memblock.c 42.9 KB
Newer Older
Y
Yinghai Lu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Procedures for maintaining information about logical memory blocks.
 *
 * Peter Bergner, IBM Corp.	June 2001.
 * Copyright (C) 2001 Peter Bergner.
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

#include <linux/kernel.h>
14
#include <linux/slab.h>
Y
Yinghai Lu 已提交
15 16
#include <linux/init.h>
#include <linux/bitops.h>
17
#include <linux/poison.h>
18
#include <linux/pfn.h>
19 20
#include <linux/debugfs.h>
#include <linux/seq_file.h>
Y
Yinghai Lu 已提交
21 22
#include <linux/memblock.h>

23
#include <asm-generic/sections.h>
24 25 26
#include <linux/io.h>

#include "internal.h"
27

T
Tejun Heo 已提交
28 29 30 31 32 33 34 35 36 37 38 39
static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;

struct memblock memblock __initdata_memblock = {
	.memory.regions		= memblock_memory_init_regions,
	.memory.cnt		= 1,	/* empty dummy entry */
	.memory.max		= INIT_MEMBLOCK_REGIONS,

	.reserved.regions	= memblock_reserved_init_regions,
	.reserved.cnt		= 1,	/* empty dummy entry */
	.reserved.max		= INIT_MEMBLOCK_REGIONS,

40
	.bottom_up		= false,
T
Tejun Heo 已提交
41 42
	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
};
Y
Yinghai Lu 已提交
43

44
int memblock_debug __initdata_memblock;
45 46 47
#ifdef CONFIG_MOVABLE_NODE
bool movable_node_enabled __initdata_memblock = false;
#endif
48
static int memblock_can_resize __initdata_memblock;
49 50
static int memblock_memory_in_slab __initdata_memblock = 0;
static int memblock_reserved_in_slab __initdata_memblock = 0;
Y
Yinghai Lu 已提交
51

52
/* inline so we don't get a warning when pr_debug is compiled out */
53 54
static __init_memblock const char *
memblock_type_name(struct memblock_type *type)
55 56 57 58 59 60 61 62 63
{
	if (type == &memblock.memory)
		return "memory";
	else if (type == &memblock.reserved)
		return "reserved";
	else
		return "unknown";
}

64 65 66 67 68 69
/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
{
	return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
}

70 71 72
/*
 * Address comparison utilities
 */
73
static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
74
				       phys_addr_t base2, phys_addr_t size2)
Y
Yinghai Lu 已提交
75 76 77 78
{
	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
}

79 80
static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
					phys_addr_t base, phys_addr_t size)
81 82 83 84 85 86 87 88 89 90 91 92 93
{
	unsigned long i;

	for (i = 0; i < type->cnt; i++) {
		phys_addr_t rgnbase = type->regions[i].base;
		phys_addr_t rgnsize = type->regions[i].size;
		if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
			break;
	}

	return (i < type->cnt) ? i : -1;
}

94 95 96 97 98 99
/*
 * __memblock_find_range_bottom_up - find free area utility in bottom-up
 * @start: start of candidate range
 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 * @size: size of free area to find
 * @align: alignment of free area to find
100
 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
 *
 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
 *
 * RETURNS:
 * Found address on success, 0 on failure.
 */
static phys_addr_t __init_memblock
__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
				phys_addr_t size, phys_addr_t align, int nid)
{
	phys_addr_t this_start, this_end, cand;
	u64 i;

	for_each_free_mem_range(i, nid, &this_start, &this_end, NULL) {
		this_start = clamp(this_start, start, end);
		this_end = clamp(this_end, start, end);

		cand = round_up(this_start, align);
		if (cand < this_end && this_end - cand >= size)
			return cand;
	}

	return 0;
}

126
/**
127
 * __memblock_find_range_top_down - find free area utility, in top-down
128 129 130 131
 * @start: start of candidate range
 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 * @size: size of free area to find
 * @align: alignment of free area to find
132
 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
133
 *
134
 * Utility called from memblock_find_in_range_node(), find free area top-down.
135 136
 *
 * RETURNS:
137
 * Found address on success, 0 on failure.
138
 */
139 140 141
static phys_addr_t __init_memblock
__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
			       phys_addr_t size, phys_addr_t align, int nid)
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
{
	phys_addr_t this_start, this_end, cand;
	u64 i;

	for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
		this_start = clamp(this_start, start, end);
		this_end = clamp(this_end, start, end);

		if (this_end < size)
			continue;

		cand = round_down(this_end - size, align);
		if (cand >= this_start)
			return cand;
	}
157

158 159
	return 0;
}
160

161 162 163 164
/**
 * memblock_find_in_range_node - find free area in given range and node
 * @size: size of free area to find
 * @align: alignment of free area to find
165 166
 * @start: start of candidate range
 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
167
 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
168 169 170
 *
 * Find @size free area aligned to @align in the specified range and node.
 *
171 172 173 174 175 176 177 178
 * When allocation direction is bottom-up, the @start should be greater
 * than the end of the kernel image. Otherwise, it will be trimmed. The
 * reason is that we want the bottom-up allocation just near the kernel
 * image so it is highly likely that the allocated memory and the kernel
 * will reside in the same node.
 *
 * If bottom-up allocation failed, will try to allocate memory top-down.
 *
179
 * RETURNS:
180
 * Found address on success, 0 on failure.
181
 */
182 183 184
phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
					phys_addr_t align, phys_addr_t start,
					phys_addr_t end, int nid)
185
{
186 187 188
	int ret;
	phys_addr_t kernel_end;

189 190 191 192 193 194 195
	/* pump up @end */
	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
		end = memblock.current_limit;

	/* avoid allocating the first page */
	start = max_t(phys_addr_t, start, PAGE_SIZE);
	end = max(start, end);
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
	kernel_end = __pa_symbol(_end);

	/*
	 * try bottom-up allocation only when bottom-up mode
	 * is set and @end is above the kernel image.
	 */
	if (memblock_bottom_up() && end > kernel_end) {
		phys_addr_t bottom_up_start;

