nv50_crtc.c 21.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
/*
 * Copyright (C) 2008 Maarten Maathuis.
 * All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice (including the
 * next paragraph) shall be included in all copies or substantial
 * portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
 * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 */

#include "drmP.h"
#include "drm_mode.h"
#include "drm_crtc_helper.h"

#define NOUVEAU_DMA_DEBUG (nouveau_reg_debug & NOUVEAU_REG_DEBUG_EVO)
#include "nouveau_reg.h"
#include "nouveau_drv.h"
#include "nouveau_hw.h"
#include "nouveau_encoder.h"
#include "nouveau_crtc.h"
#include "nouveau_fb.h"
#include "nouveau_connector.h"
#include "nv50_display.h"

static void
nv50_crtc_lut_load(struct drm_crtc *crtc)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	void __iomem *lut = nvbo_kmap_obj_iovirtual(nv_crtc->lut.nvbo);
	int i;

48
	NV_DEBUG_KMS(crtc->dev, "\n");
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

	for (i = 0; i < 256; i++) {
		writew(nv_crtc->lut.r[i] >> 2, lut + 8*i + 0);
		writew(nv_crtc->lut.g[i] >> 2, lut + 8*i + 2);
		writew(nv_crtc->lut.b[i] >> 2, lut + 8*i + 4);
	}

	if (nv_crtc->lut.depth == 30) {
		writew(nv_crtc->lut.r[i - 1] >> 2, lut + 8*i + 0);
		writew(nv_crtc->lut.g[i - 1] >> 2, lut + 8*i + 2);
		writew(nv_crtc->lut.b[i - 1] >> 2, lut + 8*i + 4);
	}
}

int
nv50_crtc_blank(struct nouveau_crtc *nv_crtc, bool blanked)
{
	struct drm_device *dev = nv_crtc->base.dev;
	struct drm_nouveau_private *dev_priv = dev->dev_private;
68
	struct nouveau_channel *evo = nv50_display(dev)->master;
69 70
	int index = nv_crtc->index, ret;

71 72
	NV_DEBUG_KMS(dev, "index %d\n", nv_crtc->index);
	NV_DEBUG_KMS(dev, "%s\n", blanked ? "blanked" : "unblanked");
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

	if (blanked) {
		nv_crtc->cursor.hide(nv_crtc, false);

		ret = RING_SPACE(evo, dev_priv->chipset != 0x50 ? 7 : 5);
		if (ret) {
			NV_ERROR(dev, "no space while blanking crtc\n");
			return ret;
		}
		BEGIN_RING(evo, 0, NV50_EVO_CRTC(index, CLUT_MODE), 2);
		OUT_RING(evo, NV50_EVO_CRTC_CLUT_MODE_BLANK);
		OUT_RING(evo, 0);
		if (dev_priv->chipset != 0x50) {
			BEGIN_RING(evo, 0, NV84_EVO_CRTC(index, CLUT_DMA), 1);
			OUT_RING(evo, NV84_EVO_CRTC_CLUT_DMA_HANDLE_NONE);
		}

		BEGIN_RING(evo, 0, NV50_EVO_CRTC(index, FB_DMA), 1);
		OUT_RING(evo, NV50_EVO_CRTC_FB_DMA_HANDLE_NONE);
	} else {
		if (nv_crtc->cursor.visible)
			nv_crtc->cursor.show(nv_crtc, false);
		else
			nv_crtc->cursor.hide(nv_crtc, false);

		ret = RING_SPACE(evo, dev_priv->chipset != 0x50 ? 10 : 8);
		if (ret) {
			NV_ERROR(dev, "no space while unblanking crtc\n");
			return ret;
		}
		BEGIN_RING(evo, 0, NV50_EVO_CRTC(index, CLUT_MODE), 2);
		OUT_RING(evo, nv_crtc->lut.depth == 8 ?
				NV50_EVO_CRTC_CLUT_MODE_OFF :
				NV50_EVO_CRTC_CLUT_MODE_ON);
107
		OUT_RING(evo, nv_crtc->lut.nvbo->bo.offset >> 8);
108 109 110 111 112 113 114 115 116 117
		if (dev_priv->chipset != 0x50) {
			BEGIN_RING(evo, 0, NV84_EVO_CRTC(index, CLUT_DMA), 1);
			OUT_RING(evo, NvEvoVRAM);
		}

