memblock.c 44.4 KB
Newer Older
Y
Yinghai Lu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Procedures for maintaining information about logical memory blocks.
 *
 * Peter Bergner, IBM Corp.	June 2001.
 * Copyright (C) 2001 Peter Bergner.
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

#include <linux/kernel.h>
14
#include <linux/slab.h>
Y
Yinghai Lu 已提交
15 16
#include <linux/init.h>
#include <linux/bitops.h>
17
#include <linux/poison.h>
18
#include <linux/pfn.h>
19 20
#include <linux/debugfs.h>
#include <linux/seq_file.h>
Y
Yinghai Lu 已提交
21 22
#include <linux/memblock.h>

23
#include <asm-generic/sections.h>
24 25 26
#include <linux/io.h>

#include "internal.h"
27

T
Tejun Heo 已提交
28 29
static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
30 31 32
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
#endif
T
Tejun Heo 已提交
33 34 35 36 37 38 39 40 41 42

struct memblock memblock __initdata_memblock = {
	.memory.regions		= memblock_memory_init_regions,
	.memory.cnt		= 1,	/* empty dummy entry */
	.memory.max		= INIT_MEMBLOCK_REGIONS,

	.reserved.regions	= memblock_reserved_init_regions,
	.reserved.cnt		= 1,	/* empty dummy entry */
	.reserved.max		= INIT_MEMBLOCK_REGIONS,

43 44 45 46 47 48
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
	.physmem.regions	= memblock_physmem_init_regions,
	.physmem.cnt		= 1,	/* empty dummy entry */
	.physmem.max		= INIT_PHYSMEM_REGIONS,
#endif

49
	.bottom_up		= false,
T
Tejun Heo 已提交
50 51
	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
};
Y
Yinghai Lu 已提交
52

53
int memblock_debug __initdata_memblock;
54 55 56
#ifdef CONFIG_MOVABLE_NODE
bool movable_node_enabled __initdata_memblock = false;
#endif
57
static int memblock_can_resize __initdata_memblock;
58 59
static int memblock_memory_in_slab __initdata_memblock = 0;
static int memblock_reserved_in_slab __initdata_memblock = 0;
Y
Yinghai Lu 已提交
60

61
/* inline so we don't get a warning when pr_debug is compiled out */
62 63
static __init_memblock const char *
memblock_type_name(struct memblock_type *type)
64 65 66 67 68 69 70 71 72
{
	if (type == &memblock.memory)
		return "memory";
	else if (type == &memblock.reserved)
		return "reserved";
	else
		return "unknown";
}

73 74 75 76 77 78
/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
{
	return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
}

79 80 81
/*
 * Address comparison utilities
 */
82
static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
83
				       phys_addr_t base2, phys_addr_t size2)
Y
Yinghai Lu 已提交
84 85 86 87
{
	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
}

88 89
static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
					phys_addr_t base, phys_addr_t size)
90 91 92 93 94 95 96 97 98 99 100 101 102
{
	unsigned long i;

	for (i = 0; i < type->cnt; i++) {
		phys_addr_t rgnbase = type->regions[i].base;
		phys_addr_t rgnsize = type->regions[i].size;
		if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
			break;
	}

	return (i < type->cnt) ? i : -1;
}

103 104 105 106 107 108
/*
 * __memblock_find_range_bottom_up - find free area utility in bottom-up
 * @start: start of candidate range
 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 * @size: size of free area to find
 * @align: alignment of free area to find
109
 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
 *
 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
 *
 * RETURNS:
 * Found address on success, 0 on failure.
 */
static phys_addr_t __init_memblock
__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
				phys_addr_t size, phys_addr_t align, int nid)
{
	phys_addr_t this_start, this_end, cand;
	u64 i;

	for_each_free_mem_range(i, nid, &this_start, &this_end, NULL) {
		this_start = clamp(this_start, start, end);
		this_end = clamp(this_end, start, end);

		cand = round_up(this_start, align);
		if (cand < this_end && this_end - cand >= size)
			return cand;
	}

	return 0;
}

135
/**
136
 * __memblock_find_range_top_down - find free area utility, in top-down
137 138 139 140
 * @start: start of candidate range
 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 * @size: size of free area to find
 * @align: alignment of free area to find
141
 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
142
 *
143
 * Utility called from memblock_find_in_range_node(), find free area top-down.
144 145
 *
 * RETURNS:
146
 * Found address on success, 0 on failure.
147
 */
148 149 150
static phys_addr_t __init_memblock
__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
			       phys_addr_t size, phys_addr_t align, int nid)
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
{
	phys_addr_t this_start, this_end, cand;
	u64 i;

	for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
		this_start = clamp(this_start, start, end);
		this_end = clamp(this_end, start, end);

		if (this_end < size)
			continue;

		cand = round_down(this_end - size, align);
		if (cand >= this_start)
			return cand;
	}
166

167 168
	return 0;
}
169

170 171 172 173
/**
 * memblock_find_in_range_node - find free area in given range and node
 * @size: size of free area to find
 * @align: alignment of free area to find
174 175
 * @start: start of candidate range
 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
176
 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
177 178 179
 *
 * Find @size free area aligned to @align in the specified range and node.
 *
180 181 182 183 184 185 186 187
 * When allocation direction is bottom-up, the @start should be greater
 * than the end of the kernel image. Otherwise, it will be trimmed. The
 * reason is that we want the bottom-up allocation just near the kernel
 * image so it is highly likely that the allocated memory and the kernel
 * will reside in the same node.
 *
 * If bottom-up allocation failed, will try to allocate memory top-down.
 *
188
 * RETURNS:
189
 * Found address on success, 0 on failure.
190
 */
191 192 193
phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
					phys_addr_t align, phys_addr_t start,
					phys_addr_t end, int nid)
194
{
195 196 197
	int ret;
	phys_addr_t kernel_end;

198 199 200 201 202 203 204
	/* pump up @end */
	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
		end = memblock.current_limit;

	/* avoid allocating the first page */
	start = max_t(phys_addr_t, start, PAGE_SIZE);
	end = max(start, end);
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
	kernel_end = __pa_symbol(_end);

	/*
	 * try bottom-up allocation only when bottom-up mode
	 * is set and @end is above the kernel image.
	 */
	if (memblock_bottom_up() && end > kernel_end) {
		phys_addr_t bottom_up_start;