		/* make sure we will allocate above the kernel */
		bottom_up_start = max(start, kernel_end);

		/* ok, try bottom-up allocation first */
		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
						      size, align, nid);
		if (ret)
			return ret;

		/*
		 * we always limit bottom-up allocation above the kernel,
		 * but top-down allocation doesn't have the limit, so
		 * retrying top-down allocation may succeed when bottom-up
		 * allocation failed.
		 *
		 * bottom-up allocation is expected to be fail very rarely,
		 * so we use WARN_ONCE() here to see the stack trace if
		 * fail happens.
		 */
		WARN_ONCE(1, "memblock: bottom-up allocation failed, "
			     "memory hotunplug may be affected\n");
	}
227 228 229 230

	return __memblock_find_range_top_down(start, end, size, align, nid);
}

231 232 233 234 235 236 237 238 239 240
/**
 * memblock_find_in_range - find free area in given range
 * @start: start of candidate range
 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 * @size: size of free area to find
 * @align: alignment of free area to find
 *
 * Find @size free area aligned to @align in the specified range.
 *
 * RETURNS:
241
 * Found address on success, 0 on failure.
242
 */
243 244 245
phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
					phys_addr_t end, phys_addr_t size,
					phys_addr_t align)
246
{
247
	return memblock_find_in_range_node(size, align, start, end,
248
					    NUMA_NO_NODE);
249 250
}

251
static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
Y
Yinghai Lu 已提交
252
{
253
	type->total_size -= type->regions[r].size;
T
Tejun Heo 已提交
254 255
	memmove(&type->regions[r], &type->regions[r + 1],
		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
256
	type->cnt--;
Y
Yinghai Lu 已提交
257

258 259
	/* Special case for empty arrays */
	if (type->cnt == 0) {
260
		WARN_ON(type->total_size != 0);
261 262 263
		type->cnt = 1;
		type->regions[0].base = 0;
		type->regions[0].size = 0;
264
		type->regions[0].flags = 0;
T
Tejun Heo 已提交
265
		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
266
	}
Y
Yinghai Lu 已提交
267 268
}

269 270
#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK

271 272 273 274 275 276 277 278 279 280 281 282
phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
					phys_addr_t *addr)
{
	if (memblock.reserved.regions == memblock_reserved_init_regions)
		return 0;

	*addr = __pa(memblock.reserved.regions);

	return PAGE_ALIGN(sizeof(struct memblock_region) *
			  memblock.reserved.max);
}

283 284 285 286 287 288 289 290 291 292 293 294 295 296
phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info(
					phys_addr_t *addr)
{
	if (memblock.memory.regions == memblock_memory_init_regions)
		return 0;

	*addr = __pa(memblock.memory.regions);

	return PAGE_ALIGN(sizeof(struct memblock_region) *
			  memblock.memory.max);
}

#endif

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
/**
 * memblock_double_array - double the size of the memblock regions array
 * @type: memblock type of the regions array being doubled
 * @new_area_start: starting address of memory range to avoid overlap with
 * @new_area_size: size of memory range to avoid overlap with
 *
 * Double the size of the @type regions array. If memblock is being used to
 * allocate memory for a new reserved regions array and there is a previously
 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
 * waiting to be reserved, ensure the memory used by the new array does
 * not overlap.
 *
 * RETURNS:
 * 0 on success, -1 on failure.
 */
static int __init_memblock memblock_double_array(struct memblock_type *type,
						phys_addr_t new_area_start,
						phys_addr_t new_area_size)
315 316
{
	struct memblock_region *new_array, *old_array;
317
	phys_addr_t old_alloc_size, new_alloc_size;
318 319
	phys_addr_t old_size, new_size, addr;
	int use_slab = slab_is_available();
320
	int *in_slab;
321 322 323 324 325 326 327 328 329 330

	/* We don't allow resizing until we know about the reserved regions
	 * of memory that aren't suitable for allocation
	 */
	if (!memblock_can_resize)
		return -1;

	/* Calculate new doubled size */
	old_size = type->max * sizeof(struct memblock_region);
	new_size = old_size << 1;
331 332 333 334 335 336
	/*
	 * We need to allocated new one align to PAGE_SIZE,
	 *   so we can free them completely later.
	 */
	old_alloc_size = PAGE_ALIGN(old_size);
	new_alloc_size = PAGE_ALIGN(new_size);
337

338 339 340 341 342 343
	/* Retrieve the slab flag */
	if (type == &memblock.memory)
		in_slab = &memblock_memory_in_slab;
	else
		in_slab = &memblock_reserved_in_slab;

344 345 346
	/* Try to find some space for it.
	 *
	 * WARNING: We assume that either slab_is_available() and we use it or
347 348 349
	 * we use MEMBLOCK for allocations. That means that this is unsafe to
	 * use when bootmem is currently active (unless bootmem itself is
	 * implemented on top of MEMBLOCK which isn't the case yet)
350 351
	 *
	 * This should however not be an issue for now, as we currently only
352 353
	 * call into MEMBLOCK while it's still active, or much later when slab
	 * is active for memory hotplug operations
354 355 356
	 */
	if (use_slab) {
		new_array = kmalloc(new_size, GFP_KERNEL);
T
Tejun Heo 已提交
357
		addr = new_array ? __pa(new_array) : 0;
358
	} else {
359 360 361 362 363 364
		/* only exclude range when trying to double reserved.regions */
		if (type != &memblock.reserved)
			new_area_start = new_area_size = 0;

		addr = memblock_find_in_range(new_area_start + new_area_size,
						memblock.current_limit,
365
						new_alloc_size, PAGE_SIZE);
366 367
		if (!addr && new_area_size)
			addr = memblock_find_in_range(0,
368 369
				min(new_area_start, memblock.current_limit),
				new_alloc_size, PAGE_SIZE);
370

371
		new_array = addr ? __va(addr) : NULL;
372
	}
T
Tejun Heo 已提交
373
	if (!addr) {
374 375 376 377 378
		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
		       memblock_type_name(type), type->max, type->max * 2);
		return -1;
	}

