kvm-s390.c 66.3 KB
Newer Older
1
/*
2
 * hosting zSeries kernel virtual machines
3
 *
4
 * Copyright IBM Corp. 2008, 2009
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License (version 2 only)
 * as published by the Free Software Foundation.
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 *               Christian Borntraeger <borntraeger@de.ibm.com>
 *               Heiko Carstens <heiko.carstens@de.ibm.com>
13
 *               Christian Ehrhardt <ehrhardt@de.ibm.com>
14
 *               Jason J. Herne <jjherne@us.ibm.com>
15 16 17 18 19
 */

#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/fs.h>
20
#include <linux/hrtimer.h>
21 22 23 24
#include <linux/init.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
25
#include <linux/random.h>
26
#include <linux/slab.h>
27
#include <linux/timer.h>
28
#include <linux/vmalloc.h>
29
#include <asm/asm-offsets.h>
30 31
#include <asm/lowcore.h>
#include <asm/pgtable.h>
32
#include <asm/nmi.h>
33
#include <asm/switch_to.h>
34
#include <asm/isc.h>
35
#include <asm/sclp.h>
36
#include "kvm-s390.h"
37 38
#include "gaccess.h"

39 40 41 42
#define KMSG_COMPONENT "kvm-s390"
#undef pr_fmt
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt

43 44
#define CREATE_TRACE_POINTS
#include "trace.h"
45
#include "trace-s390.h"
46

47
#define MEM_OP_MAX_SIZE 65536	/* Maximum transfer size for KVM_S390_MEM_OP */
48 49 50
#define LOCAL_IRQS 32
#define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
			   (KVM_MAX_VCPUS + LOCAL_IRQS))
51

52 53 54 55
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU

struct kvm_stats_debugfs_item debugfs_entries[] = {
	{ "userspace_handled", VCPU_STAT(exit_userspace) },
56
	{ "exit_null", VCPU_STAT(exit_null) },
57 58 59 60
	{ "exit_validity", VCPU_STAT(exit_validity) },
	{ "exit_stop_request", VCPU_STAT(exit_stop_request) },
	{ "exit_external_request", VCPU_STAT(exit_external_request) },
	{ "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
61 62 63
	{ "exit_instruction", VCPU_STAT(exit_instruction) },
	{ "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
	{ "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
64
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
65
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
66
	{ "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
67
	{ "instruction_lctl", VCPU_STAT(instruction_lctl) },
68 69
	{ "instruction_stctl", VCPU_STAT(instruction_stctl) },
	{ "instruction_stctg", VCPU_STAT(instruction_stctg) },
70
	{ "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
71
	{ "deliver_external_call", VCPU_STAT(deliver_external_call) },
72 73 74 75 76 77 78
	{ "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
	{ "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
	{ "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
	{ "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
	{ "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
	{ "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
	{ "exit_wait_state", VCPU_STAT(exit_wait_state) },
79
	{ "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
80 81 82 83 84
	{ "instruction_stidp", VCPU_STAT(instruction_stidp) },
	{ "instruction_spx", VCPU_STAT(instruction_spx) },
	{ "instruction_stpx", VCPU_STAT(instruction_stpx) },
	{ "instruction_stap", VCPU_STAT(instruction_stap) },
	{ "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
85
	{ "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
86 87
	{ "instruction_stsch", VCPU_STAT(instruction_stsch) },
	{ "instruction_chsc", VCPU_STAT(instruction_chsc) },
88
	{ "instruction_essa", VCPU_STAT(instruction_essa) },
89 90
	{ "instruction_stsi", VCPU_STAT(instruction_stsi) },
	{ "instruction_stfl", VCPU_STAT(instruction_stfl) },
91
	{ "instruction_tprot", VCPU_STAT(instruction_tprot) },
92
	{ "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
93
	{ "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
94
	{ "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
95
	{ "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
96 97
	{ "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
	{ "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
98
	{ "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
99 100
	{ "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
	{ "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
101
	{ "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
102 103 104
	{ "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
	{ "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
	{ "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
105 106 107
	{ "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
	{ "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
	{ "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
108
	{ "diagnose_10", VCPU_STAT(diagnose_10) },
109
	{ "diagnose_44", VCPU_STAT(diagnose_44) },
110
	{ "diagnose_9c", VCPU_STAT(diagnose_9c) },
111 112 113
	{ NULL }
};

114 115
/* upper facilities limit for kvm */
unsigned long kvm_s390_fac_list_mask[] = {
116
	0xffe6fffbfcfdfc40UL,
117
	0x005e800000000000UL,
118
};
119

120
unsigned long kvm_s390_fac_list_mask_size(void)
121
{
122 123
	BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
	return ARRAY_SIZE(kvm_s390_fac_list_mask);
124 125
}

126 127
static struct gmap_notifier gmap_notifier;

128
/* Section: not file related */
129
int kvm_arch_hardware_enable(void)
130 131
{
	/* every s390 is virtualization enabled ;-) */
132
	return 0;
133 134
}

135 136
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address);

137 138
int kvm_arch_hardware_setup(void)
{
139 140
	gmap_notifier.notifier_call = kvm_gmap_notifier;
	gmap_register_ipte_notifier(&gmap_notifier);
141 142 143 144 145
	return 0;
}

void kvm_arch_hardware_unsetup(void)
{
146
	gmap_unregister_ipte_notifier(&gmap_notifier);
147 148 149 150
}

int kvm_arch_init(void *opaque)
{
151 152
	/* Register floating interrupt controller interface. */
	return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
153 154 155 156 157 158 159 160 161 162 163
}

/* Section: device related */
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	if (ioctl == KVM_S390_ENABLE_SIE)
		return s390_enable_sie();
	return -EINVAL;
}

164
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
165
{
166 167
	int r;

168
	switch (ext) {
169
	case KVM_CAP_S390_PSW:
170
	case KVM_CAP_S390_GMAP:
171
	case KVM_CAP_SYNC_MMU:
172 173 174
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_CAP_S390_UCONTROL:
#endif
175
	case KVM_CAP_ASYNC_PF:
176
	case KVM_CAP_SYNC_REGS:
177
	case KVM_CAP_ONE_REG:
178
	case KVM_CAP_ENABLE_CAP:
179
	case KVM_CAP_S390_CSS_SUPPORT:
C
Cornelia Huck 已提交
180
	case KVM_CAP_IOEVENTFD:
181
	case KVM_CAP_DEVICE_CTRL:
182
	case KVM_CAP_ENABLE_CAP_VM:
183
	case KVM_CAP_S390_IRQCHIP:
184
	case KVM_CAP_VM_ATTRIBUTES:
185
	case KVM_CAP_MP_STATE:
186
	case KVM_CAP_S390_INJECT_IRQ:
187
	case KVM_CAP_S390_USER_SIGP:
188
	case KVM_CAP_S390_USER_STSI:
189
	case KVM_CAP_S390_SKEYS:
190
	case KVM_CAP_S390_IRQ_STATE:
191 192
		r = 1;
		break;
193 194 195
	case KVM_CAP_S390_MEM_OP:
		r = MEM_OP_MAX_SIZE;
		break;
196 197 198 199
	case KVM_CAP_NR_VCPUS:
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
200 201 202
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
203
	case KVM_CAP_S390_COW:
204
		r = MACHINE_HAS_ESOP;
205
		break;
206 207 208
	case KVM_CAP_S390_VECTOR_REGISTERS:
		r = MACHINE_HAS_VX;
		break;
209
	default:
210
		r = 0;
211
	}
212
	return r;
213 214
}

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
static void kvm_s390_sync_dirty_log(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	gfn_t cur_gfn, last_gfn;
	unsigned long address;
	struct gmap *gmap = kvm->arch.gmap;

	down_read(&gmap->mm->mmap_sem);
	/* Loop over all guest pages */
	last_gfn = memslot->base_gfn + memslot->npages;
	for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
		address = gfn_to_hva_memslot(memslot, cur_gfn);

		if (gmap_test_and_clear_dirty(address, gmap))
			mark_page_dirty(kvm, cur_gfn);
	}
	up_read(&gmap->mm->mmap_sem);
}

234 235 236 237 238 239 240
/* Section: vm related */
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
			       struct kvm_dirty_log *log)
{
241 242
	int r;
	unsigned long n;
243
	struct kvm_memslots *slots;
244 245 246 247 248 249 250 251 252
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_USER_MEM_SLOTS)
		goto out;

253 254
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	kvm_s390_sync_dirty_log(kvm, memslot);
	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* Clear the dirty log */
	if (is_dirty) {
		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
273 274
}