		/* make sure we will allocate above the kernel */
		bottom_up_start = max(start, kernel_end);

		/* ok, try bottom-up allocation first */
		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
						      size, align, nid);
		if (ret)
			return ret;

		/*
		 * we always limit bottom-up allocation above the kernel,
		 * but top-down allocation doesn't have the limit, so
		 * retrying top-down allocation may succeed when bottom-up
		 * allocation failed.
		 *
		 * bottom-up allocation is expected to be fail very rarely,
		 * so we use WARN_ONCE() here to see the stack trace if
		 * fail happens.
		 */
		WARN_ONCE(1, "memblock: bottom-up allocation failed, "
			     "memory hotunplug may be affected\n");
	}
236 237 238 239

	return __memblock_find_range_top_down(start, end, size, align, nid);
}

240 241 242 243 244 245 246 247 248 249
/**
 * memblock_find_in_range - find free area in given range
 * @start: start of candidate range
 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 * @size: size of free area to find
 * @align: alignment of free area to find
 *
 * Find @size free area aligned to @align in the specified range.
 *
 * RETURNS:
250
 * Found address on success, 0 on failure.
251
 */
252 253 254
phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
					phys_addr_t end, phys_addr_t size,
					phys_addr_t align)
255
{
256
	return memblock_find_in_range_node(size, align, start, end,
257
					    NUMA_NO_NODE);
258 259
}

260
static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
Y
Yinghai Lu 已提交
261
{
262
	type->total_size -= type->regions[r].size;
T
Tejun Heo 已提交
263 264
	memmove(&type->regions[r], &type->regions[r + 1],
		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
265
	type->cnt--;
Y
Yinghai Lu 已提交
266

267 268
	/* Special case for empty arrays */
	if (type->cnt == 0) {
269
		WARN_ON(type->total_size != 0);
270 271 272
		type->cnt = 1;
		type->regions[0].base = 0;
		type->regions[0].size = 0;
273
		type->regions[0].flags = 0;
T
Tejun Heo 已提交
274
		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
275
	}
Y
Yinghai Lu 已提交
276 277
}

278 279
#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK

280 281 282 283 284 285 286 287 288 289 290 291
phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
					phys_addr_t *addr)
{
	if (memblock.reserved.regions == memblock_reserved_init_regions)
		return 0;

	*addr = __pa(memblock.reserved.regions);

	return PAGE_ALIGN(sizeof(struct memblock_region) *
			  memblock.reserved.max);
}

292 293 294 295 296 297 298 299 300 301 302 303 304 305
phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info(
					phys_addr_t *addr)
{
	if (memblock.memory.regions == memblock_memory_init_regions)
		return 0;

	*addr = __pa(memblock.memory.regions);

	return PAGE_ALIGN(sizeof(struct memblock_region) *
			  memblock.memory.max);
}

#endif

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
/**
 * memblock_double_array - double the size of the memblock regions array
 * @type: memblock type of the regions array being doubled
 * @new_area_start: starting address of memory range to avoid overlap with
 * @new_area_size: size of memory range to avoid overlap with
 *
 * Double the size of the @type regions array. If memblock is being used to
 * allocate memory for a new reserved regions array and there is a previously
 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
 * waiting to be reserved, ensure the memory used by the new array does
 * not overlap.
 *
 * RETURNS:
 * 0 on success, -1 on failure.
 */
static int __init_memblock memblock_double_array(struct memblock_type *type,
						phys_addr_t new_area_start,
						phys_addr_t new_area_size)
324 325
{
	struct memblock_region *new_array, *old_array;
326
	phys_addr_t old_alloc_size, new_alloc_size;
327 328
	phys_addr_t old_size, new_size, addr;
	int use_slab = slab_is_available();
329
	int *in_slab;
330 331 332 333 334 335 336 337 338 339

	/* We don't allow resizing until we know about the reserved regions
	 * of memory that aren't suitable for allocation
	 */
	if (!memblock_can_resize)
		return -1;

	/* Calculate new doubled size */
	old_size = type->max * sizeof(struct memblock_region);
	new_size = old_size << 1;
340 341 342 343 344 345
	/*
	 * We need to allocated new one align to PAGE_SIZE,
	 *   so we can free them completely later.
	 */
	old_alloc_size = PAGE_ALIGN(old_size);
	new_alloc_size = PAGE_ALIGN(new_size);
346

347 348 349 350 351 352
	/* Retrieve the slab flag */
	if (type == &memblock.memory)
		in_slab = &memblock_memory_in_slab;
	else
		in_slab = &memblock_reserved_in_slab;

353 354 355
	/* Try to find some space for it.
	 *
	 * WARNING: We assume that either slab_is_available() and we use it or
356 357 358
	 * we use MEMBLOCK for allocations. That means that this is unsafe to
	 * use when bootmem is currently active (unless bootmem itself is
	 * implemented on top of MEMBLOCK which isn't the case yet)
359 360
	 *
	 * This should however not be an issue for now, as we currently only
361 362
	 * call into MEMBLOCK while it's still active, or much later when slab
	 * is active for memory hotplug operations
363 364 365
	 */
	if (use_slab) {
		new_array = kmalloc(new_size, GFP_KERNEL);
T
Tejun Heo 已提交
366
		addr = new_array ? __pa(new_array) : 0;
367
	} else {
368 369 370 371 372 373
		/* only exclude range when trying to double reserved.regions */
		if (type != &memblock.reserved)
			new_area_start = new_area_size = 0;

		addr = memblock_find_in_range(new_area_start + new_area_size,
						memblock.current_limit,
374
						new_alloc_size, PAGE_SIZE);
375 376
		if (!addr && new_area_size)
			addr = memblock_find_in_range(0,
377 378
				min(new_area_start, memblock.current_limit),
				new_alloc_size, PAGE_SIZE);
379

380
		new_array = addr ? __va(addr) : NULL;
381
	}
T
Tejun Heo 已提交
382
	if (!addr) {
383 384 385 386 387
		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
		       memblock_type_name(type), type->max, type->max * 2);
		return -1;
	}

388 389 390
	memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
			memblock_type_name(type), type->max * 2, (u64)addr,
			(u64)addr + new_size - 1);
391