		BEGIN_RING(evo, 0, NV50_EVO_CRTC(index, FB_OFFSET), 2);
		OUT_RING(evo, nv_crtc->fb.offset >> 8);
		OUT_RING(evo, 0);
		BEGIN_RING(evo, 0, NV50_EVO_CRTC(index, FB_DMA), 1);
		if (dev_priv->chipset != 0x50)
118 119
			if (nv_crtc->fb.tile_flags == 0x7a00 ||
			    nv_crtc->fb.tile_flags == 0xfe00)
120 121 122 123 124
				OUT_RING(evo, NvEvoFB32);
			else
			if (nv_crtc->fb.tile_flags == 0x7000)
				OUT_RING(evo, NvEvoFB16);
			else
125
				OUT_RING(evo, NvEvoVRAM_LP);
126
		else
127
			OUT_RING(evo, NvEvoVRAM_LP);
128 129 130 131 132 133 134
	}

	nv_crtc->fb.blanked = blanked;
	return 0;
}

static int
135
nv50_crtc_set_dither(struct nouveau_crtc *nv_crtc, bool update)
136
{
137 138 139 140 141 142 143 144 145 146 147 148 149
	struct nouveau_channel *evo = nv50_display(nv_crtc->base.dev)->master;
	struct nouveau_connector *nv_connector;
	struct drm_connector *connector;
	int head = nv_crtc->index, ret;
	u32 mode = 0x00;

	nv_connector = nouveau_crtc_connector_get(nv_crtc);
	connector = &nv_connector->base;
	if (nv_connector->dithering_mode == DITHERING_MODE_AUTO) {
		if (nv_crtc->base.fb->depth > connector->display_info.bpc * 3)
			mode = DITHERING_MODE_DYNAMIC2X2;
	} else {
		mode = nv_connector->dithering_mode;
150 151
	}

152 153 154 155 156 157
	if (nv_connector->dithering_depth == DITHERING_DEPTH_AUTO) {
		if (connector->display_info.bpc >= 8)
			mode |= DITHERING_DEPTH_8BPC;
	} else {
		mode |= nv_connector->dithering_depth;
	}
158

159 160 161 162 163 164 165 166 167
	ret = RING_SPACE(evo, 2 + (update ? 2 : 0));
	if (ret == 0) {
		BEGIN_RING(evo, 0, NV50_EVO_CRTC(head, DITHER_CTRL), 1);
		OUT_RING  (evo, mode);
		if (update) {
			BEGIN_RING(evo, 0, NV50_EVO_UPDATE, 1);
			OUT_RING  (evo, 0);
			FIRE_RING (evo);
		}
168 169
	}

170
	return ret;
171 172
}

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
static int
nv50_crtc_set_color_vibrance(struct nouveau_crtc *nv_crtc, bool update)
{
	struct drm_device *dev = nv_crtc->base.dev;
	struct nouveau_channel *evo = nv50_display(dev)->master;
	int ret;
	int adj;
	u32 hue, vib;

	NV_DEBUG_KMS(dev, "vibrance = %i, hue = %i\n",
		     nv_crtc->color_vibrance, nv_crtc->vibrant_hue);

	ret = RING_SPACE(evo, 2 + (update ? 2 : 0));
	if (ret) {
		NV_ERROR(dev, "no space while setting color vibrance\n");
		return ret;
	}

	adj = (nv_crtc->color_vibrance > 0) ? 50 : 0;
	vib = ((nv_crtc->color_vibrance * 2047 + adj) / 100) & 0xfff;

	hue = ((nv_crtc->vibrant_hue * 2047) / 100) & 0xfff;

	BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, COLOR_CTRL), 1);
	OUT_RING  (evo, (hue << 20) | (vib << 8));

	if (update) {
		BEGIN_RING(evo, 0, NV50_EVO_UPDATE, 1);
		OUT_RING  (evo, 0);
		FIRE_RING (evo);
	}

	return 0;
}

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
struct nouveau_connector *
nouveau_crtc_connector_get(struct nouveau_crtc *nv_crtc)
{
	struct drm_device *dev = nv_crtc->base.dev;
	struct drm_connector *connector;
	struct drm_crtc *crtc = to_drm_crtc(nv_crtc);

	/* The safest approach is to find an encoder with the right crtc, that
	 * is also linked to a connector. */
	list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
		if (connector->encoder)
			if (connector->encoder->crtc == crtc)
				return nouveau_connector(connector);
	}

	return NULL;
}

static int
227
nv50_crtc_set_scale(struct nouveau_crtc *nv_crtc, bool update)
228
{
229
	struct nouveau_connector *nv_connector;
230 231
	struct drm_crtc *crtc = &nv_crtc->base;
	struct drm_device *dev = crtc->dev;
232
	struct nouveau_channel *evo = nv50_display(dev)->master;
233 234
	struct drm_display_mode *umode = &crtc->mode;
	struct drm_display_mode *omode;
235
	int scaling_mode, ret;
236
	u32 ctrl = 0, oX, oY;
237

238
	NV_DEBUG_KMS(dev, "\n");
239

240 241 242 243
	nv_connector = nouveau_crtc_connector_get(nv_crtc);
	if (!nv_connector || !nv_connector->native_mode) {
		NV_ERROR(dev, "no native mode, forcing panel scaling\n");
		scaling_mode = DRM_MODE_SCALE_NONE;
244 245
	} else {
		scaling_mode = nv_connector->scaling_mode;
246 247 248 249 250
	}

	/* start off at the resolution we programmed the crtc for, this
	 * effectively handles NONE/FULL scaling
	 */
251 252 253 254 255 256 257 258 259
	if (scaling_mode != DRM_MODE_SCALE_NONE)
		omode = nv_connector->native_mode;
	else
		omode = umode;

	oX = omode->hdisplay;
	oY = omode->vdisplay;
	if (omode->flags & DRM_MODE_FLAG_DBLSCAN)
		oY *= 2;
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276

	/* add overscan compensation if necessary, will keep the aspect
	 * ratio the same as the backend mode unless overridden by the
	 * user setting both hborder and vborder properties.
	 */
	if (nv_connector && ( nv_connector->underscan == UNDERSCAN_ON ||
			     (nv_connector->underscan == UNDERSCAN_AUTO &&
			      nv_connector->edid &&
			      drm_detect_hdmi_monitor(nv_connector->edid)))) {
		u32 bX = nv_connector->underscan_hborder;
		u32 bY = nv_connector->underscan_vborder;
		u32 aspect = (oY << 19) / oX;

		if (bX) {
			oX -= (bX * 2);
			if (bY) oY -= (bY * 2);
			else    oY  = ((oX * aspect) + (aspect / 2)) >> 19;
277
		} else {
278 279 280
			oX -= (oX >> 4) + 32;
			if (bY) oY -= (bY * 2);
			else    oY  = ((oX * aspect) + (aspect / 2)) >> 19;
281 282 283
		}
	}

284 285 286
	/* handle CENTER/ASPECT scaling, taking into account the areas
	 * removed already for overscan compensation
	 */
287
	switch (scaling_mode) {
288
	case DRM_MODE_SCALE_CENTER:
289 290
		oX = min((u32)umode->hdisplay, oX);
		oY = min((u32)umode->vdisplay, oY);
291
		/* fall-through */
292
	case DRM_MODE_SCALE_ASPECT:
293
		if (oY < oX) {
294
			u32 aspect = (umode->hdisplay << 19) / umode->vdisplay;
295
			oX = ((oY * aspect) + (aspect / 2)) >> 19;
296
		} else {
297
			u32 aspect = (umode->vdisplay << 19) / umode->hdisplay;
298
			oY = ((oX * aspect) + (aspect / 2)) >> 19;
299 300 301 302 303 304
		}
		break;
	default:
		break;
	}