275 276 277 278 279 280 281 282
static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
283 284 285 286
	case KVM_CAP_S390_IRQCHIP:
		kvm->arch.use_irqchip = 1;
		r = 0;
		break;
287 288 289 290
	case KVM_CAP_S390_USER_SIGP:
		kvm->arch.user_sigp = 1;
		r = 0;
		break;
291
	case KVM_CAP_S390_VECTOR_REGISTERS:
292 293 294 295 296 297
		if (MACHINE_HAS_VX) {
			set_kvm_facility(kvm->arch.model.fac->mask, 129);
			set_kvm_facility(kvm->arch.model.fac->list, 129);
			r = 0;
		} else
			r = -EINVAL;
298
		break;
299 300 301 302
	case KVM_CAP_S390_USER_STSI:
		kvm->arch.user_stsi = 1;
		r = 0;
		break;
303 304 305 306 307 308 309
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->attr) {
	case KVM_S390_VM_MEM_LIMIT_SIZE:
		ret = 0;
		if (put_user(kvm->arch.gmap->asce_end, (u64 __user *)attr->addr))
			ret = -EFAULT;
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
{
	int ret;
	unsigned int idx;
	switch (attr->attr) {
	case KVM_S390_VM_MEM_ENABLE_CMMA:
		ret = -EBUSY;
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus) == 0) {
			kvm->arch.use_cmma = 1;
			ret = 0;
		}
		mutex_unlock(&kvm->lock);
		break;
	case KVM_S390_VM_MEM_CLR_CMMA:
		mutex_lock(&kvm->lock);
		idx = srcu_read_lock(&kvm->srcu);
344
		s390_reset_cmma(kvm->arch.gmap->mm);
345 346 347 348
		srcu_read_unlock(&kvm->srcu, idx);
		mutex_unlock(&kvm->lock);
		ret = 0;
		break;
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
	case KVM_S390_VM_MEM_LIMIT_SIZE: {
		unsigned long new_limit;

		if (kvm_is_ucontrol(kvm))
			return -EINVAL;

		if (get_user(new_limit, (u64 __user *)attr->addr))
			return -EFAULT;

		if (new_limit > kvm->arch.gmap->asce_end)
			return -E2BIG;

		ret = -EBUSY;
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus) == 0) {
			/* gmap_alloc will round the limit up */
			struct gmap *new = gmap_alloc(current->mm, new_limit);

			if (!new) {
				ret = -ENOMEM;
			} else {
				gmap_free(kvm->arch.gmap);
				new->private = kvm;
				kvm->arch.gmap = new;
				ret = 0;
			}
		}
		mutex_unlock(&kvm->lock);
		break;
	}
379 380 381 382 383 384 385
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

386 387 388 389 390 391 392
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);

static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_vcpu *vcpu;
	int i;

393
	if (!test_kvm_facility(kvm, 76))
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
		return -EINVAL;

	mutex_lock(&kvm->lock);
	switch (attr->attr) {
	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
		kvm->arch.crypto.aes_kw = 1;
		break;
	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
		kvm->arch.crypto.dea_kw = 1;
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		kvm->arch.crypto.aes_kw = 0;
		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
		kvm->arch.crypto.dea_kw = 0;
		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
		break;
	default:
		mutex_unlock(&kvm->lock);
		return -ENXIO;
	}

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_vcpu_crypto_setup(vcpu);
		exit_sie(vcpu);
	}
	mutex_unlock(&kvm->lock);
	return 0;
}

433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high;

	if (copy_from_user(&gtod_high, (void __user *)attr->addr,
					   sizeof(gtod_high)))
		return -EFAULT;

	if (gtod_high != 0)
		return -EINVAL;

	return 0;
}

static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_vcpu *cur_vcpu;
	unsigned int vcpu_idx;
	u64 host_tod, gtod;
	int r;

	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
		return -EFAULT;

	r = store_tod_clock(&host_tod);
	if (r)
		return r;

	mutex_lock(&kvm->lock);
	kvm->arch.epoch = gtod - host_tod;
463 464
	kvm_s390_vcpu_block_all(kvm);
	kvm_for_each_vcpu(vcpu_idx, cur_vcpu, kvm)
465
		cur_vcpu->arch.sie_block->epoch = kvm->arch.epoch;
466
	kvm_s390_vcpu_unblock_all(kvm);
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
	mutex_unlock(&kvm->lock);
	return 0;
}

static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_set_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_set_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high = 0;

	if (copy_to_user((void __user *)attr->addr, &gtod_high,
					 sizeof(gtod_high)))
		return -EFAULT;

	return 0;
}

static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u64 host_tod, gtod;
	int r;

	r = store_tod_clock(&host_tod);
	if (r)
		return r;

	gtod = host_tod + kvm->arch.epoch;
	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
		return -EFAULT;

	return 0;
}

static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_get_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_get_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	mutex_lock(&kvm->lock);
	if (atomic_read(&kvm->online_vcpus)) {
		ret = -EBUSY;
		goto out;
	}
	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	if (!copy_from_user(proc, (void __user *)attr->addr,
			    sizeof(*proc))) {
		memcpy(&kvm->arch.model.cpu_id, &proc->cpuid,
		       sizeof(struct cpuid));
		kvm->arch.model.ibc = proc->ibc;
560
		memcpy(kvm->arch.model.fac->list, proc->fac_list,
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
		       S390_ARCH_FAC_LIST_SIZE_BYTE);
	} else
		ret = -EFAULT;
	kfree(proc);
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_set_processor(kvm, attr);
		break;
	}
	return ret;
}

static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	memcpy(&proc->cpuid, &kvm->arch.model.cpu_id, sizeof(struct cpuid));
	proc->ibc = kvm->arch.model.ibc;
594
	memcpy(&proc->fac_list, kvm->arch.model.fac->list, S390_ARCH_FAC_LIST_SIZE_BYTE);
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
	if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
		ret = -EFAULT;
	kfree(proc);
out:
	return ret;
}

static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_machine *mach;
	int ret = 0;

	mach = kzalloc(sizeof(*mach), GFP_KERNEL);
	if (!mach) {
		ret = -ENOMEM;
		goto out;
	}
	get_cpu_id((struct cpuid *) &mach->cpuid);
613
	mach->ibc = sclp.ibc;
614 615
	memcpy(&mach->fac_mask, kvm->arch.model.fac->mask,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
616
	memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
617
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
	if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
		ret = -EFAULT;
	kfree(mach);
out:
	return ret;
}

static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_get_processor(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE:
		ret = kvm_s390_get_machine(kvm, attr);
		break;
	}
	return ret;
}

640 641 642 643 644
static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
645
	case KVM_S390_VM_MEM_CTRL:
646
		ret = kvm_s390_set_mem_control(kvm, attr);
647
		break;
648 649 650
	case KVM_S390_VM_TOD:
		ret = kvm_s390_set_tod(kvm, attr);
		break;
651 652 653
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_set_cpu_model(kvm, attr);
		break;
654 655 656
	case KVM_S390_VM_CRYPTO:
		ret = kvm_s390_vm_set_crypto(kvm, attr);
		break;
657 658 659 660 661 662 663 664 665 666
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
667 668 669 670 671 672
	int ret;

	switch (attr->group) {
	case KVM_S390_VM_MEM_CTRL:
		ret = kvm_s390_get_mem_control(kvm, attr);
		break;
673 674 675
	case KVM_S390_VM_TOD:
		ret = kvm_s390_get_tod(kvm, attr);
		break;
676 677 678
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_get_cpu_model(kvm, attr);
		break;
679 680 681 682 683 684
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
685 686 687 688 689 690 691
}

static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
692 693 694 695
	case KVM_S390_VM_MEM_CTRL:
		switch (attr->attr) {
		case KVM_S390_VM_MEM_ENABLE_CMMA:
		case KVM_S390_VM_MEM_CLR_CMMA:
696
		case KVM_S390_VM_MEM_LIMIT_SIZE:
697 698 699 700 701 702 703
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
704 705 706 707 708 709 710 711 712 713 714
	case KVM_S390_VM_TOD:
		switch (attr->attr) {
		case KVM_S390_VM_TOD_LOW:
		case KVM_S390_VM_TOD_HIGH:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
715 716 717 718 719 720 721 722 723 724 725
	case KVM_S390_VM_CPU_MODEL:
		switch (attr->attr) {
		case KVM_S390_VM_CPU_PROCESSOR:
		case KVM_S390_VM_CPU_MACHINE:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
726 727 728 729 730 731 732 733 734 735 736 737 738
	case KVM_S390_VM_CRYPTO:
		switch (attr->attr) {
		case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
739 740 741 742 743 744 745 746
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	unsigned long curkey;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Is this guest using storage keys? */
	if (!mm_use_skey(current->mm))
		return KVM_S390_GET_SKEYS_NONE;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
			goto out;
		}

		curkey = get_guest_storage_key(current->mm, hva);
		if (IS_ERR_VALUE(curkey)) {
			r = curkey;
			goto out;
		}
		keys[i] = curkey;
	}

	r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
			 sizeof(uint8_t) * args->count);
	if (r)
		r = -EFAULT;
out:
	kvfree(keys);
	return r;
}

static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
			   sizeof(uint8_t) * args->count);
	if (r) {
		r = -EFAULT;
		goto out;
	}