392 393 394 395
	/*
	 * Found space, we now need to move the array over before we add the
	 * reserved region since it may be our reserved array itself that is
	 * full.
396 397 398 399 400 401 402
	 */
	memcpy(new_array, type->regions, old_size);
	memset(new_array + type->max, 0, old_size);
	old_array = type->regions;
	type->regions = new_array;
	type->max <<= 1;

403
	/* Free old array. We needn't free it if the array is the static one */
404 405 406 407
	if (*in_slab)
		kfree(old_array);
	else if (old_array != memblock_memory_init_regions &&
		 old_array != memblock_reserved_init_regions)
408
		memblock_free(__pa(old_array), old_alloc_size);
409

410 411 412
	/*
	 * Reserve the new array if that comes from the memblock.  Otherwise, we
	 * needn't do it
413 414
	 */
	if (!use_slab)
415
		BUG_ON(memblock_reserve(addr, new_alloc_size));
416 417 418 419

	/* Update slab flag */
	*in_slab = use_slab;

420 421 422
	return 0;
}

423 424 425 426 427 428 429
/**
 * memblock_merge_regions - merge neighboring compatible regions
 * @type: memblock type to scan
 *
 * Scan @type and merge neighboring compatible regions.
 */
static void __init_memblock memblock_merge_regions(struct memblock_type *type)
Y
Yinghai Lu 已提交
430
{
431
	int i = 0;
Y
Yinghai Lu 已提交
432

433 434 435 436
	/* cnt never goes below 1 */
	while (i < type->cnt - 1) {
		struct memblock_region *this = &type->regions[i];
		struct memblock_region *next = &type->regions[i + 1];
Y
Yinghai Lu 已提交
437

T
Tejun Heo 已提交
438 439
		if (this->base + this->size != next->base ||
		    memblock_get_region_node(this) !=
440 441
		    memblock_get_region_node(next) ||
		    this->flags != next->flags) {
442 443 444
			BUG_ON(this->base + this->size > next->base);
			i++;
			continue;
445 446
		}

447
		this->size += next->size;
448 449
		/* move forward from next + 1, index of which is i + 2 */
		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
450
		type->cnt--;
Y
Yinghai Lu 已提交
451
	}
452
}
Y
Yinghai Lu 已提交
453

454 455
/**
 * memblock_insert_region - insert new memblock region
456 457 458 459 460
 * @type:	memblock type to insert into
 * @idx:	index for the insertion point
 * @base:	base address of the new region
 * @size:	size of the new region
 * @nid:	node id of the new region
461
 * @flags:	flags of the new region
462 463 464 465 466 467
 *
 * Insert new memblock region [@base,@base+@size) into @type at @idx.
 * @type must already have extra room to accomodate the new region.
 */
static void __init_memblock memblock_insert_region(struct memblock_type *type,
						   int idx, phys_addr_t base,
468 469
						   phys_addr_t size,
						   int nid, unsigned long flags)
470 471 472 473 474 475 476
{
	struct memblock_region *rgn = &type->regions[idx];

	BUG_ON(type->cnt >= type->max);
	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
	rgn->base = base;
	rgn->size = size;
477
	rgn->flags = flags;
T
Tejun Heo 已提交
478
	memblock_set_region_node(rgn, nid);
479
	type->cnt++;
480
	type->total_size += size;
481 482 483
}

/**
484
 * memblock_add_range - add new memblock region
485 486 487
 * @type: memblock type to add new region into
 * @base: base address of the new region
 * @size: size of the new region
488
 * @nid: nid of the new region
489
 * @flags: flags of the new region
490 491 492 493 494 495 496 497 498
 *
 * Add new memblock region [@base,@base+@size) into @type.  The new region
 * is allowed to overlap with existing ones - overlaps don't affect already
 * existing regions.  @type is guaranteed to be minimal (all neighbouring
 * compatible regions are merged) after the addition.
 *
 * RETURNS:
 * 0 on success, -errno on failure.
 */
499
int __init_memblock memblock_add_range(struct memblock_type *type,
500 501
				phys_addr_t base, phys_addr_t size,
				int nid, unsigned long flags)
502 503
{
	bool insert = false;
504 505
	phys_addr_t obase = base;
	phys_addr_t end = base + memblock_cap_size(base, &size);
506 507
	int i, nr_new;

508 509 510
	if (!size)
		return 0;

511 512
	/* special case for empty array */
	if (type->regions[0].size == 0) {
513
		WARN_ON(type->cnt != 1 || type->total_size);
514 515
		type->regions[0].base = base;
		type->regions[0].size = size;
516
		type->regions[0].flags = flags;
517
		memblock_set_region_node(&type->regions[0], nid);
518
		type->total_size = size;
519
		return 0;
Y
Yinghai Lu 已提交
520
	}
521 522 523 524 525
repeat:
	/*
	 * The following is executed twice.  Once with %false @insert and
	 * then with %true.  The first counts the number of regions needed
	 * to accomodate the new area.  The second actually inserts them.
526
	 */
527 528
	base = obase;
	nr_new = 0;
Y
Yinghai Lu 已提交
529

530 531 532 533 534 535
	for (i = 0; i < type->cnt; i++) {
		struct memblock_region *rgn = &type->regions[i];
		phys_addr_t rbase = rgn->base;
		phys_addr_t rend = rbase + rgn->size;

		if (rbase >= end)
Y
Yinghai Lu 已提交
536
			break;
537 538 539 540 541 542 543 544 545 546
		if (rend <= base)
			continue;
		/*
		 * @rgn overlaps.  If it separates the lower part of new
		 * area, insert that portion.
		 */
		if (rbase > base) {
			nr_new++;
			if (insert)
				memblock_insert_region(type, i++, base,
547 548
						       rbase - base, nid,
						       flags);
Y
Yinghai Lu 已提交
549
		}
550 551
		/* area below @rend is dealt with, forget about it */
		base = min(rend, end);
Y
Yinghai Lu 已提交
552
	}
553 554 555 556 557

	/* insert the remaining portion */
	if (base < end) {
		nr_new++;
		if (insert)
558 559
			memblock_insert_region(type, i, base, end - base,
					       nid, flags);
Y
Yinghai Lu 已提交
560 561
	}

562 563 564
	/*
	 * If this was the first round, resize array and repeat for actual
	 * insertions; otherwise, merge and return.
565
	 */
566 567
	if (!insert) {
		while (type->cnt + nr_new > type->max)
568
			if (memblock_double_array(type, obase, size) < 0)
569 570 571 572 573 574
				return -ENOMEM;
		insert = true;
		goto repeat;
	} else {
		memblock_merge_regions(type);
		return 0;
575
	}
Y
Yinghai Lu 已提交
576 577
}