305 306 307
	if (umode->hdisplay != oX || umode->vdisplay != oY ||
	    umode->flags & DRM_MODE_FLAG_INTERLACE ||
	    umode->flags & DRM_MODE_FLAG_DBLSCAN)
308 309
		ctrl |= NV50_EVO_CRTC_SCALE_CTRL_ACTIVE;

310
	ret = RING_SPACE(evo, 5);
311 312 313 314
	if (ret)
		return ret;

	BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, SCALE_CTRL), 1);
315
	OUT_RING  (evo, ctrl);
316
	BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, SCALE_RES1), 2);
317 318
	OUT_RING  (evo, oY << 16 | oX);
	OUT_RING  (evo, oY << 16 | oX);
319 320

	if (update) {
321
		nv50_display_flip_stop(crtc);
322
		nv50_display_sync(dev);
323
		nv50_display_flip_next(crtc, crtc->fb, NULL);
324 325 326 327 328 329 330 331
	}

	return 0;
}

int
nv50_crtc_set_clock(struct drm_device *dev, int head, int pclk)
{
332
	struct drm_nouveau_private *dev_priv = dev->dev_private;
333
	struct pll_lims pll;
334
	uint32_t reg1, reg2;
335
	int ret, N1, M1, N2, M2, P;
336

337
	ret = get_pll_limits(dev, PLL_VPLL0 + head, &pll);
338 339 340
	if (ret)
		return ret;

341 342 343 344
	if (pll.vco2.maxfreq) {
		ret = nv50_calc_pll(dev, &pll, pclk, &N1, &M1, &N2, &M2, &P);
		if (ret <= 0)
			return 0;
345

346
		NV_DEBUG(dev, "pclk %d out %d NM1 %d %d NM2 %d %d P %d\n",
347 348
			 pclk, ret, N1, M1, N2, M2, P);

349 350 351 352 353
		reg1 = nv_rd32(dev, pll.reg + 4) & 0xff00ff00;
		reg2 = nv_rd32(dev, pll.reg + 8) & 0x8000ff00;
		nv_wr32(dev, pll.reg + 0, 0x10000611);
		nv_wr32(dev, pll.reg + 4, reg1 | (M1 << 16) | N1);
		nv_wr32(dev, pll.reg + 8, reg2 | (P << 28) | (M2 << 16) | N2);
354 355
	} else
	if (dev_priv->chipset < NV_C0) {
356
		ret = nva3_calc_pll(dev, &pll, pclk, &N1, &N2, &M1, &P);
357 358 359 360 361
		if (ret <= 0)
			return 0;

		NV_DEBUG(dev, "pclk %d out %d N %d fN 0x%04x M %d P %d\n",
			 pclk, ret, N1, N2, M1, P);
362

363 364 365 366
		reg1 = nv_rd32(dev, pll.reg + 4) & 0xffc00000;
		nv_wr32(dev, pll.reg + 0, 0x50000610);
		nv_wr32(dev, pll.reg + 4, reg1 | (P << 16) | (M1 << 8) | N1);
		nv_wr32(dev, pll.reg + 8, N2);
367
	} else {
368
		ret = nva3_calc_pll(dev, &pll, pclk, &N1, &N2, &M1, &P);
369 370 371 372 373 374
		if (ret <= 0)
			return 0;

		NV_DEBUG(dev, "pclk %d out %d N %d fN 0x%04x M %d P %d\n",
			 pclk, ret, N1, N2, M1, P);

375 376 377
		nv_mask(dev, pll.reg + 0x0c, 0x00000000, 0x00000100);
		nv_wr32(dev, pll.reg + 0x04, (P << 16) | (N1 << 8) | M1);
		nv_wr32(dev, pll.reg + 0x10, N2 << 16);
378 379 380 381 382 383 384 385
	}

	return 0;
}

static void
nv50_crtc_destroy(struct drm_crtc *crtc)
{
386 387
	struct drm_device *dev;
	struct nouveau_crtc *nv_crtc;
388 389 390 391

	if (!crtc)
		return;