	/* Enable storage key handling for the guest */
824 825 826
	r = s390_enable_skey();
	if (r)
		goto out;
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850

	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
			goto out;
		}

		/* Lowest order bit is reserved */
		if (keys[i] & 0x01) {
			r = -EINVAL;
			goto out;
		}

		r = set_guest_storage_key(current->mm, hva,
					  (unsigned long)keys[i], 0);
		if (r)
			goto out;
	}
out:
	kvfree(keys);
	return r;
}

851 852 853 854 855
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
856
	struct kvm_device_attr attr;
857 858 859
	int r;

	switch (ioctl) {
860 861 862 863 864 865 866 867 868
	case KVM_S390_INTERRUPT: {
		struct kvm_s390_interrupt s390int;

		r = -EFAULT;
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
			break;
		r = kvm_s390_inject_vm(kvm, &s390int);
		break;
	}
869 870 871 872 873 874 875 876
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
		break;
	}
877 878 879 880 881 882 883 884 885 886 887 888
	case KVM_CREATE_IRQCHIP: {
		struct kvm_irq_routing_entry routing;

		r = -EINVAL;
		if (kvm->arch.use_irqchip) {
			/* Set up dummy routing. */
			memset(&routing, 0, sizeof(routing));
			kvm_set_irq_routing(kvm, &routing, 0, 0);
			r = 0;
		}
		break;
	}
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
	case KVM_SET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_set_attr(kvm, &attr);
		break;
	}
	case KVM_GET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_get_attr(kvm, &attr);
		break;
	}
	case KVM_HAS_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_has_attr(kvm, &attr);
		break;
	}
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
	case KVM_S390_GET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_get_skeys(kvm, &args);
		break;
	}
	case KVM_S390_SET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_set_skeys(kvm, &args);
		break;
	}
930
	default:
931
		r = -ENOTTY;
932 933 934 935 936
	}

	return r;
}

937 938 939
static int kvm_s390_query_ap_config(u8 *config)
{
	u32 fcn_code = 0x04000000UL;
940
	u32 cc = 0;
941

942
	memset(config, 0, 128);
943 944 945 946
	asm volatile(
		"lgr 0,%1\n"
		"lgr 2,%2\n"
		".long 0xb2af0000\n"		/* PQAP(QCI) */
947
		"0: ipm %0\n"
948
		"srl %0,28\n"
949 950 951
		"1:\n"
		EX_TABLE(0b, 1b)
		: "+r" (cc)
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
		: "r" (fcn_code), "r" (config)
		: "cc", "0", "2", "memory"
	);

	return cc;
}

static int kvm_s390_apxa_installed(void)
{
	u8 config[128];
	int cc;

	if (test_facility(2) && test_facility(12)) {
		cc = kvm_s390_query_ap_config(config);

		if (cc)
			pr_err("PQAP(QCI) failed with cc=%d", cc);
		else
			return config[0] & 0x40;
	}

	return 0;
}

static void kvm_s390_set_crycb_format(struct kvm *kvm)
{
	kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;

	if (kvm_s390_apxa_installed())
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
	else
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
}

986 987 988 989 990 991
static void kvm_s390_get_cpu_id(struct cpuid *cpu_id)
{
	get_cpu_id(cpu_id);
	cpu_id->version = 0xff;
}

992 993
static int kvm_s390_crypto_init(struct kvm *kvm)
{
994
	if (!test_kvm_facility(kvm, 76))
995 996 997 998 999 1000 1001
		return 0;

	kvm->arch.crypto.crycb = kzalloc(sizeof(*kvm->arch.crypto.crycb),
					 GFP_KERNEL | GFP_DMA);
	if (!kvm->arch.crypto.crycb)
		return -ENOMEM;

1002
	kvm_s390_set_crycb_format(kvm);
1003

1004 1005 1006 1007 1008 1009 1010
	/* Enable AES/DEA protected key functions by default */
	kvm->arch.crypto.aes_kw = 1;
	kvm->arch.crypto.dea_kw = 1;
	get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
	get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1011

1012 1013 1014
	return 0;
}

1015
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1016
{
1017
	int i, rc;
1018
	char debug_name[16];
1019
	static unsigned long sca_offset;
1020

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
	rc = -EINVAL;
#ifdef CONFIG_KVM_S390_UCONTROL
	if (type & ~KVM_VM_S390_UCONTROL)
		goto out_err;
	if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
		goto out_err;
#else
	if (type)
		goto out_err;
#endif

1032 1033
	rc = s390_enable_sie();
	if (rc)
1034
		goto out_err;
1035

1036 1037
	rc = -ENOMEM;

1038 1039
	kvm->arch.sca = (struct sca_block *) get_zeroed_page(GFP_KERNEL);
	if (!kvm->arch.sca)
1040
		goto out_err;
1041 1042 1043 1044
	spin_lock(&kvm_lock);
	sca_offset = (sca_offset + 16) & 0x7f0;
	kvm->arch.sca = (struct sca_block *) ((char *) kvm->arch.sca + sca_offset);
	spin_unlock(&kvm_lock);
1045 1046 1047 1048 1049

	sprintf(debug_name, "kvm-%u", current->pid);

	kvm->arch.dbf = debug_register(debug_name, 8, 2, 8 * sizeof(long));
	if (!kvm->arch.dbf)
1050
		goto out_err;
1051

1052 1053 1054
	/*
	 * The architectural maximum amount of facilities is 16 kbit. To store
	 * this amount, 2 kbyte of memory is required. Thus we need a full
1055 1056
	 * page to hold the guest facility list (arch.model.fac->list) and the
	 * facility mask (arch.model.fac->mask). Its address size has to be
1057 1058 1059
	 * 31 bits and word aligned.
	 */
	kvm->arch.model.fac =
1060
		(struct kvm_s390_fac *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
1061
	if (!kvm->arch.model.fac)
1062
		goto out_err;
1063

1064
	/* Populate the facility mask initially. */
1065
	memcpy(kvm->arch.model.fac->mask, S390_lowcore.stfle_fac_list,
1066
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1067 1068
	for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
		if (i < kvm_s390_fac_list_mask_size())
1069
			kvm->arch.model.fac->mask[i] &= kvm_s390_fac_list_mask[i];
1070
		else
1071
			kvm->arch.model.fac->mask[i] = 0UL;
1072 1073
	}

1074 1075 1076 1077
	/* Populate the facility list initially. */
	memcpy(kvm->arch.model.fac->list, kvm->arch.model.fac->mask,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);

1078
	kvm_s390_get_cpu_id(&kvm->arch.model.cpu_id);
1079
	kvm->arch.model.ibc = sclp.ibc & 0x0fff;
1080

1081
	if (kvm_s390_crypto_init(kvm) < 0)
1082
		goto out_err;
1083

1084
	spin_lock_init(&kvm->arch.float_int.lock);
1085 1086
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1087
	init_waitqueue_head(&kvm->arch.ipte_wq);
1088
	mutex_init(&kvm->arch.ipte_mutex);
1089

1090 1091 1092
	debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
	VM_EVENT(kvm, 3, "%s", "vm created");

1093 1094 1095
	if (type & KVM_VM_S390_UCONTROL) {
		kvm->arch.gmap = NULL;
	} else {
1096
		kvm->arch.gmap = gmap_alloc(current->mm, (1UL << 44) - 1);
1097
		if (!kvm->arch.gmap)
1098
			goto out_err;
1099
		kvm->arch.gmap->private = kvm;
1100
		kvm->arch.gmap->pfault_enabled = 0;
1101
	}
1102 1103

	kvm->arch.css_support = 0;
1104
	kvm->arch.use_irqchip = 0;
1105
	kvm->arch.epoch = 0;
1106