578 579 580
int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
				       int nid)
{
581
	return memblock_add_range(&memblock.memory, base, size, nid, 0);
582 583
}

584
int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
Y
Yinghai Lu 已提交
585
{
586
	return memblock_add_range(&memblock.memory, base, size,
587
				   MAX_NUMNODES, 0);
Y
Yinghai Lu 已提交
588 589
}

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
/**
 * memblock_isolate_range - isolate given range into disjoint memblocks
 * @type: memblock type to isolate range for
 * @base: base of range to isolate
 * @size: size of range to isolate
 * @start_rgn: out parameter for the start of isolated region
 * @end_rgn: out parameter for the end of isolated region
 *
 * Walk @type and ensure that regions don't cross the boundaries defined by
 * [@base,@base+@size).  Crossing regions are split at the boundaries,
 * which may create at most two more regions.  The index of the first
 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
 *
 * RETURNS:
 * 0 on success, -errno on failure.
 */
static int __init_memblock memblock_isolate_range(struct memblock_type *type,
					phys_addr_t base, phys_addr_t size,
					int *start_rgn, int *end_rgn)
{
610
	phys_addr_t end = base + memblock_cap_size(base, &size);
611 612 613 614
	int i;

	*start_rgn = *end_rgn = 0;

615 616 617
	if (!size)
		return 0;

618 619
	/* we'll create at most two more regions */
	while (type->cnt + 2 > type->max)
620
		if (memblock_double_array(type, base, size) < 0)
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
			return -ENOMEM;

	for (i = 0; i < type->cnt; i++) {
		struct memblock_region *rgn = &type->regions[i];
		phys_addr_t rbase = rgn->base;
		phys_addr_t rend = rbase + rgn->size;

		if (rbase >= end)
			break;
		if (rend <= base)
			continue;

		if (rbase < base) {
			/*
			 * @rgn intersects from below.  Split and continue
			 * to process the next region - the new top half.
			 */
			rgn->base = base;
639 640
			rgn->size -= base - rbase;
			type->total_size -= base - rbase;
641
			memblock_insert_region(type, i, rbase, base - rbase,
642 643
					       memblock_get_region_node(rgn),
					       rgn->flags);
644 645 646 647 648 649
		} else if (rend > end) {
			/*
			 * @rgn intersects from above.  Split and redo the
			 * current region - the new bottom half.
			 */
			rgn->base = end;
650 651
			rgn->size -= end - rbase;
			type->total_size -= end - rbase;
652
			memblock_insert_region(type, i--, rbase, end - rbase,
653 654
					       memblock_get_region_node(rgn),
					       rgn->flags);
655 656 657 658 659 660 661 662 663 664 665
		} else {
			/* @rgn is fully contained, record it */
			if (!*end_rgn)
				*start_rgn = i;
			*end_rgn = i + 1;
		}
	}

	return 0;
}

666 667
int __init_memblock memblock_remove_range(struct memblock_type *type,
					  phys_addr_t base, phys_addr_t size)
Y
Yinghai Lu 已提交
668
{
669 670
	int start_rgn, end_rgn;
	int i, ret;
Y
Yinghai Lu 已提交
671

672 673 674
	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
	if (ret)
		return ret;
Y
Yinghai Lu 已提交
675

676 677
	for (i = end_rgn - 1; i >= start_rgn; i--)
		memblock_remove_region(type, i);
678
	return 0;
Y
Yinghai Lu 已提交
679 680
}

681
int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
Y
Yinghai Lu 已提交
682
{
683
	return memblock_remove_range(&memblock.memory, base, size);
Y
Yinghai Lu 已提交
684 685
}

686

687
int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
Y
Yinghai Lu 已提交
688
{
689
	memblock_dbg("   memblock_free: [%#016llx-%#016llx] %pF\n",
690
		     (unsigned long long)base,
691
		     (unsigned long long)base + size - 1,
692
		     (void *)_RET_IP_);
693

694
	return memblock_remove_range(&memblock.reserved, base, size);
Y
Yinghai Lu 已提交
695 696
}

697 698 699 700
static int __init_memblock memblock_reserve_region(phys_addr_t base,
						   phys_addr_t size,
						   int nid,
						   unsigned long flags)
Y
Yinghai Lu 已提交
701
{
702
	struct memblock_type *_rgn = &memblock.reserved;
Y
Yinghai Lu 已提交
703

704
	memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
705
		     (unsigned long long)base,
706
		     (unsigned long long)base + size - 1,
707 708
		     flags, (void *)_RET_IP_);

709
	return memblock_add_range(_rgn, base, size, nid, flags);
710
}
Y
Yinghai Lu 已提交
711

712 713 714
int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
{
	return memblock_reserve_region(base, size, MAX_NUMNODES, 0);
Y
Yinghai Lu 已提交
715 716
}

717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
/**
 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
 * @base: the base phys addr of the region
 * @size: the size of the region
 *
 * This function isolates region [@base, @base + @size), and mark it with flag
 * MEMBLOCK_HOTPLUG.
 *
 * Return 0 on succees, -errno on failure.
 */
int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
{
	struct memblock_type *type = &memblock.memory;
	int i, ret, start_rgn, end_rgn;

	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
	if (ret)
		return ret;

	for (i = start_rgn; i < end_rgn; i++)
		memblock_set_region_flags(&type->regions[i], MEMBLOCK_HOTPLUG);

	memblock_merge_regions(type);
	return 0;
}

/**
 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
 * @base: the base phys addr of the region
 * @size: the size of the region
 *
 * This function isolates region [@base, @base + @size), and clear flag
 * MEMBLOCK_HOTPLUG for the isolated regions.
 *
 * Return 0 on succees, -errno on failure.
 */
int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
{
	struct memblock_type *type = &memblock.memory;
	int i, ret, start_rgn, end_rgn;