392 393 394 395 396
	dev = crtc->dev;
	nv_crtc = nouveau_crtc(crtc);

	NV_DEBUG_KMS(dev, "\n");

397 398
	drm_crtc_cleanup(&nv_crtc->base);

399
	nouveau_bo_unmap(nv_crtc->lut.nvbo);
400
	nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
401
	nouveau_bo_unmap(nv_crtc->cursor.nvbo);
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
	nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
	kfree(nv_crtc);
}

int
nv50_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv,
		     uint32_t buffer_handle, uint32_t width, uint32_t height)
{
	struct drm_device *dev = crtc->dev;
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	struct nouveau_bo *cursor = NULL;
	struct drm_gem_object *gem;
	int ret = 0, i;

	if (!buffer_handle) {
		nv_crtc->cursor.hide(nv_crtc, true);
		return 0;
	}

421 422 423
	if (width != 64 || height != 64)
		return -EINVAL;

424 425
	gem = drm_gem_object_lookup(dev, file_priv, buffer_handle);
	if (!gem)
426
		return -ENOENT;
427 428 429 430 431 432 433 434 435 436 437 438
	cursor = nouveau_gem_object(gem);

	ret = nouveau_bo_map(cursor);
	if (ret)
		goto out;

	/* The simple will do for now. */
	for (i = 0; i < 64 * 64; i++)
		nouveau_bo_wr32(nv_crtc->cursor.nvbo, i, nouveau_bo_rd32(cursor, i));

	nouveau_bo_unmap(cursor);

439
	nv_crtc->cursor.set_offset(nv_crtc, nv_crtc->cursor.nvbo->bo.offset);
440 441 442
	nv_crtc->cursor.show(nv_crtc, true);

out:
443
	drm_gem_object_unreference_unlocked(gem);
444 445 446 447 448 449 450 451 452 453 454 455 456 457
	return ret;
}

int
nv50_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);

	nv_crtc->cursor.set_pos(nv_crtc, x, y);
	return 0;
}

static void
nv50_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
J
James Simmons 已提交
458
		    uint32_t start, uint32_t size)
459
{
J
James Simmons 已提交
460
	int end = (start + size > 256) ? 256 : start + size, i;
461 462
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);

J
James Simmons 已提交
463
	for (i = start; i < end; i++) {
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
		nv_crtc->lut.r[i] = r[i];
		nv_crtc->lut.g[i] = g[i];
		nv_crtc->lut.b[i] = b[i];
	}

	/* We need to know the depth before we upload, but it's possible to
	 * get called before a framebuffer is bound.  If this is the case,
	 * mark the lut values as dirty by setting depth==0, and it'll be
	 * uploaded on the first mode_set_base()
	 */
	if (!nv_crtc->base.fb) {
		nv_crtc->lut.depth = 0;
		return;
	}

	nv50_crtc_lut_load(crtc);
}

static void
nv50_crtc_save(struct drm_crtc *crtc)
{
	NV_ERROR(crtc->dev, "!!\n");
}

static void
nv50_crtc_restore(struct drm_crtc *crtc)
{
	NV_ERROR(crtc->dev, "!!\n");
}

static const struct drm_crtc_funcs nv50_crtc_funcs = {
	.save = nv50_crtc_save,
	.restore = nv50_crtc_restore,
	.cursor_set = nv50_crtc_cursor_set,
	.cursor_move = nv50_crtc_cursor_move,
	.gamma_set = nv50_crtc_gamma_set,
	.set_config = drm_crtc_helper_set_config,
501
	.page_flip = nouveau_crtc_page_flip,
502 503 504 505 506 507 508 509 510 511 512 513 514 515
	.destroy = nv50_crtc_destroy,
};

static void
nv50_crtc_dpms(struct drm_crtc *crtc, int mode)
{
}

static void
nv50_crtc_prepare(struct drm_crtc *crtc)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	struct drm_device *dev = crtc->dev;