1107 1108
	spin_lock_init(&kvm->arch.start_stop_lock);

1109
	return 0;
1110
out_err:
1111
	kfree(kvm->arch.crypto.crycb);
1112
	free_page((unsigned long)kvm->arch.model.fac);
1113
	debug_unregister(kvm->arch.dbf);
1114
	free_page((unsigned long)(kvm->arch.sca));
1115
	return rc;
1116 1117
}

1118 1119 1120
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	VCPU_EVENT(vcpu, 3, "%s", "free cpu");
1121
	trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
1122
	kvm_s390_clear_local_irqs(vcpu);
1123
	kvm_clear_async_pf_completion_queue(vcpu);
C
Carsten Otte 已提交
1124 1125 1126 1127 1128 1129 1130
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		clear_bit(63 - vcpu->vcpu_id,
			  (unsigned long *) &vcpu->kvm->arch.sca->mcn);
		if (vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sda ==
		    (__u64) vcpu->arch.sie_block)
			vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sda = 0;
	}
1131
	smp_mb();
1132 1133 1134 1135

	if (kvm_is_ucontrol(vcpu->kvm))
		gmap_free(vcpu->arch.gmap);

1136 1137
	if (kvm_s390_cmma_enabled(vcpu->kvm))
		kvm_s390_vcpu_unsetup_cmma(vcpu);
1138
	free_page((unsigned long)(vcpu->arch.sie_block));
1139

1140
	kvm_vcpu_uninit(vcpu);
1141
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1142 1143 1144 1145 1146
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
1147
	struct kvm_vcpu *vcpu;
1148

1149 1150 1151 1152 1153 1154 1155 1156 1157
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_destroy(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
	mutex_unlock(&kvm->lock);
1158 1159
}

1160 1161
void kvm_arch_destroy_vm(struct kvm *kvm)
{
1162
	kvm_free_vcpus(kvm);
1163
	free_page((unsigned long)kvm->arch.model.fac);
1164
	free_page((unsigned long)(kvm->arch.sca));
1165
	debug_unregister(kvm->arch.dbf);
1166
	kfree(kvm->arch.crypto.crycb);
1167 1168
	if (!kvm_is_ucontrol(kvm))
		gmap_free(kvm->arch.gmap);
1169
	kvm_s390_destroy_adapters(kvm);
1170
	kvm_s390_clear_float_irqs(kvm);
1171 1172 1173
}

/* Section: vcpu related */
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
{
	vcpu->arch.gmap = gmap_alloc(current->mm, -1UL);
	if (!vcpu->arch.gmap)
		return -ENOMEM;
	vcpu->arch.gmap->private = vcpu->kvm;

	return 0;
}

1184 1185
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
1186 1187
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1188 1189
	vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
				    KVM_SYNC_GPRS |
1190
				    KVM_SYNC_ACRS |
1191 1192 1193
				    KVM_SYNC_CRS |
				    KVM_SYNC_ARCH0 |
				    KVM_SYNC_PFAULT;
1194 1195
	if (test_kvm_facility(vcpu->kvm, 129))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
1196 1197 1198 1199

	if (kvm_is_ucontrol(vcpu->kvm))
		return __kvm_ucontrol_vcpu_init(vcpu);

1200 1201 1202 1203 1204
	return 0;
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
1205
	save_fp_ctl(&vcpu->arch.host_fpregs.fpc);
1206
	if (test_kvm_facility(vcpu->kvm, 129))
1207 1208 1209
		save_vx_regs((__vector128 *)&vcpu->arch.host_vregs->vrs);
	else
		save_fp_regs(vcpu->arch.host_fpregs.fprs);
1210
	save_access_regs(vcpu->arch.host_acrs);
1211
	if (test_kvm_facility(vcpu->kvm, 129)) {
1212 1213 1214 1215 1216 1217
		restore_fp_ctl(&vcpu->run->s.regs.fpc);
		restore_vx_regs((__vector128 *)&vcpu->run->s.regs.vrs);
	} else {
		restore_fp_ctl(&vcpu->arch.guest_fpregs.fpc);
		restore_fp_regs(vcpu->arch.guest_fpregs.fprs);
	}
1218
	restore_access_regs(vcpu->run->s.regs.acrs);
1219
	gmap_enable(vcpu->arch.gmap);
1220
	atomic_set_mask(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1221 1222 1223 1224
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
1225
	atomic_clear_mask(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1226
	gmap_disable(vcpu->arch.gmap);
1227
	if (test_kvm_facility(vcpu->kvm, 129)) {
1228 1229 1230 1231 1232 1233
		save_fp_ctl(&vcpu->run->s.regs.fpc);
		save_vx_regs((__vector128 *)&vcpu->run->s.regs.vrs);
	} else {
		save_fp_ctl(&vcpu->arch.guest_fpregs.fpc);
		save_fp_regs(vcpu->arch.guest_fpregs.fprs);
	}
1234
	save_access_regs(vcpu->run->s.regs.acrs);
1235
	restore_fp_ctl(&vcpu->arch.host_fpregs.fpc);
1236
	if (test_kvm_facility(vcpu->kvm, 129))
1237 1238 1239
		restore_vx_regs((__vector128 *)&vcpu->arch.host_vregs->vrs);
	else
		restore_fp_regs(vcpu->arch.host_fpregs.fprs);
1240 1241 1242 1243 1244 1245 1246 1247
	restore_access_regs(vcpu->arch.host_acrs);
}

static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
{
	/* this equals initial cpu reset in pop, but we don't switch to ESA */
	vcpu->arch.sie_block->gpsw.mask = 0UL;
	vcpu->arch.sie_block->gpsw.addr = 0UL;
1248
	kvm_s390_set_prefix(vcpu, 0);
1249 1250 1251 1252 1253 1254 1255 1256 1257
	vcpu->arch.sie_block->cputm     = 0UL;
	vcpu->arch.sie_block->ckc       = 0UL;
	vcpu->arch.sie_block->todpr     = 0;
	memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
	vcpu->arch.sie_block->gcr[0]  = 0xE0UL;
	vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
	vcpu->arch.guest_fpregs.fpc = 0;
	asm volatile("lfpc %0" : : "Q" (vcpu->arch.guest_fpregs.fpc));
	vcpu->arch.sie_block->gbea = 1;
1258
	vcpu->arch.sie_block->pp = 0;
1259 1260
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1261 1262
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
		kvm_s390_vcpu_stop(vcpu);
1263
	kvm_s390_clear_local_irqs(vcpu);
1264 1265
}

1266
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1267
{
1268 1269 1270
	mutex_lock(&vcpu->kvm->lock);
	vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
	mutex_unlock(&vcpu->kvm->lock);
1271 1272
	if (!kvm_is_ucontrol(vcpu->kvm))
		vcpu->arch.gmap = vcpu->kvm->arch.gmap;
1273 1274
}

1275 1276
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
{
1277
	if (!test_kvm_facility(vcpu->kvm, 76))
1278 1279
		return;

1280 1281 1282 1283 1284 1285 1286
	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);

	if (vcpu->kvm->arch.crypto.aes_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
	if (vcpu->kvm->arch.crypto.dea_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;

1287 1288 1289
	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
}

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
{
	free_page(vcpu->arch.sie_block->cbrlo);
	vcpu->arch.sie_block->cbrlo = 0;
}

int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
{
	vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
	if (!vcpu->arch.sie_block->cbrlo)
		return -ENOMEM;

	vcpu->arch.sie_block->ecb2 |= 0x80;
	vcpu->arch.sie_block->ecb2 &= ~0x08;
	return 0;
}

1307 1308 1309 1310 1311 1312 1313 1314 1315
static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;

	vcpu->arch.cpu_id = model->cpu_id;
	vcpu->arch.sie_block->ibc = model->ibc;
	vcpu->arch.sie_block->fac = (int) (long) model->fac->list;
}

1316 1317
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
1318
	int rc = 0;
1319

1320 1321
	atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
						    CPUSTAT_SM |
1322 1323
						    CPUSTAT_STOPPED);

1324 1325 1326
	if (test_kvm_facility(vcpu->kvm, 78))
		atomic_set_mask(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags);
	else if (test_kvm_facility(vcpu->kvm, 8))
1327 1328
		atomic_set_mask(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags);

1329 1330
	kvm_s390_vcpu_setup_model(vcpu);