	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
	if (ret)
		return ret;

	for (i = start_rgn; i < end_rgn; i++)
		memblock_clear_region_flags(&type->regions[i],
					    MEMBLOCK_HOTPLUG);

	memblock_merge_regions(type);
	return 0;
}

770
/**
771
 * __next__mem_range - next function for for_each_free_mem_range() etc.
772
 * @idx: pointer to u64 loop variable
773
 * @nid: node selector, %NUMA_NO_NODE for all nodes
774 775
 * @type_a: pointer to memblock_type from where the range is taken
 * @type_b: pointer to memblock_type which excludes memory from being taken
W
Wanpeng Li 已提交
776 777 778
 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
 * @out_nid: ptr to int for nid of the range, can be %NULL
779
 *
780
 * Find the first area from *@idx which matches @nid, fill the out
781
 * parameters, and update *@idx for the next iteration.  The lower 32bit of
782 783
 * *@idx contains index into type_a and the upper 32bit indexes the
 * areas before each region in type_b.	For example, if type_b regions
784 785 786 787 788 789 790 791 792 793 794
 * look like the following,
 *
 *	0:[0-16), 1:[32-48), 2:[128-130)
 *
 * The upper 32bit indexes the following regions.
 *
 *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
 *
 * As both region arrays are sorted, the function advances the two indices
 * in lockstep and returns each intersection.
 */
795 796 797 798 799
void __init_memblock __next_mem_range(u64 *idx, int nid,
				      struct memblock_type *type_a,
				      struct memblock_type *type_b,
				      phys_addr_t *out_start,
				      phys_addr_t *out_end, int *out_nid)
800
{
801 802
	int idx_a = *idx & 0xffffffff;
	int idx_b = *idx >> 32;
803

804 805
	if (WARN_ONCE(nid == MAX_NUMNODES,
	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
806
		nid = NUMA_NO_NODE;
807

808 809 810
	for (; idx_a < type_a->cnt; idx_a++) {
		struct memblock_region *m = &type_a->regions[idx_a];

811 812
		phys_addr_t m_start = m->base;
		phys_addr_t m_end = m->base + m->size;
813
		int	    m_nid = memblock_get_region_node(m);
814 815

		/* only memory regions are associated with nodes, check it */
816
		if (nid != NUMA_NO_NODE && nid != m_nid)
817 818
			continue;

819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
		if (!type_b) {
			if (out_start)
				*out_start = m_start;
			if (out_end)
				*out_end = m_end;
			if (out_nid)
				*out_nid = m_nid;
			idx_a++;
			*idx = (u32)idx_a | (u64)idx_b << 32;
			return;
		}

		/* scan areas before each reservation */
		for (; idx_b < type_b->cnt + 1; idx_b++) {
			struct memblock_region *r;
			phys_addr_t r_start;
			phys_addr_t r_end;

			r = &type_b->regions[idx_b];
			r_start = idx_b ? r[-1].base + r[-1].size : 0;
			r_end = idx_b < type_b->cnt ?
				r->base : ULLONG_MAX;
841

842 843 844 845
			/*
			 * if idx_b advanced past idx_a,
			 * break out to advance idx_a
			 */
846 847 848 849 850
			if (r_start >= m_end)
				break;
			/* if the two regions intersect, we're done */
			if (m_start < r_end) {
				if (out_start)
851 852
					*out_start =
						max(m_start, r_start);
853 854 855
				if (out_end)
					*out_end = min(m_end, r_end);
				if (out_nid)
856
					*out_nid = m_nid;
857
				/*
858 859
				 * The region which ends first is
				 * advanced for the next iteration.
860 861
				 */
				if (m_end <= r_end)
862
					idx_a++;
863
				else
864 865
					idx_b++;
				*idx = (u32)idx_a | (u64)idx_b << 32;
866 867 868 869 870 871 872 873 874
				return;
			}
		}
	}

	/* signal end of iteration */
	*idx = ULLONG_MAX;
}

875
/**
876 877 878 879 880
 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
 *
 * Finds the next range from type_a which is not marked as unsuitable
 * in type_b.
 *
881
 * @idx: pointer to u64 loop variable
882
 * @nid: nid: node selector, %NUMA_NO_NODE for all nodes
883 884
 * @type_a: pointer to memblock_type from where the range is taken
 * @type_b: pointer to memblock_type which excludes memory from being taken
W
Wanpeng Li 已提交
885 886 887
 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
 * @out_nid: ptr to int for nid of the range, can be %NULL
888
 *
889
 * Reverse of __next_mem_range().
890
 */
891 892 893 894 895
void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
					  struct memblock_type *type_a,
					  struct memblock_type *type_b,
					  phys_addr_t *out_start,
					  phys_addr_t *out_end, int *out_nid)
896
{
897 898
	int idx_a = *idx & 0xffffffff;
	int idx_b = *idx >> 32;
899

900 901
	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
		nid = NUMA_NO_NODE;
902 903

	if (*idx == (u64)ULLONG_MAX) {
904 905
		idx_a = type_a->cnt - 1;
		idx_b = type_b->cnt;
906 907
	}

908 909 910
	for (; idx_a >= 0; idx_a--) {
		struct memblock_region *m = &type_a->regions[idx_a];

911 912
		phys_addr_t m_start = m->base;
		phys_addr_t m_end = m->base + m->size;
913
		int m_nid = memblock_get_region_node(m);
914 915

		/* only memory regions are associated with nodes, check it */
916
		if (nid != NUMA_NO_NODE && nid != m_nid)
917 918
			continue;

919 920 921 922
		/* skip hotpluggable memory regions if needed */
		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
			continue;

923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
		if (!type_b) {
			if (out_start)
				*out_start = m_start;
			if (out_end)
				*out_end = m_end;
			if (out_nid)
				*out_nid = m_nid;
			idx_a++;
			*idx = (u32)idx_a | (u64)idx_b << 32;
			return;
		}

		/* scan areas before each reservation */
		for (; idx_b >= 0; idx_b--) {
			struct memblock_region *r;
			phys_addr_t r_start;
			phys_addr_t r_end;

			r = &type_b->regions[idx_b];
			r_start = idx_b ? r[-1].base + r[-1].size : 0;
			r_end = idx_b < type_b->cnt ?
				r->base : ULLONG_MAX;
			/*
			 * if idx_b advanced past idx_a,
			 * break out to advance idx_a
			 */
949 950 951 952 953 954 955 956 957 958

			if (r_end <= m_start)
				break;
			/* if the two regions intersect, we're done */
			if (m_end > r_start) {
				if (out_start)
					*out_start = max(m_start, r_start);
				if (out_end)
					*out_end = min(m_end, r_end);
				if (out_nid)
959
					*out_nid = m_nid;
960
				if (m_start >= r_start)
961
					idx_a--;
962
				else
963 964
					idx_b--;
				*idx = (u32)idx_a | (u64)idx_b << 32;
965 966 967 968
				return;
			}
		}
	}
969
	/* signal end of iteration */
970 971 972
	*idx = ULLONG_MAX;
}

