1334 1335 1336 1337

	/* Set the max packet size and max burst */
	switch (udev->speed) {
	case USB_SPEED_SUPER:
1338
		max_packet = usb_endpoint_maxp(&ep->desc);
M
Matt Evans 已提交
1339
		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
S
Sarah Sharp 已提交
1340
		/* dig out max burst from ep companion desc */
1341
		max_packet = ep->ss_ep_comp.bMaxBurst;
M
Matt Evans 已提交
1342
		ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_packet));
1343 1344 1345 1346 1347 1348 1349
		break;
	case USB_SPEED_HIGH:
		/* bits 11:12 specify the number of additional transaction
		 * opportunities per microframe (USB 2.0, section 9.6.6)
		 */
		if (usb_endpoint_xfer_isoc(&ep->desc) ||
				usb_endpoint_xfer_int(&ep->desc)) {
1350
			max_burst = (usb_endpoint_maxp(&ep->desc)
M
Matt Evans 已提交
1351 1352
				     & 0x1800) >> 11;
			ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_burst));
1353 1354 1355 1356
		}
		/* Fall through */
	case USB_SPEED_FULL:
	case USB_SPEED_LOW:
1357
		max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
M
Matt Evans 已提交
1358
		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1359 1360 1361 1362
		break;
	default:
		BUG();
	}
1363
	max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
M
Matt Evans 已提交
1364
	ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379

	/*
	 * XXX no idea how to calculate the average TRB buffer length for bulk
	 * endpoints, as the driver gives us no clue how big each scatter gather
	 * list entry (or buffer) is going to be.
	 *
	 * For isochronous and interrupt endpoints, we set it to the max
	 * available, until we have new API in the USB core to allow drivers to
	 * declare how much bandwidth they actually need.
	 *
	 * Normally, it would be calculated by taking the total of the buffer
	 * lengths in the TD and then dividing by the number of TRBs in a TD,
	 * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
	 * use Event Data TRBs, and we don't chain in a link TRB on short
	 * transfers, we're basically dividing by 1.
1380 1381 1382
	 *
	 * xHCI 1.0 specification indicates that the Average TRB Length should
	 * be set to 8 for control endpoints.
1383
	 */
1384 1385 1386 1387 1388
	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
		ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
	else
		ep_ctx->tx_info |=
			 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1389

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
	/* FIXME Debug endpoint context */
	return 0;
}

void xhci_endpoint_zero(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		struct usb_host_endpoint *ep)
{
	unsigned int ep_index;
	struct xhci_ep_ctx *ep_ctx;

	ep_index = xhci_get_endpoint_index(&ep->desc);
1402
	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1403 1404 1405

	ep_ctx->ep_info = 0;
	ep_ctx->ep_info2 = 0;
1406
	ep_ctx->deq = 0;
1407 1408 1409 1410 1411 1412
	ep_ctx->tx_info = 0;
	/* Don't free the endpoint ring until the set interface or configuration
	 * request succeeds.
	 */
}

1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
{
	bw_info->ep_interval = 0;
	bw_info->mult = 0;
	bw_info->num_packets = 0;
	bw_info->max_packet_size = 0;
	bw_info->type = 0;
	bw_info->max_esit_payload = 0;
}

void xhci_update_bw_info(struct xhci_hcd *xhci,
		struct xhci_container_ctx *in_ctx,
		struct xhci_input_control_ctx *ctrl_ctx,
		struct xhci_virt_device *virt_dev)
{
	struct xhci_bw_info *bw_info;
	struct xhci_ep_ctx *ep_ctx;
	unsigned int ep_type;
	int i;

	for (i = 1; i < 31; ++i) {
		bw_info = &virt_dev->eps[i].bw_info;

		/* We can't tell what endpoint type is being dropped, but
		 * unconditionally clearing the bandwidth info for non-periodic
		 * endpoints should be harmless because the info will never be
		 * set in the first place.
		 */
		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
			/* Dropped endpoint */
			xhci_clear_endpoint_bw_info(bw_info);
			continue;
		}

		if (EP_IS_ADDED(ctrl_ctx, i)) {
			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));