1331
	vcpu->arch.sie_block->ecb   = 6;
1332
	if (test_kvm_facility(vcpu->kvm, 50) && test_kvm_facility(vcpu->kvm, 73))
1333 1334
		vcpu->arch.sie_block->ecb |= 0x10;

1335
	vcpu->arch.sie_block->ecb2  = 8;
1336
	vcpu->arch.sie_block->eca   = 0xC1002000U;
1337
	if (sclp.has_siif)
1338
		vcpu->arch.sie_block->eca |= 1;
1339
	if (sclp.has_sigpif)
1340
		vcpu->arch.sie_block->eca |= 0x10000000U;
1341
	if (test_kvm_facility(vcpu->kvm, 129)) {
1342 1343 1344
		vcpu->arch.sie_block->eca |= 0x00020000;
		vcpu->arch.sie_block->ecd |= 0x20000000;
	}
1345
	vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
1346

1347 1348 1349 1350
	if (kvm_s390_cmma_enabled(vcpu->kvm)) {
		rc = kvm_s390_vcpu_setup_cmma(vcpu);
		if (rc)
			return rc;
1351
	}
1352
	hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1353
	vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
1354

1355 1356
	kvm_s390_vcpu_crypto_setup(vcpu);

1357
	return rc;
1358 1359 1360 1361 1362
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
				      unsigned int id)
{
1363
	struct kvm_vcpu *vcpu;
1364
	struct sie_page *sie_page;
1365 1366 1367 1368 1369 1370
	int rc = -EINVAL;

	if (id >= KVM_MAX_VCPUS)
		goto out;

	rc = -ENOMEM;
1371

1372
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1373
	if (!vcpu)
1374
		goto out;
1375

1376 1377
	sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
	if (!sie_page)
1378 1379
		goto out_free_cpu;

1380 1381
	vcpu->arch.sie_block = &sie_page->sie_block;
	vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;
1382
	vcpu->arch.host_vregs = &sie_page->vregs;
1383

1384
	vcpu->arch.sie_block->icpua = id;
C
Carsten Otte 已提交
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
	if (!kvm_is_ucontrol(kvm)) {
		if (!kvm->arch.sca) {
			WARN_ON_ONCE(1);
			goto out_free_cpu;
		}
		if (!kvm->arch.sca->cpu[id].sda)
			kvm->arch.sca->cpu[id].sda =
				(__u64) vcpu->arch.sie_block;
		vcpu->arch.sie_block->scaoh =
			(__u32)(((__u64)kvm->arch.sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)kvm->arch.sca;
		set_bit(63 - id, (unsigned long *) &kvm->arch.sca->mcn);
	}
1398

1399 1400
	spin_lock_init(&vcpu->arch.local_int.lock);
	vcpu->arch.local_int.float_int = &kvm->arch.float_int;
1401
	vcpu->arch.local_int.wq = &vcpu->wq;
1402
	vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
1403

1404 1405
	rc = kvm_vcpu_init(vcpu, kvm, id);
	if (rc)
1406
		goto out_free_sie_block;
1407 1408
	VM_EVENT(kvm, 3, "create cpu %d at %p, sie block at %p", id, vcpu,
		 vcpu->arch.sie_block);
1409
	trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
1410 1411

	return vcpu;
1412 1413
out_free_sie_block:
	free_page((unsigned long)(vcpu->arch.sie_block));
1414
out_free_cpu:
1415
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1416
out:
1417 1418 1419 1420 1421
	return ERR_PTR(rc);
}

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
1422
	return kvm_s390_vcpu_has_irq(vcpu, 0);
1423 1424
}

1425
void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
1426 1427
{
	atomic_set_mask(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1428
	exit_sie(vcpu);
1429 1430
}

1431
void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
1432 1433 1434 1435
{
	atomic_clear_mask(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
}

1436 1437 1438
static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
{
	atomic_set_mask(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1439
	exit_sie(vcpu);
1440 1441 1442 1443 1444 1445 1446
}

static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
{
	atomic_clear_mask(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
}

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
/*
 * Kick a guest cpu out of SIE and wait until SIE is not running.
 * If the CPU is not running (e.g. waiting as idle) the function will
 * return immediately. */
void exit_sie(struct kvm_vcpu *vcpu)
{
	atomic_set_mask(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
		cpu_relax();
}

1458 1459
/* Kick a guest cpu out of SIE to process a request synchronously */
void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
1460
{
1461 1462
	kvm_make_request(req, vcpu);
	kvm_s390_vcpu_request(vcpu);
1463 1464
}

1465 1466 1467 1468 1469 1470 1471 1472
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address)
{
	int i;
	struct kvm *kvm = gmap->private;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		/* match against both prefix pages */
1473
		if (kvm_s390_get_prefix(vcpu) == (address & ~0x1000UL)) {
1474
			VCPU_EVENT(vcpu, 2, "gmap notifier for %lx", address);
1475
			kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
1476 1477 1478 1479
		}
	}
}

1480 1481 1482 1483 1484 1485 1486
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	/* kvm common code refers to this, but never calls it */
	BUG();
	return 0;
}

1487 1488 1489 1490 1491 1492
static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
1493 1494 1495 1496 1497 1498 1499 1500
	case KVM_REG_S390_TODPR:
		r = put_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = put_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
1501 1502 1503 1504 1505 1506 1507 1508
	case KVM_REG_S390_CPU_TIMER:
		r = put_user(vcpu->arch.sie_block->cputm,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = put_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
	case KVM_REG_S390_PFTOKEN:
		r = put_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = put_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = put_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
1521 1522 1523 1524
	case KVM_REG_S390_PP:
		r = put_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
1525 1526 1527 1528
	case KVM_REG_S390_GBEA:
		r = put_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
	default:
		break;
	}

	return r;
}

static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
1542 1543 1544 1545 1546 1547 1548 1549
	case KVM_REG_S390_TODPR:
		r = get_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = get_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
1550 1551 1552 1553 1554 1555 1556 1557
	case KVM_REG_S390_CPU_TIMER:
		r = get_user(vcpu->arch.sie_block->cputm,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = get_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
1558 1559 1560
	case KVM_REG_S390_PFTOKEN:
		r = get_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
1561 1562
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
1563 1564 1565 1566 1567 1568 1569 1570 1571
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = get_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = get_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
1572 1573 1574 1575
	case KVM_REG_S390_PP:
		r = get_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
1576 1577 1578 1579
	case KVM_REG_S390_GBEA:
		r = get_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
1580 1581 1582 1583 1584 1585
	default:
		break;
	}

	return r;
}
1586

1587 1588 1589 1590 1591 1592 1593 1594
static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
{
	kvm_s390_vcpu_initial_reset(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
1595
	memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
1596 1597 1598 1599 1600
	return 0;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
1601
	memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
1602 1603 1604 1605 1606 1607
	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
1608
	memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
1609
	memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
1610
	restore_access_regs(vcpu->run->s.regs.acrs);
1611 1612 1613 1614 1615 1616
	return 0;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
1617
	memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
1618 1619 1620 1621 1622 1623
	memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
1624 1625
	if (test_fp_ctl(fpu->fpc))
		return -EINVAL;
1626
	memcpy(&vcpu->arch.guest_fpregs.fprs, &fpu->fprs, sizeof(fpu->fprs));
1627 1628 1629
	vcpu->arch.guest_fpregs.fpc = fpu->fpc;
	restore_fp_ctl(&vcpu->arch.guest_fpregs.fpc);
	restore_fp_regs(vcpu->arch.guest_fpregs.fprs);
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
	return 0;
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
	memcpy(&fpu->fprs, &vcpu->arch.guest_fpregs.fprs, sizeof(fpu->fprs));
	fpu->fpc = vcpu->arch.guest_fpregs.fpc;
	return 0;
}

static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
{
	int rc = 0;

1644
	if (!is_vcpu_stopped(vcpu))
1645
		rc = -EBUSY;
1646 1647 1648 1649
	else {
		vcpu->run->psw_mask = psw.mask;
		vcpu->run->psw_addr = psw.addr;
	}
1650 1651 1652 1653 1654 1655 1656 1657 1658
	return rc;
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
{
	return -EINVAL; /* not implemented yet */
}

1659 1660 1661 1662
#define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
			      KVM_GUESTDBG_USE_HW_BP | \
			      KVM_GUESTDBG_ENABLE)

J
Jan Kiszka 已提交
1663 1664
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
1665
{
1666 1667 1668 1669 1670
	int rc = 0;

	vcpu->guest_debug = 0;
	kvm_s390_clear_bp_data(vcpu);