379 380 381
	memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
			memblock_type_name(type), type->max * 2, (u64)addr,
			(u64)addr + new_size - 1);
382

383 384 385 386
	/*
	 * Found space, we now need to move the array over before we add the
	 * reserved region since it may be our reserved array itself that is
	 * full.
387 388 389 390 391 392 393
	 */
	memcpy(new_array, type->regions, old_size);
	memset(new_array + type->max, 0, old_size);
	old_array = type->regions;
	type->regions = new_array;
	type->max <<= 1;

394
	/* Free old array. We needn't free it if the array is the static one */
395 396 397 398
	if (*in_slab)
		kfree(old_array);
	else if (old_array != memblock_memory_init_regions &&
		 old_array != memblock_reserved_init_regions)
399
		memblock_free(__pa(old_array), old_alloc_size);
400

401 402 403
	/*
	 * Reserve the new array if that comes from the memblock.  Otherwise, we
	 * needn't do it
404 405
	 */
	if (!use_slab)
406
		BUG_ON(memblock_reserve(addr, new_alloc_size));
407 408 409 410

	/* Update slab flag */
	*in_slab = use_slab;

411 412 413
	return 0;
}

414 415 416 417 418 419 420
/**
 * memblock_merge_regions - merge neighboring compatible regions
 * @type: memblock type to scan
 *
 * Scan @type and merge neighboring compatible regions.
 */
static void __init_memblock memblock_merge_regions(struct memblock_type *type)
Y
Yinghai Lu 已提交
421
{
422
	int i = 0;
Y
Yinghai Lu 已提交
423

424 425 426 427
	/* cnt never goes below 1 */
	while (i < type->cnt - 1) {
		struct memblock_region *this = &type->regions[i];
		struct memblock_region *next = &type->regions[i + 1];
Y
Yinghai Lu 已提交
428

T
Tejun Heo 已提交
429 430
		if (this->base + this->size != next->base ||
		    memblock_get_region_node(this) !=
431 432
		    memblock_get_region_node(next) ||
		    this->flags != next->flags) {
433 434 435
			BUG_ON(this->base + this->size > next->base);
			i++;
			continue;
436 437
		}

438
		this->size += next->size;
439 440
		/* move forward from next + 1, index of which is i + 2 */
		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
441
		type->cnt--;
Y
Yinghai Lu 已提交
442
	}
443
}
Y
Yinghai Lu 已提交
444

445 446
/**
 * memblock_insert_region - insert new memblock region
447 448 449 450 451
 * @type:	memblock type to insert into
 * @idx:	index for the insertion point
 * @base:	base address of the new region
 * @size:	size of the new region
 * @nid:	node id of the new region
452
 * @flags:	flags of the new region
453 454 455 456 457 458
 *
 * Insert new memblock region [@base,@base+@size) into @type at @idx.
 * @type must already have extra room to accomodate the new region.
 */
static void __init_memblock memblock_insert_region(struct memblock_type *type,
						   int idx, phys_addr_t base,
459 460
						   phys_addr_t size,
						   int nid, unsigned long flags)
461 462 463 464 465 466 467
{
	struct memblock_region *rgn = &type->regions[idx];

	BUG_ON(type->cnt >= type->max);
	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
	rgn->base = base;
	rgn->size = size;
468
	rgn->flags = flags;
T
Tejun Heo 已提交
469
	memblock_set_region_node(rgn, nid);
470
	type->cnt++;
471
	type->total_size += size;
472 473 474 475 476 477 478
}

/**
 * memblock_add_region - add new memblock region
 * @type: memblock type to add new region into
 * @base: base address of the new region
 * @size: size of the new region
479
 * @nid: nid of the new region
480
 * @flags: flags of the new region
481 482 483 484 485 486 487 488 489
 *
 * Add new memblock region [@base,@base+@size) into @type.  The new region
 * is allowed to overlap with existing ones - overlaps don't affect already
 * existing regions.  @type is guaranteed to be minimal (all neighbouring
 * compatible regions are merged) after the addition.
 *
 * RETURNS:
 * 0 on success, -errno on failure.
 */
490
static int __init_memblock memblock_add_region(struct memblock_type *type,
491 492
				phys_addr_t base, phys_addr_t size,
				int nid, unsigned long flags)
493 494
{
	bool insert = false;
495 496
	phys_addr_t obase = base;
	phys_addr_t end = base + memblock_cap_size(base, &size);
497 498
	int i, nr_new;

499 500 501
	if (!size)
		return 0;

502 503
	/* special case for empty array */
	if (type->regions[0].size == 0) {
504
		WARN_ON(type->cnt != 1 || type->total_size);
505 506
		type->regions[0].base = base;
		type->regions[0].size = size;
507
		type->regions[0].flags = flags;
508
		memblock_set_region_node(&type->regions[0], nid);
509
		type->total_size = size;
510
		return 0;
Y
Yinghai Lu 已提交
511
	}
512 513 514 515 516
repeat:
	/*
	 * The following is executed twice.  Once with %false @insert and
	 * then with %true.  The first counts the number of regions needed
	 * to accomodate the new area.  The second actually inserts them.
517
	 */
518 519
	base = obase;
	nr_new = 0;
Y
Yinghai Lu 已提交
520

521 522 523 524 525 526
	for (i = 0; i < type->cnt; i++) {
		struct memblock_region *rgn = &type->regions[i];
		phys_addr_t rbase = rgn->base;
		phys_addr_t rend = rbase + rgn->size;

		if (rbase >= end)
Y
Yinghai Lu 已提交
527
			break;
528 529 530 531 532 533 534 535 536 537
		if (rend <= base)
			continue;
		/*
		 * @rgn overlaps.  If it separates the lower part of new
		 * area, insert that portion.
		 */
		if (rbase > base) {
			nr_new++;
			if (insert)
				memblock_insert_region(type, i++, base,
538 539
						       rbase - base, nid,
						       flags);
Y
Yinghai Lu 已提交
540
		}
541 542
		/* area below @rend is dealt with, forget about it */
		base = min(rend, end);
Y
Yinghai Lu 已提交
543
	}
544 545 546 547 548