			/* Ignore non-periodic endpoints */
			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
					ep_type != ISOC_IN_EP &&
					ep_type != INT_IN_EP)
				continue;

			/* Added or changed endpoint */
			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
					le32_to_cpu(ep_ctx->ep_info));
1460 1461 1462
			/* Number of packets and mult are zero-based in the
			 * input context, but we want one-based for the
			 * interval table.
1463
			 */
1464 1465
			bw_info->mult = CTX_TO_EP_MULT(
					le32_to_cpu(ep_ctx->ep_info)) + 1;
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
			bw_info->num_packets = CTX_TO_MAX_BURST(
					le32_to_cpu(ep_ctx->ep_info2)) + 1;
			bw_info->max_packet_size = MAX_PACKET_DECODED(
					le32_to_cpu(ep_ctx->ep_info2));
			bw_info->type = ep_type;
			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
					le32_to_cpu(ep_ctx->tx_info));
		}
	}
}

1477 1478 1479 1480 1481
/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
 * Useful when you want to change one particular aspect of the endpoint and then
 * issue a configure endpoint command.
 */
void xhci_endpoint_copy(struct xhci_hcd *xhci,
1482 1483 1484
		struct xhci_container_ctx *in_ctx,
		struct xhci_container_ctx *out_ctx,
		unsigned int ep_index)
1485 1486 1487 1488
{
	struct xhci_ep_ctx *out_ep_ctx;
	struct xhci_ep_ctx *in_ep_ctx;

1489 1490
	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502

	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
	in_ep_ctx->deq = out_ep_ctx->deq;
	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
}

/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
 * Useful when you want to change one particular aspect of the endpoint and then
 * issue a configure endpoint command.  Only the context entries field matters,
 * but we'll copy the whole thing anyway.
 */
1503 1504 1505
void xhci_slot_copy(struct xhci_hcd *xhci,
		struct xhci_container_ctx *in_ctx,
		struct xhci_container_ctx *out_ctx)
1506 1507 1508 1509
{
	struct xhci_slot_ctx *in_slot_ctx;
	struct xhci_slot_ctx *out_slot_ctx;

1510 1511
	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1512 1513 1514 1515 1516 1517 1518

	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
}

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
{
	int i;
	struct device *dev = xhci_to_hcd(xhci)->self.controller;
	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);

	xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);

	if (!num_sp)
		return 0;

	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
	if (!xhci->scratchpad)
		goto fail_sp;

1535
	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1536
				     num_sp * sizeof(u64),
1537
				     &xhci->scratchpad->sp_dma, flags);
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
	if (!xhci->scratchpad->sp_array)
		goto fail_sp2;

	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
	if (!xhci->scratchpad->sp_buffers)
		goto fail_sp3;

	xhci->scratchpad->sp_dma_buffers =
		kzalloc(sizeof(dma_addr_t) * num_sp, flags);

	if (!xhci->scratchpad->sp_dma_buffers)
		goto fail_sp4;

M
Matt Evans 已提交
1551
	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1552 1553
	for (i = 0; i < num_sp; i++) {
		dma_addr_t dma;
1554 1555
		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
				flags);
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
		if (!buf)
			goto fail_sp5;

		xhci->scratchpad->sp_array[i] = dma;
		xhci->scratchpad->sp_buffers[i] = buf;
		xhci->scratchpad->sp_dma_buffers[i] = dma;
	}

	return 0;

 fail_sp5:
	for (i = i - 1; i >= 0; i--) {
1568
		dma_free_coherent(dev, xhci->page_size,
1569 1570 1571 1572 1573 1574 1575 1576 1577
				    xhci->scratchpad->sp_buffers[i],
				    xhci->scratchpad->sp_dma_buffers[i]);
	}
	kfree(xhci->scratchpad->sp_dma_buffers);

 fail_sp4:
	kfree(xhci->scratchpad->sp_buffers);

 fail_sp3:
1578
	dma_free_coherent(dev, num_sp * sizeof(u64),
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
			    xhci->scratchpad->sp_array,
			    xhci->scratchpad->sp_dma);

 fail_sp2:
	kfree(xhci->scratchpad);
	xhci->scratchpad = NULL;

 fail_sp:
	return -ENOMEM;
}

static void scratchpad_free(struct xhci_hcd *xhci)
{
	int num_sp;
	int i;
	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);

	if (!xhci->scratchpad)
		return;