1671
	if (dbg->control & ~VALID_GUESTDBG_FLAGS)
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
		return -EINVAL;

	if (dbg->control & KVM_GUESTDBG_ENABLE) {
		vcpu->guest_debug = dbg->control;
		/* enforce guest PER */
		atomic_set_mask(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);

		if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
			rc = kvm_s390_import_bp_data(vcpu, dbg);
	} else {
		atomic_clear_mask(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
		vcpu->arch.guestdbg.last_bp = 0;
	}

	if (rc) {
		vcpu->guest_debug = 0;
		kvm_s390_clear_bp_data(vcpu);
		atomic_clear_mask(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
	}

	return rc;
1693 1694
}

1695 1696 1697
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
1698 1699 1700
	/* CHECK_STOP and LOAD are not supported yet */
	return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
				       KVM_MP_STATE_OPERATING;
1701 1702 1703 1704 1705
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
	int rc = 0;

	/* user space knows about this interface - let it control the state */
	vcpu->kvm->arch.user_cpu_state_ctrl = 1;

	switch (mp_state->mp_state) {
	case KVM_MP_STATE_STOPPED:
		kvm_s390_vcpu_stop(vcpu);
		break;
	case KVM_MP_STATE_OPERATING:
		kvm_s390_vcpu_start(vcpu);
		break;
	case KVM_MP_STATE_LOAD:
	case KVM_MP_STATE_CHECK_STOP:
		/* fall through - CHECK_STOP and LOAD are not supported yet */
	default:
		rc = -ENXIO;
	}

	return rc;
1726 1727
}

1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
bool kvm_s390_cmma_enabled(struct kvm *kvm)
{
	if (!MACHINE_IS_LPAR)
		return false;
	/* only enable for z10 and later */
	if (!MACHINE_HAS_EDAT1)
		return false;
	if (!kvm->arch.use_cmma)
		return false;
	return true;
}

1740 1741 1742 1743 1744
static bool ibs_enabled(struct kvm_vcpu *vcpu)
{
	return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
}

1745 1746
static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
{
1747 1748
	if (!vcpu->requests)
		return 0;
1749
retry:
1750
	kvm_s390_vcpu_request_handled(vcpu);
1751 1752 1753 1754 1755 1756 1757
	/*
	 * We use MMU_RELOAD just to re-arm the ipte notifier for the
	 * guest prefix page. gmap_ipte_notify will wait on the ptl lock.
	 * This ensures that the ipte instruction for this request has
	 * already finished. We might race against a second unmapper that
	 * wants to set the blocking bit. Lets just retry the request loop.
	 */
1758
	if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
1759 1760
		int rc;
		rc = gmap_ipte_notify(vcpu->arch.gmap,
1761
				      kvm_s390_get_prefix(vcpu),
1762 1763 1764
				      PAGE_SIZE * 2);
		if (rc)
			return rc;
1765
		goto retry;
1766
	}
1767

1768 1769 1770 1771 1772
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
		vcpu->arch.sie_block->ihcpu = 0xffff;
		goto retry;
	}

1773 1774 1775 1776 1777 1778 1779
	if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
		if (!ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
			atomic_set_mask(CPUSTAT_IBS,
					&vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
1780
	}
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790

	if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
		if (ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
			atomic_clear_mask(CPUSTAT_IBS,
					  &vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
	}

1791 1792 1793
	/* nothing to do, just clear the request */
	clear_bit(KVM_REQ_UNHALT, &vcpu->requests);

1794 1795 1796
	return 0;
}

1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
/**
 * kvm_arch_fault_in_page - fault-in guest page if necessary
 * @vcpu: The corresponding virtual cpu
 * @gpa: Guest physical address
 * @writable: Whether the page should be writable or not
 *
 * Make sure that a guest page has been faulted-in on the host.
 *
 * Return: Zero on success, negative error code otherwise.
 */
long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
1808
{
1809 1810
	return gmap_fault(vcpu->arch.gmap, gpa,
			  writable ? FAULT_FLAG_WRITE : 0);
1811 1812
}

1813 1814 1815 1816
static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
				      unsigned long token)
{
	struct kvm_s390_interrupt inti;
1817
	struct kvm_s390_irq irq;
1818 1819

	if (start_token) {
1820 1821 1822
		irq.u.ext.ext_params2 = token;
		irq.type = KVM_S390_INT_PFAULT_INIT;
		WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
1823 1824
	} else {
		inti.type = KVM_S390_INT_PFAULT_DONE;
1825
		inti.parm64 = token;
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
		WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
	}
}

void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
				     struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
}

void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
				 struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
}

void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
			       struct kvm_async_pf *work)
{
	/* s390 will always inject the page directly */
}

bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
	/*
	 * s390 will always inject the page directly,
	 * but we still want check_async_completion to cleanup
	 */
	return true;
}

static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
{
	hva_t hva;
	struct kvm_arch_async_pf arch;
	int rc;

	if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
		return 0;
	if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
	    vcpu->arch.pfault_compare)
		return 0;
	if (psw_extint_disabled(vcpu))
		return 0;
1872
	if (kvm_s390_vcpu_has_irq(vcpu, 0))
1873 1874 1875 1876 1877 1878
		return 0;
	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
		return 0;
	if (!vcpu->arch.gmap->pfault_enabled)
		return 0;

H
Heiko Carstens 已提交
1879 1880 1881
	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
	hva += current->thread.gmap_addr & ~PAGE_MASK;
	if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
1882 1883 1884 1885 1886 1887
		return 0;

	rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
	return rc;
}

1888
static int vcpu_pre_run(struct kvm_vcpu *vcpu)
1889
{
1890
	int rc, cpuflags;
1891

1892 1893 1894 1895 1896 1897 1898
	/*
	 * On s390 notifications for arriving pages will be delivered directly
	 * to the guest but the house keeping for completed pfaults is
	 * handled outside the worker.
	 */
	kvm_check_async_pf_completion(vcpu);

1899
	memcpy(&vcpu->arch.sie_block->gg14, &vcpu->run->s.regs.gprs[14], 16);
1900 1901 1902 1903

	if (need_resched())
		schedule();

1904
	if (test_cpu_flag(CIF_MCCK_PENDING))
1905 1906
		s390_handle_mcck();

1907 1908 1909 1910 1911
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		rc = kvm_s390_deliver_pending_interrupts(vcpu);
		if (rc)
			return rc;
	}
C
Carsten Otte 已提交
1912

1913 1914 1915 1916
	rc = kvm_s390_handle_requests(vcpu);
	if (rc)
		return rc;

1917 1918 1919 1920 1921
	if (guestdbg_enabled(vcpu)) {
		kvm_s390_backup_guest_per_regs(vcpu);
		kvm_s390_patch_guest_per_regs(vcpu);
	}

1922
	vcpu->arch.sie_block->icptcode = 0;
1923 1924 1925
	cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
	VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
	trace_kvm_s390_sie_enter(vcpu, cpuflags);
1926

1927 1928 1929
	return 0;
}

1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
{
	psw_t *psw = &vcpu->arch.sie_block->gpsw;
	u8 opcode;
	int rc;

	VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
	trace_kvm_s390_sie_fault(vcpu);

	/*
	 * We want to inject an addressing exception, which is defined as a
	 * suppressing or terminating exception. However, since we came here
	 * by a DAT access exception, the PSW still points to the faulting
	 * instruction since DAT exceptions are nullifying. So we've got
	 * to look up the current opcode to get the length of the instruction
	 * to be able to forward the PSW.
	 */
1947
	rc = read_guest(vcpu, psw->addr, 0, &opcode, 1);
1948 1949 1950 1951 1952 1953 1954
	if (rc)
		return kvm_s390_inject_prog_cond(vcpu, rc);
	psw->addr = __rewind_psw(*psw, -insn_length(opcode));

	return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
}

1955 1956
static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
{
1957
	int rc = -1;
1958 1959 1960 1961 1962

	VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
		   vcpu->arch.sie_block->icptcode);
	trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);

1963 1964 1965
	if (guestdbg_enabled(vcpu))
		kvm_s390_restore_guest_per_regs(vcpu);

1966
	if (exit_reason >= 0) {
1967
		rc = 0;
1968 1969 1970 1971 1972 1973
	} else if (kvm_is_ucontrol(vcpu->kvm)) {
		vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
		vcpu->run->s390_ucontrol.trans_exc_code =
						current->thread.gmap_addr;
		vcpu->run->s390_ucontrol.pgm_code = 0x10;
		rc = -EREMOTE;
1974 1975