	/* insert the remaining portion */
	if (base < end) {
		nr_new++;
		if (insert)
549 550
			memblock_insert_region(type, i, base, end - base,
					       nid, flags);
Y
Yinghai Lu 已提交
551 552
	}

553 554 555
	/*
	 * If this was the first round, resize array and repeat for actual
	 * insertions; otherwise, merge and return.
556
	 */
557 558
	if (!insert) {
		while (type->cnt + nr_new > type->max)
559
			if (memblock_double_array(type, obase, size) < 0)
560 561 562 563 564 565
				return -ENOMEM;
		insert = true;
		goto repeat;
	} else {
		memblock_merge_regions(type);
		return 0;
566
	}
Y
Yinghai Lu 已提交
567 568
}

569 570 571
int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
				       int nid)
{
572
	return memblock_add_region(&memblock.memory, base, size, nid, 0);
573 574
}

575
int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
Y
Yinghai Lu 已提交
576
{
577 578
	return memblock_add_region(&memblock.memory, base, size,
				   MAX_NUMNODES, 0);
Y
Yinghai Lu 已提交
579 580
}

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
/**
 * memblock_isolate_range - isolate given range into disjoint memblocks
 * @type: memblock type to isolate range for
 * @base: base of range to isolate
 * @size: size of range to isolate
 * @start_rgn: out parameter for the start of isolated region
 * @end_rgn: out parameter for the end of isolated region
 *
 * Walk @type and ensure that regions don't cross the boundaries defined by
 * [@base,@base+@size).  Crossing regions are split at the boundaries,
 * which may create at most two more regions.  The index of the first
 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
 *
 * RETURNS:
 * 0 on success, -errno on failure.
 */
static int __init_memblock memblock_isolate_range(struct memblock_type *type,
					phys_addr_t base, phys_addr_t size,
					int *start_rgn, int *end_rgn)
{
601
	phys_addr_t end = base + memblock_cap_size(base, &size);
602 603 604 605
	int i;

	*start_rgn = *end_rgn = 0;

606 607 608
	if (!size)
		return 0;

609 610
	/* we'll create at most two more regions */
	while (type->cnt + 2 > type->max)
611
		if (memblock_double_array(type, base, size) < 0)
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
			return -ENOMEM;

	for (i = 0; i < type->cnt; i++) {
		struct memblock_region *rgn = &type->regions[i];
		phys_addr_t rbase = rgn->base;
		phys_addr_t rend = rbase + rgn->size;

		if (rbase >= end)
			break;
		if (rend <= base)
			continue;

		if (rbase < base) {
			/*
			 * @rgn intersects from below.  Split and continue
			 * to process the next region - the new top half.
			 */
			rgn->base = base;
630 631
			rgn->size -= base - rbase;
			type->total_size -= base - rbase;
632
			memblock_insert_region(type, i, rbase, base - rbase,
633 634
					       memblock_get_region_node(rgn),
					       rgn->flags);
635 636 637 638 639 640
		} else if (rend > end) {
			/*
			 * @rgn intersects from above.  Split and redo the
			 * current region - the new bottom half.
			 */
			rgn->base = end;
641 642
			rgn->size -= end - rbase;
			type->total_size -= end - rbase;
643
			memblock_insert_region(type, i--, rbase, end - rbase,
644 645
					       memblock_get_region_node(rgn),
					       rgn->flags);
646 647 648 649 650 651 652 653 654 655 656
		} else {
			/* @rgn is fully contained, record it */
			if (!*end_rgn)
				*start_rgn = i;
			*end_rgn = i + 1;
		}
	}

	return 0;
}

657 658
static int __init_memblock __memblock_remove(struct memblock_type *type,
					     phys_addr_t base, phys_addr_t size)
Y
Yinghai Lu 已提交
659
{
660 661
	int start_rgn, end_rgn;
	int i, ret;
Y
Yinghai Lu 已提交
662

663 664 665
	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
	if (ret)
		return ret;
Y
Yinghai Lu 已提交
666

667 668
	for (i = end_rgn - 1; i >= start_rgn; i--)
		memblock_remove_region(type, i);
669
	return 0;
Y
Yinghai Lu 已提交
670 671
}

672
int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
Y
Yinghai Lu 已提交
673 674 675 676
{
	return __memblock_remove(&memblock.memory, base, size);
}

677
int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
Y
Yinghai Lu 已提交
678
{
679
	memblock_dbg("   memblock_free: [%#016llx-%#016llx] %pF\n",
680
		     (unsigned long long)base,
681
		     (unsigned long long)base + size - 1,
682
		     (void *)_RET_IP_);
683

Y
Yinghai Lu 已提交
684 685 686
	return __memblock_remove(&memblock.reserved, base, size);
}

687 688 689 690
static int __init_memblock memblock_reserve_region(phys_addr_t base,
						   phys_addr_t size,
						   int nid,
						   unsigned long flags)
Y
Yinghai Lu 已提交
691
{
692
	struct memblock_type *_rgn = &memblock.reserved;
Y
Yinghai Lu 已提交
693

694
	memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
695
		     (unsigned long long)base,
696
		     (unsigned long long)base + size - 1,
697 698 699 700
		     flags, (void *)_RET_IP_);

	return memblock_add_region(_rgn, base, size, nid, flags);
}
Y
Yinghai Lu 已提交
701

702 703 704
int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
{
	return memblock_reserve_region(base, size, MAX_NUMNODES, 0);
Y
Yinghai Lu 已提交
705 706
}

707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
/**
 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
 * @base: the base phys addr of the region
 * @size: the size of the region
 *
 * This function isolates region [@base, @base + @size), and mark it with flag
 * MEMBLOCK_HOTPLUG.
 *
 * Return 0 on succees, -errno on failure.
 */
int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
{
	struct memblock_type *type = &memblock.memory;
	int i, ret, start_rgn, end_rgn;