	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);

	for (i = 0; i < num_sp; i++) {
1602
		dma_free_coherent(&pdev->dev, xhci->page_size,
1603 1604 1605 1606 1607
				    xhci->scratchpad->sp_buffers[i],
				    xhci->scratchpad->sp_dma_buffers[i]);
	}
	kfree(xhci->scratchpad->sp_dma_buffers);
	kfree(xhci->scratchpad->sp_buffers);
1608
	dma_free_coherent(&pdev->dev, num_sp * sizeof(u64),
1609 1610 1611 1612 1613 1614
			    xhci->scratchpad->sp_array,
			    xhci->scratchpad->sp_dma);
	kfree(xhci->scratchpad);
	xhci->scratchpad = NULL;
}

1615
struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1616 1617
		bool allocate_in_ctx, bool allocate_completion,
		gfp_t mem_flags)
1618 1619 1620 1621 1622 1623 1624
{
	struct xhci_command *command;

	command = kzalloc(sizeof(*command), mem_flags);
	if (!command)
		return NULL;

1625 1626 1627 1628 1629 1630 1631 1632
	if (allocate_in_ctx) {
		command->in_ctx =
			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
					mem_flags);
		if (!command->in_ctx) {
			kfree(command);
			return NULL;
		}
1633
	}
1634 1635 1636 1637 1638 1639

	if (allocate_completion) {
		command->completion =
			kzalloc(sizeof(struct completion), mem_flags);
		if (!command->completion) {
			xhci_free_container_ctx(xhci, command->in_ctx);
1640
			kfree(command);
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
			return NULL;
		}
		init_completion(command->completion);
	}

	command->status = 0;
	INIT_LIST_HEAD(&command->cmd_list);
	return command;
}

1651 1652
void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
{
A
Andiry Xu 已提交
1653 1654 1655
	if (urb_priv) {
		kfree(urb_priv->td[0]);
		kfree(urb_priv);
1656 1657 1658
	}
}

1659 1660 1661 1662 1663 1664 1665 1666 1667
void xhci_free_command(struct xhci_hcd *xhci,
		struct xhci_command *command)
{
	xhci_free_container_ctx(xhci,
			command->in_ctx);
	kfree(command->completion);
	kfree(command);
}

1668 1669
void xhci_mem_cleanup(struct xhci_hcd *xhci)
{
1670
	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
A
Andiry Xu 已提交
1671 1672
	struct dev_info	*dev_info, *next;
	unsigned long	flags;
1673
	int size;
1674
	int i;
1675 1676

	/* Free the Event Ring Segment Table and the actual Event Ring */
1677 1678 1679 1680 1681
	if (xhci->ir_set) {
		xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
		xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
		xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
	}
1682 1683
	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
	if (xhci->erst.entries)
1684
		dma_free_coherent(&pdev->dev, size,
1685 1686 1687 1688 1689 1690 1691 1692
				xhci->erst.entries, xhci->erst.erst_dma_addr);
	xhci->erst.entries = NULL;
	xhci_dbg(xhci, "Freed ERST\n");
	if (xhci->event_ring)
		xhci_ring_free(xhci, xhci->event_ring);
	xhci->event_ring = NULL;
	xhci_dbg(xhci, "Freed event ring\n");

1693
	xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
1694 1695 1696 1697
	if (xhci->cmd_ring)
		xhci_ring_free(xhci, xhci->cmd_ring);
	xhci->cmd_ring = NULL;
	xhci_dbg(xhci, "Freed command ring\n");
1698 1699 1700 1701

	for (i = 1; i < MAX_HC_SLOTS; ++i)
		xhci_free_virt_device(xhci, i);