	} else if (current->thread.gmap_pfault) {
1976
		trace_kvm_s390_major_guest_pfault(vcpu);
1977
		current->thread.gmap_pfault = 0;
1978
		if (kvm_arch_setup_async_pf(vcpu)) {
1979
			rc = 0;
1980 1981 1982 1983
		} else {
			gpa_t gpa = current->thread.gmap_addr;
			rc = kvm_arch_fault_in_page(vcpu, gpa, 1);
		}
1984 1985
	}

1986 1987
	if (rc == -1)
		rc = vcpu_post_run_fault_in_sie(vcpu);
1988

1989
	memcpy(&vcpu->run->s.regs.gprs[14], &vcpu->arch.sie_block->gg14, 16);
1990

1991 1992
	if (rc == 0) {
		if (kvm_is_ucontrol(vcpu->kvm))
1993 1994
			/* Don't exit for host interrupts. */
			rc = vcpu->arch.sie_block->icptcode ? -EOPNOTSUPP : 0;
1995 1996 1997 1998
		else
			rc = kvm_handle_sie_intercept(vcpu);
	}

1999 2000 2001 2002 2003 2004 2005
	return rc;
}

static int __vcpu_run(struct kvm_vcpu *vcpu)
{
	int rc, exit_reason;

2006 2007 2008 2009 2010 2011
	/*
	 * We try to hold kvm->srcu during most of vcpu_run (except when run-
	 * ning the guest), so that memslots (and other stuff) are protected
	 */
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

2012 2013 2014 2015
	do {
		rc = vcpu_pre_run(vcpu);
		if (rc)
			break;
2016

2017
		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2018 2019 2020 2021
		/*
		 * As PF_VCPU will be used in fault handler, between
		 * guest_enter and guest_exit should be no uaccess.
		 */
2022 2023 2024
		local_irq_disable();
		__kvm_guest_enter();
		local_irq_enable();
2025 2026
		exit_reason = sie64a(vcpu->arch.sie_block,
				     vcpu->run->s.regs.gprs);
2027 2028 2029
		local_irq_disable();
		__kvm_guest_exit();
		local_irq_enable();
2030
		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2031 2032

		rc = vcpu_post_run(vcpu, exit_reason);
2033
	} while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
2034

2035
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2036
	return rc;
2037 2038
}

2039 2040 2041 2042 2043 2044 2045 2046
static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
	vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
		kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
		memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
2047 2048
		/* some control register changes require a tlb flush */
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
		vcpu->arch.sie_block->cputm = kvm_run->s.regs.cputm;
		vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
		vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
		vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
		vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
		vcpu->arch.pfault_token = kvm_run->s.regs.pft;
		vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
		vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
2061 2062
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
	}
	kvm_run->kvm_dirty_regs = 0;
}

static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
	kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
	kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
	memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
	kvm_run->s.regs.cputm = vcpu->arch.sie_block->cputm;
	kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
	kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
	kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
	kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
	kvm_run->s.regs.pft = vcpu->arch.pfault_token;
	kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
	kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
}

2083 2084
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
2085
	int rc;
2086 2087
	sigset_t sigsaved;

2088 2089 2090 2091 2092
	if (guestdbg_exit_pending(vcpu)) {
		kvm_s390_prepare_debug_exit(vcpu);
		return 0;
	}

2093 2094 2095
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

2096 2097 2098
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
		kvm_s390_vcpu_start(vcpu);
	} else if (is_vcpu_stopped(vcpu)) {
2099
		pr_err_ratelimited("can't run stopped vcpu %d\n",
2100 2101 2102
				   vcpu->vcpu_id);
		return -EINVAL;
	}
2103

2104
	sync_regs(vcpu, kvm_run);
2105

2106
	might_fault();
2107
	rc = __vcpu_run(vcpu);
2108

2109 2110
	if (signal_pending(current) && !rc) {
		kvm_run->exit_reason = KVM_EXIT_INTR;
2111
		rc = -EINTR;
2112
	}
2113

2114 2115 2116 2117 2118
	if (guestdbg_exit_pending(vcpu) && !rc)  {
		kvm_s390_prepare_debug_exit(vcpu);
		rc = 0;
	}

2119
	if (rc == -EOPNOTSUPP) {
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
		/* intercept cannot be handled in-kernel, prepare kvm-run */
		kvm_run->exit_reason         = KVM_EXIT_S390_SIEIC;
		kvm_run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
		kvm_run->s390_sieic.ipa      = vcpu->arch.sie_block->ipa;
		kvm_run->s390_sieic.ipb      = vcpu->arch.sie_block->ipb;
		rc = 0;
	}

	if (rc == -EREMOTE) {
		/* intercept was handled, but userspace support is needed
		 * kvm_run has been prepared by the handler */
		rc = 0;
	}
2133

2134
	store_regs(vcpu, kvm_run);
2135

2136 2137 2138 2139
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu->stat.exit_userspace++;
2140
	return rc;
2141 2142 2143 2144 2145 2146 2147 2148
}

/*
 * store status at address
 * we use have two special cases:
 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
 */
2149
int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
2150
{
2151
	unsigned char archmode = 1;
2152
	unsigned int px;
2153
	u64 clkcomp;
2154
	int rc;
2155

2156 2157
	if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
		if (write_guest_abs(vcpu, 163, &archmode, 1))
2158
			return -EFAULT;
2159 2160 2161
		gpa = SAVE_AREA_BASE;
	} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
		if (write_guest_real(vcpu, 163, &archmode, 1))
2162
			return -EFAULT;
2163 2164 2165 2166 2167 2168 2169 2170
		gpa = kvm_s390_real_to_abs(vcpu, SAVE_AREA_BASE);
	}
	rc = write_guest_abs(vcpu, gpa + offsetof(struct save_area, fp_regs),
			     vcpu->arch.guest_fpregs.fprs, 128);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, gp_regs),
			      vcpu->run->s.regs.gprs, 128);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, psw),
			      &vcpu->arch.sie_block->gpsw, 16);
2171
	px = kvm_s390_get_prefix(vcpu);
2172
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, pref_reg),
2173
			      &px, 4);
2174 2175 2176 2177 2178 2179 2180
	rc |= write_guest_abs(vcpu,
			      gpa + offsetof(struct save_area, fp_ctrl_reg),
			      &vcpu->arch.guest_fpregs.fpc, 4);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, tod_reg),
			      &vcpu->arch.sie_block->todpr, 4);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, timer),
			      &vcpu->arch.sie_block->cputm, 8);
2181
	clkcomp = vcpu->arch.sie_block->ckc >> 8;
2182 2183 2184 2185 2186 2187 2188
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, clk_cmp),
			      &clkcomp, 8);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, acc_regs),
			      &vcpu->run->s.regs.acrs, 64);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, ctrl_regs),
			      &vcpu->arch.sie_block->gcr, 128);
	return rc ? -EFAULT : 0;
2189 2190
}

2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	/*
	 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
	 * copying in vcpu load/put. Lets update our copies before we save
	 * it into the save area
	 */
	save_fp_ctl(&vcpu->arch.guest_fpregs.fpc);
	save_fp_regs(vcpu->arch.guest_fpregs.fprs);
	save_access_regs(vcpu->run->s.regs.acrs);

	return kvm_s390_store_status_unloaded(vcpu, addr);
}

E
Eric Farman 已提交
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
/*
 * store additional status at address
 */
int kvm_s390_store_adtl_status_unloaded(struct kvm_vcpu *vcpu,
					unsigned long gpa)
{
	/* Only bits 0-53 are used for address formation */
	if (!(gpa & ~0x3ff))
		return 0;

	return write_guest_abs(vcpu, gpa & ~0x3ff,
			       (void *)&vcpu->run->s.regs.vrs, 512);
}

int kvm_s390_vcpu_store_adtl_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	if (!test_kvm_facility(vcpu->kvm, 129))
		return 0;

	/*
	 * The guest VXRS are in the host VXRs due to the lazy
	 * copying in vcpu load/put. Let's update our copies before we save
	 * it into the save area.
	 */
	save_vx_regs((__vector128 *)&vcpu->run->s.regs.vrs);

	return kvm_s390_store_adtl_status_unloaded(vcpu, addr);
}

2234 2235 2236
static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
2237
	kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
}

static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		__disable_ibs_on_vcpu(vcpu);
	}
}

static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
2253
	kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
2254 2255
}