	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
	if (ret)
		return ret;

	for (i = start_rgn; i < end_rgn; i++)
		memblock_set_region_flags(&type->regions[i], MEMBLOCK_HOTPLUG);

	memblock_merge_regions(type);
	return 0;
}

/**
 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
 * @base: the base phys addr of the region
 * @size: the size of the region
 *
 * This function isolates region [@base, @base + @size), and clear flag
 * MEMBLOCK_HOTPLUG for the isolated regions.
 *
 * Return 0 on succees, -errno on failure.
 */
int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
{
	struct memblock_type *type = &memblock.memory;
	int i, ret, start_rgn, end_rgn;

	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
	if (ret)
		return ret;

	for (i = start_rgn; i < end_rgn; i++)
		memblock_clear_region_flags(&type->regions[i],
					    MEMBLOCK_HOTPLUG);

	memblock_merge_regions(type);
	return 0;
}

760 761 762
/**
 * __next_free_mem_range - next function for for_each_free_mem_range()
 * @idx: pointer to u64 loop variable
763
 * @nid: node selector, %NUMA_NO_NODE for all nodes
W
Wanpeng Li 已提交
764 765 766
 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
 * @out_nid: ptr to int for nid of the range, can be %NULL
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
 *
 * Find the first free area from *@idx which matches @nid, fill the out
 * parameters, and update *@idx for the next iteration.  The lower 32bit of
 * *@idx contains index into memory region and the upper 32bit indexes the
 * areas before each reserved region.  For example, if reserved regions
 * look like the following,
 *
 *	0:[0-16), 1:[32-48), 2:[128-130)
 *
 * The upper 32bit indexes the following regions.
 *
 *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
 *
 * As both region arrays are sorted, the function advances the two indices
 * in lockstep and returns each intersection.
 */
void __init_memblock __next_free_mem_range(u64 *idx, int nid,
					   phys_addr_t *out_start,
					   phys_addr_t *out_end, int *out_nid)
{
	struct memblock_type *mem = &memblock.memory;
	struct memblock_type *rsv = &memblock.reserved;
	int mi = *idx & 0xffffffff;
	int ri = *idx >> 32;
791

792 793
	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
		nid = NUMA_NO_NODE;
794 795 796 797 798 799 800

	for ( ; mi < mem->cnt; mi++) {
		struct memblock_region *m = &mem->regions[mi];
		phys_addr_t m_start = m->base;
		phys_addr_t m_end = m->base + m->size;

		/* only memory regions are associated with nodes, check it */
801
		if (nid != NUMA_NO_NODE && nid != memblock_get_region_node(m))
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
			continue;

		/* scan areas before each reservation for intersection */
		for ( ; ri < rsv->cnt + 1; ri++) {
			struct memblock_region *r = &rsv->regions[ri];
			phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
			phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;

			/* if ri advanced past mi, break out to advance mi */
			if (r_start >= m_end)
				break;
			/* if the two regions intersect, we're done */
			if (m_start < r_end) {
				if (out_start)
					*out_start = max(m_start, r_start);
				if (out_end)
					*out_end = min(m_end, r_end);
				if (out_nid)
					*out_nid = memblock_get_region_node(m);
				/*
				 * The region which ends first is advanced
				 * for the next iteration.
				 */
				if (m_end <= r_end)
					mi++;
				else
					ri++;
				*idx = (u32)mi | (u64)ri << 32;
				return;
			}
		}
	}

	/* signal end of iteration */
	*idx = ULLONG_MAX;
}

839 840 841
/**
 * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse()
 * @idx: pointer to u64 loop variable
842
 * @nid: nid: node selector, %NUMA_NO_NODE for all nodes
W
Wanpeng Li 已提交
843 844 845
 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
 * @out_nid: ptr to int for nid of the range, can be %NULL
846 847
 *
 * Reverse of __next_free_mem_range().
848 849 850 851 852
 *
 * Linux kernel cannot migrate pages used by itself. Memory hotplug users won't
 * be able to hot-remove hotpluggable memory used by the kernel. So this
 * function skip hotpluggable regions if needed when allocating memory for the
 * kernel.
853 854 855 856 857 858 859 860 861
 */
void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid,
					   phys_addr_t *out_start,
					   phys_addr_t *out_end, int *out_nid)
{
	struct memblock_type *mem = &memblock.memory;
	struct memblock_type *rsv = &memblock.reserved;
	int mi = *idx & 0xffffffff;
	int ri = *idx >> 32;
862

863 864
	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
		nid = NUMA_NO_NODE;
865 866 867 868 869 870 871 872 873 874 875 876

	if (*idx == (u64)ULLONG_MAX) {
		mi = mem->cnt - 1;
		ri = rsv->cnt;
	}

	for ( ; mi >= 0; mi--) {
		struct memblock_region *m = &mem->regions[mi];
		phys_addr_t m_start = m->base;
		phys_addr_t m_end = m->base + m->size;

		/* only memory regions are associated with nodes, check it */
877
		if (nid != NUMA_NO_NODE && nid != memblock_get_region_node(m))
878 879
			continue;

880 881 882 883
		/* skip hotpluggable memory regions if needed */
		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
			continue;

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
		/* scan areas before each reservation for intersection */
		for ( ; ri >= 0; ri--) {
			struct memblock_region *r = &rsv->regions[ri];
			phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
			phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;

			/* if ri advanced past mi, break out to advance mi */
			if (r_end <= m_start)
				break;
			/* if the two regions intersect, we're done */
			if (m_end > r_start) {
				if (out_start)
					*out_start = max(m_start, r_start);
				if (out_end)
					*out_end = min(m_end, r_end);
				if (out_nid)
					*out_nid = memblock_get_region_node(m);

				if (m_start >= r_start)
					mi--;
				else
					ri--;
				*idx = (u32)mi | (u64)ri << 32;
				return;
			}
		}
	}