1702 1703 1704 1705
	if (xhci->segment_pool)
		dma_pool_destroy(xhci->segment_pool);
	xhci->segment_pool = NULL;
	xhci_dbg(xhci, "Freed segment pool\n");
1706 1707 1708 1709 1710 1711

	if (xhci->device_pool)
		dma_pool_destroy(xhci->device_pool);
	xhci->device_pool = NULL;
	xhci_dbg(xhci, "Freed device context pool\n");

1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
	if (xhci->small_streams_pool)
		dma_pool_destroy(xhci->small_streams_pool);
	xhci->small_streams_pool = NULL;
	xhci_dbg(xhci, "Freed small stream array pool\n");

	if (xhci->medium_streams_pool)
		dma_pool_destroy(xhci->medium_streams_pool);
	xhci->medium_streams_pool = NULL;
	xhci_dbg(xhci, "Freed medium stream array pool\n");

1722
	xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
1723
	if (xhci->dcbaa)
1724
		dma_free_coherent(&pdev->dev, sizeof(*xhci->dcbaa),
1725 1726
				xhci->dcbaa, xhci->dcbaa->dma);
	xhci->dcbaa = NULL;
1727

1728
	scratchpad_free(xhci);
1729

A
Andiry Xu 已提交
1730 1731 1732 1733 1734 1735 1736
	spin_lock_irqsave(&xhci->lock, flags);
	list_for_each_entry_safe(dev_info, next, &xhci->lpm_failed_devs, list) {
		list_del(&dev_info->list);
		kfree(dev_info);
	}
	spin_unlock_irqrestore(&xhci->lock, flags);

1737 1738 1739 1740 1741
	xhci->num_usb2_ports = 0;
	xhci->num_usb3_ports = 0;
	kfree(xhci->usb2_ports);
	kfree(xhci->usb3_ports);
	kfree(xhci->port_array);
1742
	kfree(xhci->rh_bw);
1743

1744 1745
	xhci->page_size = 0;
	xhci->page_shift = 0;
1746
	xhci->bus_state[0].bus_suspended = 0;
1747
	xhci->bus_state[1].bus_suspended = 0;
1748 1749
}

1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
		struct xhci_segment *input_seg,
		union xhci_trb *start_trb,
		union xhci_trb *end_trb,
		dma_addr_t input_dma,
		struct xhci_segment *result_seg,
		char *test_name, int test_number)
{
	unsigned long long start_dma;
	unsigned long long end_dma;
	struct xhci_segment *seg;

	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);

	seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
	if (seg != result_seg) {
		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
				test_name, test_number);
		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
				"input DMA 0x%llx\n",
				input_seg,
				(unsigned long long) input_dma);
		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
				"ending TRB %p (0x%llx DMA)\n",
				start_trb, start_dma,
				end_trb, end_dma);
		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
				result_seg, seg);
		return -1;
	}
	return 0;
}

/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
{
	struct {
		dma_addr_t		input_dma;
		struct xhci_segment	*result_seg;
	} simple_test_vector [] = {
		/* A zeroed DMA field should fail */
		{ 0, NULL },
		/* One TRB before the ring start should fail */
		{ xhci->event_ring->first_seg->dma - 16, NULL },
		/* One byte before the ring start should fail */
		{ xhci->event_ring->first_seg->dma - 1, NULL },
		/* Starting TRB should succeed */
		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
		/* Ending TRB should succeed */
		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
			xhci->event_ring->first_seg },
		/* One byte after the ring end should fail */
		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
		/* One TRB after the ring end should fail */
		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
		/* An address of all ones should fail */
		{ (dma_addr_t) (~0), NULL },
	};
	struct {
		struct xhci_segment	*input_seg;
		union xhci_trb		*start_trb;
		union xhci_trb		*end_trb;
		dma_addr_t		input_dma;
		struct xhci_segment	*result_seg;
	} complex_test_vector [] = {
		/* Test feeding a valid DMA address from a different ring */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = xhci->event_ring->first_seg->trbs,
			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
			.input_dma = xhci->cmd_ring->first_seg->dma,
			.result_seg = NULL,
		},
		/* Test feeding a valid end TRB from a different ring */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = xhci->event_ring->first_seg->trbs,
			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
			.input_dma = xhci->cmd_ring->first_seg->dma,
			.result_seg = NULL,
		},
		/* Test feeding a valid start and end TRB from a different ring */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = xhci->cmd_ring->first_seg->trbs,
			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
			.input_dma = xhci->cmd_ring->first_seg->dma,
			.result_seg = NULL,
		},
		/* TRB in this ring, but after this TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[0],
			.end_trb = &xhci->event_ring->first_seg->trbs[3],
			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
			.result_seg = NULL,
		},
		/* TRB in this ring, but before this TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[3],
			.end_trb = &xhci->event_ring->first_seg->trbs[6],
			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
			.result_seg = NULL,
		},
		/* TRB in this ring, but after this wrapped TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
			.end_trb = &xhci->event_ring->first_seg->trbs[1],
			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
			.result_seg = NULL,
		},
		/* TRB in this ring, but before this wrapped TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
			.end_trb = &xhci->event_ring->first_seg->trbs[1],
			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
			.result_seg = NULL,
		},
		/* TRB not in this ring, and we have a wrapped TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
			.end_trb = &xhci->event_ring->first_seg->trbs[1],
			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
			.result_seg = NULL,
		},
	};