2256 2257
void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
{
2258 2259 2260 2261 2262
	int i, online_vcpus, started_vcpus = 0;

	if (!is_vcpu_stopped(vcpu))
		return;

2263
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
2264
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2265
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
			started_vcpus++;
	}

	if (started_vcpus == 0) {
		/* we're the only active VCPU -> speed it up */
		__enable_ibs_on_vcpu(vcpu);
	} else if (started_vcpus == 1) {
		/*
		 * As we are starting a second VCPU, we have to disable
		 * the IBS facility on all VCPUs to remove potentially
		 * oustanding ENABLE requests.
		 */
		__disable_ibs_on_all_vcpus(vcpu->kvm);
	}

2285
	atomic_clear_mask(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2286 2287 2288 2289
	/*
	 * Another VCPU might have used IBS while we were offline.
	 * Let's play safe and flush the VCPU at startup.
	 */
2290
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2291
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2292
	return;
2293 2294 2295 2296
}

void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
{
2297 2298 2299 2300 2301 2302
	int i, online_vcpus, started_vcpus = 0;
	struct kvm_vcpu *started_vcpu = NULL;

	if (is_vcpu_stopped(vcpu))
		return;

2303
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
2304
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2305
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2306 2307
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

2308
	/* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
2309
	kvm_s390_clear_stop_irq(vcpu);
2310

2311
	atomic_set_mask(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
	__disable_ibs_on_vcpu(vcpu);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
			started_vcpus++;
			started_vcpu = vcpu->kvm->vcpus[i];
		}
	}

	if (started_vcpus == 1) {
		/*
		 * As we only have one VCPU left, we want to enable the
		 * IBS facility for that VCPU to speed it up.
		 */
		__enable_ibs_on_vcpu(started_vcpu);
	}

2329
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2330
	return;
2331 2332
}

2333 2334 2335 2336 2337 2338 2339 2340 2341
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
2342 2343 2344 2345 2346 2347 2348
	case KVM_CAP_S390_CSS_SUPPORT:
		if (!vcpu->kvm->arch.css_support) {
			vcpu->kvm->arch.css_support = 1;
			trace_kvm_s390_enable_css(vcpu->kvm);
		}
		r = 0;
		break;
2349 2350 2351 2352 2353 2354 2355
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
				  struct kvm_s390_mem_op *mop)
{
	void __user *uaddr = (void __user *)mop->buf;
	void *tmpbuf = NULL;
	int r, srcu_idx;
	const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
				    | KVM_S390_MEMOP_F_CHECK_ONLY;

	if (mop->flags & ~supported_flags)
		return -EINVAL;

	if (mop->size > MEM_OP_MAX_SIZE)
		return -E2BIG;

	if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
		tmpbuf = vmalloc(mop->size);
		if (!tmpbuf)
			return -ENOMEM;
	}

	srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

	switch (mop->op) {
	case KVM_S390_MEMOP_LOGICAL_READ:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
			r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size, false);
			break;
		}
		r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		if (r == 0) {
			if (copy_to_user(uaddr, tmpbuf, mop->size))
				r = -EFAULT;
		}
		break;
	case KVM_S390_MEMOP_LOGICAL_WRITE:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
			r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size, true);
			break;
		}
		if (copy_from_user(tmpbuf, uaddr, mop->size)) {
			r = -EFAULT;
			break;
		}
		r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		break;
	default:
		r = -EINVAL;
	}

	srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);

	if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
		kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);

	vfree(tmpbuf);
	return r;
}

2415 2416 2417 2418 2419
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
2420
	int idx;
2421
	long r;
2422

2423
	switch (ioctl) {
2424 2425 2426 2427 2428 2429 2430 2431 2432
	case KVM_S390_IRQ: {
		struct kvm_s390_irq s390irq;

		r = -EFAULT;
		if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
			break;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
		break;
	}
2433
	case KVM_S390_INTERRUPT: {
2434
		struct kvm_s390_interrupt s390int;
2435
		struct kvm_s390_irq s390irq;
2436

2437
		r = -EFAULT;
2438
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
2439
			break;
2440 2441 2442
		if (s390int_to_s390irq(&s390int, &s390irq))
			return -EINVAL;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
2443
		break;
2444
	}
2445
	case KVM_S390_STORE_STATUS:
2446
		idx = srcu_read_lock(&vcpu->kvm->srcu);
2447
		r = kvm_s390_vcpu_store_status(vcpu, arg);
2448
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
2449
		break;
2450 2451 2452
	case KVM_S390_SET_INITIAL_PSW: {
		psw_t psw;

2453
		r = -EFAULT;
2454
		if (copy_from_user(&psw, argp, sizeof(psw)))
2455 2456 2457
			break;
		r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
		break;
2458 2459
	}
	case KVM_S390_INITIAL_RESET:
2460 2461
		r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
		break;
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			break;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_S390_UCAS_MAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
				     ucasmap.vcpu_addr, ucasmap.length);
		break;
	}
	case KVM_S390_UCAS_UNMAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
			ucasmap.length);
		break;
	}
#endif
2510
	case KVM_S390_VCPU_FAULT: {
2511
		r = gmap_fault(vcpu->arch.gmap, arg, 0);
2512 2513
		break;
	}
2514 2515 2516 2517 2518 2519 2520 2521 2522
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
2523 2524 2525 2526 2527 2528 2529 2530 2531
	case KVM_S390_MEM_OP: {
		struct kvm_s390_mem_op mem_op;

		if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
			r = kvm_s390_guest_mem_op(vcpu, &mem_op);
		else
			r = -EFAULT;
		break;
	}
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
	case KVM_S390_SET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len > VCPU_IRQS_MAX_BUF ||
		    irq_state.len == 0 ||
		    irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_set_irq_state(vcpu,
					   (void __user *) irq_state.buf,
					   irq_state.len);
		break;
	}
	case KVM_S390_GET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len == 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_get_irq_state(vcpu,
					   (__u8 __user *)  irq_state.buf,
					   irq_state.len);
		break;
	}
2564
	default:
2565
		r = -ENOTTY;
2566
	}
2567
	return r;
2568 2569
}

2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
#ifdef CONFIG_KVM_S390_UCONTROL
	if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
		 && (kvm_is_ucontrol(vcpu->kvm))) {
		vmf->page = virt_to_page(vcpu->arch.sie_block);
		get_page(vmf->page);
		return 0;
	}
#endif
	return VM_FAULT_SIGBUS;
}

2583 2584
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
2585 2586 2587 2588
{
	return 0;
}

2589
/* Section: memory related */
2590 2591
int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
2592
				   const struct kvm_userspace_memory_region *mem,
2593
				   enum kvm_mr_change change)
2594
{
2595 2596 2597 2598
	/* A few sanity checks. We can have memory slots which have to be
	   located/ended at a segment boundary (1MB). The memory in userland is
	   ok to be fragmented into various different vmas. It is okay to mmap()
	   and munmap() stuff in this slot after doing this call at any time */
2599

2600
	if (mem->userspace_addr & 0xffffful)
2601 2602
		return -EINVAL;

2603
	if (mem->memory_size & 0xffffful)
2604 2605
		return -EINVAL;

2606 2607 2608 2609
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
2610
				const struct kvm_userspace_memory_region *mem,
2611
				const struct kvm_memory_slot *old,
2612
				const struct kvm_memory_slot *new,
2613
				enum kvm_mr_change change)
2614
{
2615
	int rc;
2616

2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
	/* If the basics of the memslot do not change, we do not want
	 * to update the gmap. Every update causes several unnecessary
	 * segment translation exceptions. This is usually handled just
	 * fine by the normal fault handler + gmap, but it will also
	 * cause faults on the prefix page of running guest CPUs.
	 */
	if (old->userspace_addr == mem->userspace_addr &&
	    old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
	    old->npages * PAGE_SIZE == mem->memory_size)
		return;
2627 2628 2629 2630

	rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
		mem->guest_phys_addr, mem->memory_size);
	if (rc)
2631
		pr_warn("failed to commit memory region\n");
2632
	return;
2633 2634 2635 2636
}

static int __init kvm_s390_init(void)
{
2637
	return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2638 2639 2640 2641 2642 2643 2644 2645 2646
}

static void __exit kvm_s390_exit(void)
{
	kvm_exit();
}

module_init(kvm_s390_init);
module_exit(kvm_s390_exit);
2647 2648 2649 2650 2651 2652 2653 2654 2655

/*
 * Enable autoloading of the kvm module.
 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
 * since x86 takes a different approach.
 */
#include <linux/miscdevice.h>
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");