	*idx = ULLONG_MAX;
}

T
Tejun Heo 已提交
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
/*
 * Common iterator interface used to define for_each_mem_range().
 */
void __init_memblock __next_mem_pfn_range(int *idx, int nid,
				unsigned long *out_start_pfn,
				unsigned long *out_end_pfn, int *out_nid)
{
	struct memblock_type *type = &memblock.memory;
	struct memblock_region *r;

	while (++*idx < type->cnt) {
		r = &type->regions[*idx];

		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
			continue;
		if (nid == MAX_NUMNODES || nid == r->nid)
			break;
	}
	if (*idx >= type->cnt) {
		*idx = -1;
		return;
	}

	if (out_start_pfn)
		*out_start_pfn = PFN_UP(r->base);
	if (out_end_pfn)
		*out_end_pfn = PFN_DOWN(r->base + r->size);
	if (out_nid)
		*out_nid = r->nid;
}

/**
 * memblock_set_node - set node ID on memblock regions
 * @base: base of area to set node ID for
 * @size: size of area to set node ID for
951
 * @type: memblock type to set node ID for
T
Tejun Heo 已提交
952 953
 * @nid: node ID to set
 *
954
 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
T
Tejun Heo 已提交
955 956 957 958 959 960
 * Regions which cross the area boundaries are split as necessary.
 *
 * RETURNS:
 * 0 on success, -errno on failure.
 */
int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
961
				      struct memblock_type *type, int nid)
T
Tejun Heo 已提交
962
{
963 964
	int start_rgn, end_rgn;
	int i, ret;
T
Tejun Heo 已提交
965

966 967 968
	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
	if (ret)
		return ret;
T
Tejun Heo 已提交
969

970
	for (i = start_rgn; i < end_rgn; i++)
971
		memblock_set_region_node(&type->regions[i], nid);
T
Tejun Heo 已提交
972 973 974 975 976 977

	memblock_merge_regions(type);
	return 0;
}
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */

978 979 980
static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
					phys_addr_t align, phys_addr_t max_addr,
					int nid)
Y
Yinghai Lu 已提交
981
{
982
	phys_addr_t found;
Y
Yinghai Lu 已提交
983

984 985
	if (!align)
		align = SMP_CACHE_BYTES;
986

987
	found = memblock_find_in_range_node(size, align, 0, max_addr, nid);
988
	if (found && !memblock_reserve(found, size))
989
		return found;
Y
Yinghai Lu 已提交
990

991
	return 0;
Y
Yinghai Lu 已提交
992 993
}

994 995 996 997 998 999 1000
phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
{
	return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
}

phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
{
1001
	return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE);
1002 1003
}

1004
phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
Y
Yinghai Lu 已提交
1005
{
1006 1007 1008 1009 1010 1011 1012 1013 1014
	phys_addr_t alloc;

	alloc = __memblock_alloc_base(size, align, max_addr);

	if (alloc == 0)
		panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
		      (unsigned long long) size, (unsigned long long) max_addr);

	return alloc;
Y
Yinghai Lu 已提交
1015 1016
}

1017
phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
Y
Yinghai Lu 已提交
1018
{
1019 1020
	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
}
Y
Yinghai Lu 已提交
1021

1022 1023 1024 1025 1026 1027
phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
{
	phys_addr_t res = memblock_alloc_nid(size, align, nid);

	if (res)
		return res;
1028
	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
Y
Yinghai Lu 已提交
1029 1030
}

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
/**
 * memblock_virt_alloc_internal - allocate boot memory block
 * @size: size of memory block to be allocated in bytes
 * @align: alignment of the region and block's size
 * @min_addr: the lower bound of the memory region to allocate (phys address)
 * @max_addr: the upper bound of the memory region to allocate (phys address)
 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 *
 * The @min_addr limit is dropped if it can not be satisfied and the allocation
 * will fall back to memory below @min_addr. Also, allocation may fall back
 * to any node in the system if the specified node can not
 * hold the requested memory.
 *
 * The allocation is performed from memory region limited by
 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
 *
 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
 *
 * The phys address of allocated boot memory block is converted to virtual and
 * allocated memory is reset to 0.
 *
 * In addition, function sets the min_count to 0 using kmemleak_alloc for
 * allocated boot memory block, so that it is never reported as leaks.
 *
 * RETURNS:
 * Virtual address of allocated memory block on success, NULL on failure.
 */
static void * __init memblock_virt_alloc_internal(
				phys_addr_t size, phys_addr_t align,
				phys_addr_t min_addr, phys_addr_t max_addr,
				int nid)
{
	phys_addr_t alloc;
	void *ptr;

1066 1067
	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
		nid = NUMA_NO_NODE;
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079

	/*
	 * Detect any accidental use of these APIs after slab is ready, as at
	 * this moment memblock may be deinitialized already and its
	 * internal data may be destroyed (after execution of free_all_bootmem)
	 */
	if (WARN_ON_ONCE(slab_is_available()))
		return kzalloc_node(size, GFP_NOWAIT, nid);

	if (!align)
		align = SMP_CACHE_BYTES;

1080 1081 1082
	if (max_addr > memblock.current_limit)
		max_addr = memblock.current_limit;

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
again:
	alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
					    nid);
	if (alloc)
		goto done;

	if (nid != NUMA_NO_NODE) {
		alloc = memblock_find_in_range_node(size, align, min_addr,
						    max_addr,  NUMA_NO_NODE);
		if (alloc)
			goto done;
	}

	if (min_addr) {
		min_addr = 0;
		goto again;
	} else {
		goto error;
	}

done:
	memblock_reserve(alloc, size);
	ptr = phys_to_virt(alloc);
	memset(ptr, 0, size);