	unsigned int num_tests;
	int i, ret;

1877
	num_tests = ARRAY_SIZE(simple_test_vector);
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
	for (i = 0; i < num_tests; i++) {
		ret = xhci_test_trb_in_td(xhci,
				xhci->event_ring->first_seg,
				xhci->event_ring->first_seg->trbs,
				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
				simple_test_vector[i].input_dma,
				simple_test_vector[i].result_seg,
				"Simple", i);
		if (ret < 0)
			return ret;
	}

1890
	num_tests = ARRAY_SIZE(complex_test_vector);
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
	for (i = 0; i < num_tests; i++) {
		ret = xhci_test_trb_in_td(xhci,
				complex_test_vector[i].input_seg,
				complex_test_vector[i].start_trb,
				complex_test_vector[i].end_trb,
				complex_test_vector[i].input_dma,
				complex_test_vector[i].result_seg,
				"Complex", i);
		if (ret < 0)
			return ret;
	}
	xhci_dbg(xhci, "TRB math tests passed.\n");
	return 0;
}

1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
{
	u64 temp;
	dma_addr_t deq;

	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
			xhci->event_ring->dequeue);
	if (deq == 0 && !in_interrupt())
		xhci_warn(xhci, "WARN something wrong with SW event ring "
				"dequeue ptr.\n");
	/* Update HC event ring dequeue pointer */
	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
	temp &= ERST_PTR_MASK;
	/* Don't clear the EHB bit (which is RW1C) because
	 * there might be more events to service.
	 */
	temp &= ~ERST_EHB;
	xhci_dbg(xhci, "// Write event ring dequeue pointer, "
			"preserving EHB bit\n");
	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
			&xhci->ir_set->erst_dequeue);
}

1929
static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
M
Matt Evans 已提交
1930
		__le32 __iomem *addr, u8 major_revision)
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
{
	u32 temp, port_offset, port_count;
	int i;

	if (major_revision > 0x03) {
		xhci_warn(xhci, "Ignoring unknown port speed, "
				"Ext Cap %p, revision = 0x%x\n",
				addr, major_revision);
		/* Ignoring port protocol we can't understand. FIXME */
		return;
	}

	/* Port offset and count in the third dword, see section 7.2 */
	temp = xhci_readl(xhci, addr + 2);
	port_offset = XHCI_EXT_PORT_OFF(temp);
	port_count = XHCI_EXT_PORT_COUNT(temp);
	xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
			"count = %u, revision = 0x%x\n",
			addr, port_offset, port_count, major_revision);
	/* Port count includes the current port offset */
	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
		/* WTF? "Valid values are ‘1’ to MaxPorts" */
		return;
A
Andiry Xu 已提交
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970

	/* Check the host's USB2 LPM capability */
	if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
			(temp & XHCI_L1C)) {
		xhci_dbg(xhci, "xHCI 0.96: support USB2 software lpm\n");
		xhci->sw_lpm_support = 1;
	}