T
Tejun Heo 已提交
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
/*
 * Common iterator interface used to define for_each_mem_range().
 */
void __init_memblock __next_mem_pfn_range(int *idx, int nid,
				unsigned long *out_start_pfn,
				unsigned long *out_end_pfn, int *out_nid)
{
	struct memblock_type *type = &memblock.memory;
	struct memblock_region *r;

	while (++*idx < type->cnt) {
		r = &type->regions[*idx];

		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
			continue;
		if (nid == MAX_NUMNODES || nid == r->nid)
			break;
	}
	if (*idx >= type->cnt) {
		*idx = -1;
		return;
	}

	if (out_start_pfn)
		*out_start_pfn = PFN_UP(r->base);
	if (out_end_pfn)
		*out_end_pfn = PFN_DOWN(r->base + r->size);
	if (out_nid)
		*out_nid = r->nid;
}

/**
 * memblock_set_node - set node ID on memblock regions
 * @base: base of area to set node ID for
 * @size: size of area to set node ID for
1009
 * @type: memblock type to set node ID for
T
Tejun Heo 已提交
1010 1011
 * @nid: node ID to set
 *
1012
 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
T
Tejun Heo 已提交
1013 1014 1015 1016 1017 1018
 * Regions which cross the area boundaries are split as necessary.
 *
 * RETURNS:
 * 0 on success, -errno on failure.
 */
int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1019
				      struct memblock_type *type, int nid)
T
Tejun Heo 已提交
1020
{
1021 1022
	int start_rgn, end_rgn;
	int i, ret;
T
Tejun Heo 已提交
1023

1024 1025 1026
	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
	if (ret)
		return ret;
T
Tejun Heo 已提交
1027

1028
	for (i = start_rgn; i < end_rgn; i++)
1029
		memblock_set_region_node(&type->regions[i], nid);
T
Tejun Heo 已提交
1030 1031 1032 1033 1034 1035

	memblock_merge_regions(type);
	return 0;
}
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */

1036 1037 1038
static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
					phys_addr_t align, phys_addr_t start,
					phys_addr_t end, int nid)
Y
Yinghai Lu 已提交
1039
{
1040
	phys_addr_t found;
Y
Yinghai Lu 已提交
1041

1042 1043
	if (!align)
		align = SMP_CACHE_BYTES;
1044

1045
	found = memblock_find_in_range_node(size, align, start, end, nid);
1046
	if (found && !memblock_reserve(found, size))
1047
		return found;
Y
Yinghai Lu 已提交
1048

1049
	return 0;
Y
Yinghai Lu 已提交
1050 1051
}

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
					phys_addr_t start, phys_addr_t end)
{
	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE);
}

static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
					phys_addr_t align, phys_addr_t max_addr,
					int nid)
{
	return memblock_alloc_range_nid(size, align, 0, max_addr, nid);
}

1065 1066 1067 1068 1069 1070 1071
phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
{
	return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
}

phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
{
1072
	return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE);
1073 1074
}

1075
phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
Y
Yinghai Lu 已提交
1076
{
1077 1078 1079 1080 1081 1082 1083 1084 1085
	phys_addr_t alloc;

	alloc = __memblock_alloc_base(size, align, max_addr);

	if (alloc == 0)
		panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
		      (unsigned long long) size, (unsigned long long) max_addr);

	return alloc;
Y
Yinghai Lu 已提交
1086 1087
}

1088
phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
Y
Yinghai Lu 已提交
1089
{
1090 1091
	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
}
Y
Yinghai Lu 已提交
1092

1093 1094 1095 1096 1097 1098
phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
{
	phys_addr_t res = memblock_alloc_nid(size, align, nid);

	if (res)
		return res;
1099
	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
Y
Yinghai Lu 已提交
1100 1101
}

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
/**
 * memblock_virt_alloc_internal - allocate boot memory block
 * @size: size of memory block to be allocated in bytes
 * @align: alignment of the region and block's size
 * @min_addr: the lower bound of the memory region to allocate (phys address)
 * @max_addr: the upper bound of the memory region to allocate (phys address)
 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 *
 * The @min_addr limit is dropped if it can not be satisfied and the allocation
 * will fall back to memory below @min_addr. Also, allocation may fall back
 * to any node in the system if the specified node can not
 * hold the requested memory.
 *
 * The allocation is performed from memory region limited by
 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
 *
 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
 *
 * The phys address of allocated boot memory block is converted to virtual and
 * allocated memory is reset to 0.
 *
 * In addition, function sets the min_count to 0 using kmemleak_alloc for
 * allocated boot memory block, so that it is never reported as leaks.
 *
 * RETURNS:
 * Virtual address of allocated memory block on success, NULL on failure.
 */
static void * __init memblock_virt_alloc_internal(
				phys_addr_t size, phys_addr_t align,
				phys_addr_t min_addr, phys_addr_t max_addr,
				int nid)
{
	phys_addr_t alloc;
	void *ptr;

1137 1138
	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
		nid = NUMA_NO_NODE;
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150

	/*
	 * Detect any accidental use of these APIs after slab is ready, as at
	 * this moment memblock may be deinitialized already and its
	 * internal data may be destroyed (after execution of free_all_bootmem)
	 */
	if (WARN_ON_ONCE(slab_is_available()))
		return kzalloc_node(size, GFP_NOWAIT, nid);

	if (!align)
		align = SMP_CACHE_BYTES;

1151 1152 1153
	if (max_addr > memblock.current_limit)
		max_addr = memblock.current_limit;

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
again:
	alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
					    nid);
	if (alloc)
		goto done;

	if (nid != NUMA_NO_NODE) {
		alloc = memblock_find_in_range_node(size, align, min_addr,
						    max_addr,  NUMA_NO_NODE);
		if (alloc)
			goto done;
	}

	if (min_addr) {
		min_addr = 0;
		goto again;
	} else {
		goto error;
	}

done:
	memblock_reserve(alloc, size);
	ptr = phys_to_virt(alloc);
	memset(ptr, 0, size);