	/*
	 * The min_count is set to 0 so that bootmem allocated blocks
	 * are never reported as leaks. This is because many of these blocks
	 * are only referred via the physical address which is not
	 * looked up by kmemleak.
	 */
	kmemleak_alloc(ptr, size, 0, 0);

	return ptr;

error:
	return NULL;
}

/**
 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
 * @size: size of memory block to be allocated in bytes
 * @align: alignment of the region and block's size
 * @min_addr: the lower bound of the memory region from where the allocation
 *	  is preferred (phys address)
 * @max_addr: the upper bound of the memory region from where the allocation
 *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
 *	      allocate only from memory limited by memblock.current_limit value
 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 *
 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
 * additional debug information (including caller info), if enabled.
 *
 * RETURNS:
 * Virtual address of allocated memory block on success, NULL on failure.
 */
void * __init memblock_virt_alloc_try_nid_nopanic(
				phys_addr_t size, phys_addr_t align,
				phys_addr_t min_addr, phys_addr_t max_addr,
				int nid)
{
	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
		     (u64)max_addr, (void *)_RET_IP_);
	return memblock_virt_alloc_internal(size, align, min_addr,
					     max_addr, nid);
}

/**
 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
 * @size: size of memory block to be allocated in bytes
 * @align: alignment of the region and block's size
 * @min_addr: the lower bound of the memory region from where the allocation
 *	  is preferred (phys address)
 * @max_addr: the upper bound of the memory region from where the allocation
 *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
 *	      allocate only from memory limited by memblock.current_limit value
 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 *
 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
 * which provides debug information (including caller info), if enabled,
 * and panics if the request can not be satisfied.
 *
 * RETURNS:
 * Virtual address of allocated memory block on success, NULL on failure.
 */
void * __init memblock_virt_alloc_try_nid(
			phys_addr_t size, phys_addr_t align,
			phys_addr_t min_addr, phys_addr_t max_addr,
			int nid)
{
	void *ptr;

	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
		     (u64)max_addr, (void *)_RET_IP_);
	ptr = memblock_virt_alloc_internal(size, align,
					   min_addr, max_addr, nid);
	if (ptr)
		return ptr;

	panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
	      __func__, (u64)size, (u64)align, nid, (u64)min_addr,
	      (u64)max_addr);
	return NULL;
}

/**
 * __memblock_free_early - free boot memory block
 * @base: phys starting address of the  boot memory block
 * @size: size of the boot memory block in bytes
 *
 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
 * The freeing memory will not be released to the buddy allocator.
 */
void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
{
	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
		     __func__, (u64)base, (u64)base + size - 1,
		     (void *)_RET_IP_);
	kmemleak_free_part(__va(base), size);
	__memblock_remove(&memblock.reserved, base, size);
}

/*
 * __memblock_free_late - free bootmem block pages directly to buddy allocator
 * @addr: phys starting address of the  boot memory block
 * @size: size of the boot memory block in bytes
 *
 * This is only useful when the bootmem allocator has already been torn
 * down, but we are still initializing the system.  Pages are released directly
 * to the buddy allocator, no bootmem metadata is updated because it is gone.
 */
void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
{
	u64 cursor, end;

	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
		     __func__, (u64)base, (u64)base + size - 1,
		     (void *)_RET_IP_);
	kmemleak_free_part(__va(base), size);
	cursor = PFN_UP(base);
	end = PFN_DOWN(base + size);

	for (; cursor < end; cursor++) {
		__free_pages_bootmem(pfn_to_page(cursor), 0);
		totalram_pages++;
	}
}
1232 1233 1234 1235 1236

/*
 * Remaining API functions
 */

1237
phys_addr_t __init memblock_phys_mem_size(void)
Y
Yinghai Lu 已提交
1238
{
1239
	return memblock.memory.total_size;
Y
Yinghai Lu 已提交
1240 1241
}

Y
Yinghai Lu 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
{
	unsigned long pages = 0;
	struct memblock_region *r;
	unsigned long start_pfn, end_pfn;

	for_each_memblock(memory, r) {
		start_pfn = memblock_region_memory_base_pfn(r);
		end_pfn = memblock_region_memory_end_pfn(r);
		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
		pages += end_pfn - start_pfn;
	}

F
Fabian Frederick 已提交
1256
	return PFN_PHYS(pages);
Y
Yinghai Lu 已提交
1257 1258
}

1259 1260 1261 1262 1263 1264
/* lowest address */
phys_addr_t __init_memblock memblock_start_of_DRAM(void)
{
	return memblock.memory.regions[0].base;
}

1265
phys_addr_t __init_memblock memblock_end_of_DRAM(void)
Y
Yinghai Lu 已提交
1266 1267 1268
{
	int idx = memblock.memory.cnt - 1;

1269
	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
Y
Yinghai Lu 已提交
1270 1271
}

1272
void __init memblock_enforce_memory_limit(phys_addr_t limit)
Y
Yinghai Lu 已提交
1273
{
1274
	phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
E
Emil Medve 已提交
1275
	struct memblock_region *r;
Y
Yinghai Lu 已提交
1276

1277
	if (!limit)
Y
Yinghai Lu 已提交
1278 1279
		return;

1280
	/* find out max address */
E
Emil Medve 已提交
1281
	for_each_memblock(memory, r) {
1282 1283 1284
		if (limit <= r->size) {
			max_addr = r->base + limit;
			break;
Y
Yinghai Lu 已提交
1285
		}
1286
		limit -= r->size;
Y
Yinghai Lu 已提交
1287
	}
1288 1289 1290 1291

	/* truncate both memory and reserved regions */
	__memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX);
	__memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX);
Y
Yinghai Lu 已提交
1292 1293
}

1294
static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
{
	unsigned int left = 0, right = type->cnt;

	do {
		unsigned int mid = (right + left) / 2;

		if (addr < type->regions[mid].base)
			right = mid;
		else if (addr >= (type->regions[mid].base +
				  type->regions[mid].size))
			left = mid + 1;
		else
			return mid;
	} while (left < right);
	return -1;
}

1312
int __init memblock_is_reserved(phys_addr_t addr)
Y
Yinghai Lu 已提交
1313
{
1314 1315
	return memblock_search(&memblock.reserved, addr) != -1;
}
Y
Yinghai Lu 已提交
1316