	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
		xhci_dbg(xhci, "xHCI 1.0: support USB2 software lpm\n");
		xhci->sw_lpm_support = 1;
		if (temp & XHCI_HLC) {
			xhci_dbg(xhci, "xHCI 1.0: support USB2 hardware lpm\n");
			xhci->hw_lpm_support = 1;
		}
	}

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
	port_offset--;
	for (i = port_offset; i < (port_offset + port_count); i++) {
		/* Duplicate entry.  Ignore the port if the revisions differ. */
		if (xhci->port_array[i] != 0) {
			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
					" port %u\n", addr, i);
			xhci_warn(xhci, "Port was marked as USB %u, "
					"duplicated as USB %u\n",
					xhci->port_array[i], major_revision);
			/* Only adjust the roothub port counts if we haven't
			 * found a similar duplicate.
			 */
			if (xhci->port_array[i] != major_revision &&
1984
				xhci->port_array[i] != DUPLICATE_ENTRY) {
1985 1986 1987 1988
				if (xhci->port_array[i] == 0x03)
					xhci->num_usb3_ports--;
				else
					xhci->num_usb2_ports--;
1989
				xhci->port_array[i] = DUPLICATE_ENTRY;
1990 1991
			}
			/* FIXME: Should we disable the port? */
1992
			continue;
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
		}
		xhci->port_array[i] = major_revision;
		if (major_revision == 0x03)
			xhci->num_usb3_ports++;
		else
			xhci->num_usb2_ports++;
	}
	/* FIXME: Should we disable ports not in the Extended Capabilities? */
}

/*
 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
 * specify what speeds each port is supposed to be.  We can't count on the port
 * speed bits in the PORTSC register being correct until a device is connected,
 * but we need to set up the two fake roothubs with the correct number of USB
 * 3.0 and USB 2.0 ports at host controller initialization time.
 */
static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
{
M
Matt Evans 已提交
2012
	__le32 __iomem *addr;
2013 2014
	u32 offset;
	unsigned int num_ports;
2015
	int i, j, port_index;
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029

	addr = &xhci->cap_regs->hcc_params;
	offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
	if (offset == 0) {
		xhci_err(xhci, "No Extended Capability registers, "
				"unable to set up roothub.\n");
		return -ENODEV;
	}

	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
	xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
	if (!xhci->port_array)
		return -ENOMEM;

2030 2031 2032
	xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
	if (!xhci->rh_bw)
		return -ENOMEM;
2033 2034 2035
	for (i = 0; i < num_ports; i++) {
		struct xhci_interval_bw_table *bw_table;

2036
		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2037 2038 2039 2040
		bw_table = &xhci->rh_bw[i].bw_table;
		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
	}
2041

2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
	/*
	 * For whatever reason, the first capability offset is from the
	 * capability register base, not from the HCCPARAMS register.
	 * See section 5.3.6 for offset calculation.
	 */
	addr = &xhci->cap_regs->hc_capbase + offset;
	while (1) {
		u32 cap_id;

		cap_id = xhci_readl(xhci, addr);
		if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
			xhci_add_in_port(xhci, num_ports, addr,
					(u8) XHCI_EXT_PORT_MAJOR(cap_id));
		offset = XHCI_EXT_CAPS_NEXT(cap_id);
		if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
				== num_ports)
			break;
		/*
		 * Once you're into the Extended Capabilities, the offset is
		 * always relative to the register holding the offset.
		 */
		addr += offset;
	}

	if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
		xhci_warn(xhci, "No ports on the roothubs?\n");
		return -ENODEV;
	}
	xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
			xhci->num_usb2_ports, xhci->num_usb3_ports);
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085

	/* Place limits on the number of roothub ports so that the hub
	 * descriptors aren't longer than the USB core will allocate.
	 */
	if (xhci->num_usb3_ports > 15) {
		xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
		xhci->num_usb3_ports = 15;
	}
	if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
		xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
				USB_MAXCHILDREN);
		xhci->num_usb2_ports = USB_MAXCHILDREN;
	}