	/*
	 * The min_count is set to 0 so that bootmem allocated blocks
	 * are never reported as leaks. This is because many of these blocks
	 * are only referred via the physical address which is not
	 * looked up by kmemleak.
	 */
	kmemleak_alloc(ptr, size, 0, 0);

	return ptr;

error:
	return NULL;
}

/**
 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
 * @size: size of memory block to be allocated in bytes
 * @align: alignment of the region and block's size
 * @min_addr: the lower bound of the memory region from where the allocation
 *	  is preferred (phys address)
 * @max_addr: the upper bound of the memory region from where the allocation
 *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
 *	      allocate only from memory limited by memblock.current_limit value
 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 *
 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
 * additional debug information (including caller info), if enabled.
 *
 * RETURNS:
 * Virtual address of allocated memory block on success, NULL on failure.
 */
void * __init memblock_virt_alloc_try_nid_nopanic(
				phys_addr_t size, phys_addr_t align,
				phys_addr_t min_addr, phys_addr_t max_addr,
				int nid)
{
	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
		     (u64)max_addr, (void *)_RET_IP_);
	return memblock_virt_alloc_internal(size, align, min_addr,
					     max_addr, nid);
}

/**
 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
 * @size: size of memory block to be allocated in bytes
 * @align: alignment of the region and block's size
 * @min_addr: the lower bound of the memory region from where the allocation
 *	  is preferred (phys address)
 * @max_addr: the upper bound of the memory region from where the allocation
 *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
 *	      allocate only from memory limited by memblock.current_limit value
 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 *
 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
 * which provides debug information (including caller info), if enabled,
 * and panics if the request can not be satisfied.
 *
 * RETURNS:
 * Virtual address of allocated memory block on success, NULL on failure.
 */
void * __init memblock_virt_alloc_try_nid(
			phys_addr_t size, phys_addr_t align,
			phys_addr_t min_addr, phys_addr_t max_addr,
			int nid)
{
	void *ptr;

	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
		     (u64)max_addr, (void *)_RET_IP_);
	ptr = memblock_virt_alloc_internal(size, align,
					   min_addr, max_addr, nid);
	if (ptr)
		return ptr;

	panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
	      __func__, (u64)size, (u64)align, nid, (u64)min_addr,
	      (u64)max_addr);
	return NULL;
}

/**
 * __memblock_free_early - free boot memory block
 * @base: phys starting address of the  boot memory block
 * @size: size of the boot memory block in bytes
 *
 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
 * The freeing memory will not be released to the buddy allocator.
 */
void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
{
	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
		     __func__, (u64)base, (u64)base + size - 1,
		     (void *)_RET_IP_);
	kmemleak_free_part(__va(base), size);
1275
	memblock_remove_range(&memblock.reserved, base, size);
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
}

/*
 * __memblock_free_late - free bootmem block pages directly to buddy allocator
 * @addr: phys starting address of the  boot memory block
 * @size: size of the boot memory block in bytes
 *
 * This is only useful when the bootmem allocator has already been torn
 * down, but we are still initializing the system.  Pages are released directly
 * to the buddy allocator, no bootmem metadata is updated because it is gone.
 */
void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
{
	u64 cursor, end;

	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
		     __func__, (u64)base, (u64)base + size - 1,
		     (void *)_RET_IP_);
	kmemleak_free_part(__va(base), size);
	cursor = PFN_UP(base);
	end = PFN_DOWN(base + size);

	for (; cursor < end; cursor++) {
		__free_pages_bootmem(pfn_to_page(cursor), 0);
		totalram_pages++;
	}
}
1303 1304 1305 1306 1307

/*
 * Remaining API functions
 */

1308
phys_addr_t __init memblock_phys_mem_size(void)
Y
Yinghai Lu 已提交
1309
{
1310
	return memblock.memory.total_size;
Y
Yinghai Lu 已提交
1311 1312
}

Y
Yinghai Lu 已提交
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
{
	unsigned long pages = 0;
	struct memblock_region *r;
	unsigned long start_pfn, end_pfn;

	for_each_memblock(memory, r) {
		start_pfn = memblock_region_memory_base_pfn(r);
		end_pfn = memblock_region_memory_end_pfn(r);
		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
		pages += end_pfn - start_pfn;
	}

F
Fabian Frederick 已提交
1327
	return PFN_PHYS(pages);
Y
Yinghai Lu 已提交
1328 1329
}

1330 1331 1332 1333 1334 1335
/* lowest address */
phys_addr_t __init_memblock memblock_start_of_DRAM(void)
{
	return memblock.memory.regions[0].base;
}

1336
phys_addr_t __init_memblock memblock_end_of_DRAM(void)
Y
Yinghai Lu 已提交
1337 1338 1339
{
	int idx = memblock.memory.cnt - 1;

1340
	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
Y
Yinghai Lu 已提交
1341 1342
}

1343
void __init memblock_enforce_memory_limit(phys_addr_t limit)
Y
Yinghai Lu 已提交
1344
{
1345
	phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
E
Emil Medve 已提交
1346
	struct memblock_region *r;
Y
Yinghai Lu 已提交
1347

1348
	if (!limit)
Y
Yinghai Lu 已提交
1349 1350
		return;

1351
	/* find out max address */
E
Emil Medve 已提交
1352
	for_each_memblock(memory, r) {
1353 1354 1355
		if (limit <= r->size) {
			max_addr = r->base + limit;
			break;
Y
Yinghai Lu 已提交
1356
		}
1357
		limit -= r->size;
Y
Yinghai Lu 已提交
1358
	}
1359 1360

	/* truncate both memory and reserved regions */
1361 1362 1363 1364
	memblock_remove_range(&memblock.memory, max_addr,
			      (phys_addr_t)ULLONG_MAX);
	memblock_remove_range(&memblock.reserved, max_addr,
			      (phys_addr_t)ULLONG_MAX);
Y
Yinghai Lu 已提交
1365 1366
}

1367
static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
{
	unsigned int left = 0, right = type->cnt;

	do {
		unsigned int mid = (right + left) / 2;

		if (addr < type->regions[mid].base)
			right = mid;
		else if (addr >= (type->regions[mid].base +
				  type->regions[mid].size))
			left = mid + 1;
		else
			return mid;
	} while (left < right);
	return -1;
}