1317
int __init_memblock memblock_is_memory(phys_addr_t addr)
1318 1319 1320 1321
{
	return memblock_search(&memblock.memory, addr) != -1;
}

1322 1323 1324 1325 1326
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
			 unsigned long *start_pfn, unsigned long *end_pfn)
{
	struct memblock_type *type = &memblock.memory;
F
Fabian Frederick 已提交
1327
	int mid = memblock_search(type, PFN_PHYS(pfn));
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339

	if (mid == -1)
		return -1;

	*start_pfn = type->regions[mid].base >> PAGE_SHIFT;
	*end_pfn = (type->regions[mid].base + type->regions[mid].size)
			>> PAGE_SHIFT;

	return type->regions[mid].nid;
}
#endif

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
/**
 * memblock_is_region_memory - check if a region is a subset of memory
 * @base: base of region to check
 * @size: size of region to check
 *
 * Check if the region [@base, @base+@size) is a subset of a memory block.
 *
 * RETURNS:
 * 0 if false, non-zero if true
 */
1350
int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1351
{
1352
	int idx = memblock_search(&memblock.memory, base);
1353
	phys_addr_t end = base + memblock_cap_size(base, &size);
1354 1355 1356

	if (idx == -1)
		return 0;
1357 1358
	return memblock.memory.regions[idx].base <= base &&
		(memblock.memory.regions[idx].base +
1359
		 memblock.memory.regions[idx].size) >= end;
Y
Yinghai Lu 已提交
1360 1361
}

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
/**
 * memblock_is_region_reserved - check if a region intersects reserved memory
 * @base: base of region to check
 * @size: size of region to check
 *
 * Check if the region [@base, @base+@size) intersects a reserved memory block.
 *
 * RETURNS:
 * 0 if false, non-zero if true
 */
1372
int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
Y
Yinghai Lu 已提交
1373
{
1374
	memblock_cap_size(base, &size);
1375
	return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
Y
Yinghai Lu 已提交
1376 1377
}

1378 1379 1380
void __init_memblock memblock_trim_memory(phys_addr_t align)
{
	phys_addr_t start, end, orig_start, orig_end;
E
Emil Medve 已提交
1381
	struct memblock_region *r;
1382

E
Emil Medve 已提交
1383 1384 1385
	for_each_memblock(memory, r) {
		orig_start = r->base;
		orig_end = r->base + r->size;
1386 1387 1388 1389 1390 1391 1392
		start = round_up(orig_start, align);
		end = round_down(orig_end, align);

		if (start == orig_start && end == orig_end)
			continue;

		if (start < end) {
E
Emil Medve 已提交
1393 1394
			r->base = start;
			r->size = end - start;
1395
		} else {
E
Emil Medve 已提交
1396 1397 1398
			memblock_remove_region(&memblock.memory,
					       r - memblock.memory.regions);
			r--;
1399 1400 1401
		}
	}
}
1402

1403
void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1404 1405 1406 1407
{
	memblock.current_limit = limit;
}

1408 1409 1410 1411 1412
phys_addr_t __init_memblock memblock_get_current_limit(void)
{
	return memblock.current_limit;
}

T
Tejun Heo 已提交
1413
static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
1414 1415
{
	unsigned long long base, size;
1416
	unsigned long flags;
1417 1418
	int i;

T
Tejun Heo 已提交
1419
	pr_info(" %s.cnt  = 0x%lx\n", name, type->cnt);
1420

T
Tejun Heo 已提交
1421 1422 1423 1424 1425 1426
	for (i = 0; i < type->cnt; i++) {
		struct memblock_region *rgn = &type->regions[i];
		char nid_buf[32] = "";

		base = rgn->base;
		size = rgn->size;
1427
		flags = rgn->flags;
T
Tejun Heo 已提交
1428 1429 1430 1431 1432
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
				 memblock_get_region_node(rgn));
#endif
1433 1434
		pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n",
			name, i, base, base + size - 1, size, nid_buf, flags);
1435 1436 1437
	}
}

T
Tejun Heo 已提交
1438
void __init_memblock __memblock_dump_all(void)
1439 1440
{
	pr_info("MEMBLOCK configuration:\n");
1441 1442 1443
	pr_info(" memory size = %#llx reserved size = %#llx\n",
		(unsigned long long)memblock.memory.total_size,
		(unsigned long long)memblock.reserved.total_size);
1444 1445 1446 1447 1448

	memblock_dump(&memblock.memory, "memory");
	memblock_dump(&memblock.reserved, "reserved");
}

1449
void __init memblock_allow_resize(void)
1450
{
1451
	memblock_can_resize = 1;
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
}

static int __init early_memblock(char *p)
{
	if (p && strstr(p, "debug"))
		memblock_debug = 1;
	return 0;
}
early_param("memblock", early_memblock);

1462
#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510

static int memblock_debug_show(struct seq_file *m, void *private)
{
	struct memblock_type *type = m->private;
	struct memblock_region *reg;
	int i;

	for (i = 0; i < type->cnt; i++) {
		reg = &type->regions[i];
		seq_printf(m, "%4d: ", i);
		if (sizeof(phys_addr_t) == 4)
			seq_printf(m, "0x%08lx..0x%08lx\n",
				   (unsigned long)reg->base,
				   (unsigned long)(reg->base + reg->size - 1));
		else
			seq_printf(m, "0x%016llx..0x%016llx\n",
				   (unsigned long long)reg->base,
				   (unsigned long long)(reg->base + reg->size - 1));

	}
	return 0;
}

static int memblock_debug_open(struct inode *inode, struct file *file)
{
	return single_open(file, memblock_debug_show, inode->i_private);
}

static const struct file_operations memblock_debug_fops = {
	.open = memblock_debug_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int __init memblock_init_debugfs(void)
{
	struct dentry *root = debugfs_create_dir("memblock", NULL);
	if (!root)
		return -ENXIO;
	debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
	debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);

	return 0;
}
__initcall(memblock_init_debugfs);

#endif /* CONFIG_DEBUG_FS */