2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
	/*
	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
	 * Not sure how the USB core will handle a hub with no ports...
	 */
	if (xhci->num_usb2_ports) {
		xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
				xhci->num_usb2_ports, flags);
		if (!xhci->usb2_ports)
			return -ENOMEM;

		port_index = 0;
2097 2098 2099
		for (i = 0; i < num_ports; i++) {
			if (xhci->port_array[i] == 0x03 ||
					xhci->port_array[i] == 0 ||
2100
					xhci->port_array[i] == DUPLICATE_ENTRY)
2101 2102 2103 2104 2105 2106 2107 2108 2109
				continue;

			xhci->usb2_ports[port_index] =
				&xhci->op_regs->port_status_base +
				NUM_PORT_REGS*i;
			xhci_dbg(xhci, "USB 2.0 port at index %u, "
					"addr = %p\n", i,
					xhci->usb2_ports[port_index]);
			port_index++;
2110 2111
			if (port_index == xhci->num_usb2_ports)
				break;
2112
		}
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
	}
	if (xhci->num_usb3_ports) {
		xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
				xhci->num_usb3_ports, flags);
		if (!xhci->usb3_ports)
			return -ENOMEM;

		port_index = 0;
		for (i = 0; i < num_ports; i++)
			if (xhci->port_array[i] == 0x03) {
				xhci->usb3_ports[port_index] =
					&xhci->op_regs->port_status_base +
					NUM_PORT_REGS*i;
				xhci_dbg(xhci, "USB 3.0 port at index %u, "
						"addr = %p\n", i,
						xhci->usb3_ports[port_index]);
				port_index++;
2130 2131
				if (port_index == xhci->num_usb3_ports)
					break;
2132 2133 2134 2135
			}
	}
	return 0;
}
2136

2137 2138
int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
{
2139 2140
	dma_addr_t	dma;
	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
2141
	unsigned int	val, val2;
2142
	u64		val_64;
2143
	struct xhci_segment	*seg;
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
	u32 page_size;
	int i;

	page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
	xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
	for (i = 0; i < 16; i++) {
		if ((0x1 & page_size) != 0)
			break;
		page_size = page_size >> 1;
	}
	if (i < 16)
		xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
	else
		xhci_warn(xhci, "WARN: no supported page size\n");
	/* Use 4K pages, since that's common and the minimum the HC supports */
	xhci->page_shift = 12;
	xhci->page_size = 1 << xhci->page_shift;
	xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);

	/*
	 * Program the Number of Device Slots Enabled field in the CONFIG
	 * register with the max value of slots the HC can handle.
	 */
	val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
	xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
			(unsigned int) val);
	val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
	val |= (val2 & ~HCS_SLOTS_MASK);
	xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
			(unsigned int) val);
	xhci_writel(xhci, val, &xhci->op_regs->config_reg);

2176 2177 2178 2179
	/*
	 * Section 5.4.8 - doorbell array must be
	 * "physically contiguous and 64-byte (cache line) aligned".
	 */
2180 2181
	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
			GFP_KERNEL);
2182 2183 2184 2185
	if (!xhci->dcbaa)
		goto fail;
	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
	xhci->dcbaa->dma = dma;
2186 2187
	xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2188
	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2189

2190 2191 2192 2193 2194 2195 2196 2197
	/*
	 * Initialize the ring segment pool.  The ring must be a contiguous
	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
	 * however, the command ring segment needs 64-byte aligned segments,
	 * so we pick the greater alignment need.
	 */
	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
			SEGMENT_SIZE, 64, xhci->page_size);
2198

2199 2200
	/* See Table 46 and Note on Figure 55 */
	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2201
			2112, 64, xhci->page_size);
2202
	if (!xhci->segment_pool || !xhci->device_pool)
2203 2204
		goto fail;

2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
	/* Linear stream context arrays don't have any boundary restrictions,
	 * and only need to be 16-byte aligned.
	 */
	xhci->small_streams_pool =
		dma_pool_create("xHCI 256 byte stream ctx arrays",
			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
	xhci->medium_streams_pool =
		dma_pool_create("xHCI 1KB stream ctx arrays",
			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2215
	 * will be allocated with dma_alloc_coherent()
2216 2217 2218 2219 2220
	 */

	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
		goto fail;