1385
int __init memblock_is_reserved(phys_addr_t addr)
Y
Yinghai Lu 已提交
1386
{
1387 1388
	return memblock_search(&memblock.reserved, addr) != -1;
}
Y
Yinghai Lu 已提交
1389

1390
int __init_memblock memblock_is_memory(phys_addr_t addr)
1391 1392 1393 1394
{
	return memblock_search(&memblock.memory, addr) != -1;
}

1395 1396 1397 1398 1399
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
			 unsigned long *start_pfn, unsigned long *end_pfn)
{
	struct memblock_type *type = &memblock.memory;
F
Fabian Frederick 已提交
1400
	int mid = memblock_search(type, PFN_PHYS(pfn));
1401 1402 1403 1404

	if (mid == -1)
		return -1;

F
Fabian Frederick 已提交
1405 1406
	*start_pfn = PFN_DOWN(type->regions[mid].base);
	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1407 1408 1409 1410 1411

	return type->regions[mid].nid;
}
#endif

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
/**
 * memblock_is_region_memory - check if a region is a subset of memory
 * @base: base of region to check
 * @size: size of region to check
 *
 * Check if the region [@base, @base+@size) is a subset of a memory block.
 *
 * RETURNS:
 * 0 if false, non-zero if true
 */
1422
int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1423
{
1424
	int idx = memblock_search(&memblock.memory, base);
1425
	phys_addr_t end = base + memblock_cap_size(base, &size);
1426 1427 1428

	if (idx == -1)
		return 0;
1429 1430
	return memblock.memory.regions[idx].base <= base &&
		(memblock.memory.regions[idx].base +
1431
		 memblock.memory.regions[idx].size) >= end;
Y
Yinghai Lu 已提交
1432 1433
}

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
/**
 * memblock_is_region_reserved - check if a region intersects reserved memory
 * @base: base of region to check
 * @size: size of region to check
 *
 * Check if the region [@base, @base+@size) intersects a reserved memory block.
 *
 * RETURNS:
 * 0 if false, non-zero if true
 */
1444
int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
Y
Yinghai Lu 已提交
1445
{
1446
	memblock_cap_size(base, &size);
1447
	return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
Y
Yinghai Lu 已提交
1448 1449
}

1450 1451 1452
void __init_memblock memblock_trim_memory(phys_addr_t align)
{
	phys_addr_t start, end, orig_start, orig_end;
E
Emil Medve 已提交
1453
	struct memblock_region *r;
1454

E
Emil Medve 已提交
1455 1456 1457
	for_each_memblock(memory, r) {
		orig_start = r->base;
		orig_end = r->base + r->size;
1458 1459 1460 1461 1462 1463 1464
		start = round_up(orig_start, align);
		end = round_down(orig_end, align);

		if (start == orig_start && end == orig_end)
			continue;

		if (start < end) {
E
Emil Medve 已提交
1465 1466
			r->base = start;
			r->size = end - start;
1467
		} else {
E
Emil Medve 已提交
1468 1469 1470
			memblock_remove_region(&memblock.memory,
					       r - memblock.memory.regions);
			r--;
1471 1472 1473
		}
	}
}
1474

1475
void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1476 1477 1478 1479
{
	memblock.current_limit = limit;
}

1480 1481 1482 1483 1484
phys_addr_t __init_memblock memblock_get_current_limit(void)
{
	return memblock.current_limit;
}

T
Tejun Heo 已提交
1485
static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
1486 1487
{
	unsigned long long base, size;
1488
	unsigned long flags;
1489 1490
	int i;

T
Tejun Heo 已提交
1491
	pr_info(" %s.cnt  = 0x%lx\n", name, type->cnt);
1492

T
Tejun Heo 已提交
1493 1494 1495 1496 1497 1498
	for (i = 0; i < type->cnt; i++) {
		struct memblock_region *rgn = &type->regions[i];
		char nid_buf[32] = "";

		base = rgn->base;
		size = rgn->size;
1499
		flags = rgn->flags;
T
Tejun Heo 已提交
1500 1501 1502 1503 1504
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
				 memblock_get_region_node(rgn));
#endif
1505 1506
		pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n",
			name, i, base, base + size - 1, size, nid_buf, flags);
1507 1508 1509
	}
}

T
Tejun Heo 已提交
1510
void __init_memblock __memblock_dump_all(void)
1511 1512
{
	pr_info("MEMBLOCK configuration:\n");
1513 1514 1515
	pr_info(" memory size = %#llx reserved size = %#llx\n",
		(unsigned long long)memblock.memory.total_size,
		(unsigned long long)memblock.reserved.total_size);
1516 1517 1518 1519 1520

	memblock_dump(&memblock.memory, "memory");
	memblock_dump(&memblock.reserved, "reserved");
}

1521
void __init memblock_allow_resize(void)
1522
{
1523
	memblock_can_resize = 1;
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
}

static int __init early_memblock(char *p)
{
	if (p && strstr(p, "debug"))
		memblock_debug = 1;
	return 0;
}
early_param("memblock", early_memblock);

1534
#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576

static int memblock_debug_show(struct seq_file *m, void *private)
{
	struct memblock_type *type = m->private;
	struct memblock_region *reg;
	int i;

	for (i = 0; i < type->cnt; i++) {
		reg = &type->regions[i];
		seq_printf(m, "%4d: ", i);
		if (sizeof(phys_addr_t) == 4)
			seq_printf(m, "0x%08lx..0x%08lx\n",
				   (unsigned long)reg->base,
				   (unsigned long)(reg->base + reg->size - 1));
		else
			seq_printf(m, "0x%016llx..0x%016llx\n",
				   (unsigned long long)reg->base,
				   (unsigned long long)(reg->base + reg->size - 1));

	}
	return 0;
}

static int memblock_debug_open(struct inode *inode, struct file *file)
{
	return single_open(file, memblock_debug_show, inode->i_private);
}

static const struct file_operations memblock_debug_fops = {
	.open = memblock_debug_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int __init memblock_init_debugfs(void)
{
	struct dentry *root = debugfs_create_dir("memblock", NULL);
	if (!root)
		return -ENXIO;
	debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
	debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1577 1578 1579
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
	debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
#endif
1580 1581 1582 1583 1584 1585

	return 0;
}
__initcall(memblock_init_debugfs);

#endif /* CONFIG_DEBUG_FS */