2221
	/* Set up the command ring to have one segments for now. */
2222
	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, false, flags);
2223 2224
	if (!xhci->cmd_ring)
		goto fail;
2225 2226 2227
	xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
	xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2228 2229

	/* Set the address in the Command Ring Control register */
2230 2231 2232
	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2233
		xhci->cmd_ring->cycle_state;
2234 2235
	xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2236 2237 2238 2239 2240 2241
	xhci_dbg_cmd_ptrs(xhci);

	val = xhci_readl(xhci, &xhci->cap_regs->db_off);
	val &= DBOFF_MASK;
	xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
			" from cap regs base addr\n", val);
2242
	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2243 2244 2245
	xhci_dbg_regs(xhci);
	xhci_print_run_regs(xhci);
	/* Set ir_set to interrupt register set 0 */
2246
	xhci->ir_set = &xhci->run_regs->ir_set[0];
2247 2248 2249 2250 2251 2252

	/*
	 * Event ring setup: Allocate a normal ring, but also setup
	 * the event ring segment table (ERST).  Section 4.9.3.
	 */
	xhci_dbg(xhci, "// Allocating event ring\n");
2253 2254
	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, false,
						flags);
2255 2256
	if (!xhci->event_ring)
		goto fail;
2257 2258
	if (xhci_check_trb_in_td_math(xhci, flags) < 0)
		goto fail;
2259

2260 2261 2262
	xhci->erst.entries = dma_alloc_coherent(dev,
			sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
			GFP_KERNEL);
2263 2264
	if (!xhci->erst.entries)
		goto fail;
2265 2266
	xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
			(unsigned long long)dma);
2267 2268 2269 2270

	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
	xhci->erst.num_entries = ERST_NUM_SEGS;
	xhci->erst.erst_dma_addr = dma;
2271
	xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
2272
			xhci->erst.num_entries,
2273 2274
			xhci->erst.entries,
			(unsigned long long)xhci->erst.erst_dma_addr);
2275 2276 2277 2278

	/* set ring base address and size for each segment table entry */
	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
M
Matt Evans 已提交
2279 2280
		entry->seg_addr = cpu_to_le64(seg->dma);
		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
		entry->rsvd = 0;
		seg = seg->next;
	}

	/* set ERST count with the number of entries in the segment table */
	val = xhci_readl(xhci, &xhci->ir_set->erst_size);
	val &= ERST_SIZE_MASK;
	val |= ERST_NUM_SEGS;
	xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
			val);
	xhci_writel(xhci, val, &xhci->ir_set->erst_size);

	xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
	/* set the segment table base address */
2295 2296
	xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
			(unsigned long long)xhci->erst.erst_dma_addr);
2297 2298 2299 2300
	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
	val_64 &= ERST_PTR_MASK;
	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2301 2302

	/* Set the event ring dequeue address */
2303
	xhci_set_hc_event_deq(xhci);
2304
	xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
2305
	xhci_print_ir_set(xhci, 0);
2306 2307 2308 2309 2310 2311

	/*
	 * XXX: Might need to set the Interrupter Moderation Register to
	 * something other than the default (~1ms minimum between interrupts).
	 * See section 5.5.1.2.
	 */
2312 2313
	init_completion(&xhci->addr_dev);
	for (i = 0; i < MAX_HC_SLOTS; ++i)
2314
		xhci->devs[i] = NULL;
2315
	for (i = 0; i < USB_MAXCHILDREN; ++i) {
2316
		xhci->bus_state[0].resume_done[i] = 0;
2317 2318
		xhci->bus_state[1].resume_done[i] = 0;
	}
2319

2320 2321
	if (scratchpad_alloc(xhci, flags))
		goto fail;
2322 2323
	if (xhci_setup_port_arrays(xhci, flags))
		goto fail;
2324

A
Andiry Xu 已提交
2325 2326
	INIT_LIST_HEAD(&xhci->lpm_failed_devs);

2327
	return 0;
2328

2329 2330 2331 2332 2333
fail:
	xhci_warn(xhci, "Couldn't initialize memory\n");
	xhci_mem_cleanup(xhci);
	return -ENOMEM;
}