516
	NV_DEBUG_KMS(dev, "index %d\n", nv_crtc->index);
517

518
	nv50_display_flip_stop(crtc);
519
	drm_vblank_pre_modeset(dev, nv_crtc->index);
520 521 522 523 524 525 526 527 528
	nv50_crtc_blank(nv_crtc, true);
}

static void
nv50_crtc_commit(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);

529
	NV_DEBUG_KMS(dev, "index %d\n", nv_crtc->index);
530 531

	nv50_crtc_blank(nv_crtc, false);
532
	drm_vblank_post_modeset(dev, nv_crtc->index);
533
	nv50_display_sync(dev);
534
	nv50_display_flip_next(crtc, crtc->fb, NULL);
535 536 537 538 539 540 541 542 543 544
}

static bool
nv50_crtc_mode_fixup(struct drm_crtc *crtc, struct drm_display_mode *mode,
		     struct drm_display_mode *adjusted_mode)
{
	return true;
}

static int
545 546
nv50_crtc_do_mode_set_base(struct drm_crtc *crtc,
			   struct drm_framebuffer *passed_fb,
547
			   int x, int y, bool atomic)
548 549 550 551
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	struct drm_device *dev = nv_crtc->base.dev;
	struct drm_nouveau_private *dev_priv = dev->dev_private;
552
	struct nouveau_channel *evo = nv50_display(dev)->master;
553 554
	struct drm_framebuffer *drm_fb;
	struct nouveau_framebuffer *fb;
555
	int ret;
556

557
	NV_DEBUG_KMS(dev, "index %d\n", nv_crtc->index);
558

559 560 561 562 563 564
	/* no fb bound */
	if (!atomic && !crtc->fb) {
		NV_DEBUG_KMS(dev, "No FB bound\n");
		return 0;
	}

565 566 567 568 569 570 571
	/* If atomic, we want to switch to the fb we were passed, so
	 * now we update pointers to do that.  (We don't pin; just
	 * assume we're already pinned and update the base address.)
	 */
	if (atomic) {
		drm_fb = passed_fb;
		fb = nouveau_framebuffer(passed_fb);
572
	} else {
573 574
		drm_fb = crtc->fb;
		fb = nouveau_framebuffer(crtc->fb);
575 576 577 578 579 580 581 582 583 584 585 586 587
		/* If not atomic, we can go ahead and pin, and unpin the
		 * old fb we were passed.
		 */
		ret = nouveau_bo_pin(fb->nvbo, TTM_PL_FLAG_VRAM);
		if (ret)
			return ret;

		if (passed_fb) {
			struct nouveau_framebuffer *ofb = nouveau_framebuffer(passed_fb);
			nouveau_bo_unpin(ofb->nvbo);
		}
	}

588
	nv_crtc->fb.offset = fb->nvbo->bo.offset;
589
	nv_crtc->fb.tile_flags = nouveau_bo_tile_layout(fb->nvbo);
590 591 592 593 594 595 596
	nv_crtc->fb.cpp = drm_fb->bits_per_pixel / 8;
	if (!nv_crtc->fb.blanked && dev_priv->chipset != 0x50) {
		ret = RING_SPACE(evo, 2);
		if (ret)
			return ret;

		BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, FB_DMA), 1);
597
		OUT_RING  (evo, fb->r_dma);
598 599 600 601 602 603 604
	}

	ret = RING_SPACE(evo, 12);
	if (ret)
		return ret;

	BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, FB_OFFSET), 5);
605 606 607 608 609
	OUT_RING  (evo, nv_crtc->fb.offset >> 8);
	OUT_RING  (evo, 0);
	OUT_RING  (evo, (drm_fb->height << 16) | drm_fb->width);
	OUT_RING  (evo, fb->r_pitch);
	OUT_RING  (evo, fb->r_format);
610 611

	BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, CLUT_MODE), 1);
612 613
	OUT_RING  (evo, fb->base.depth == 8 ?
		   NV50_EVO_CRTC_CLUT_MODE_OFF : NV50_EVO_CRTC_CLUT_MODE_ON);
614 615

	BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, FB_POS), 1);
616
	OUT_RING  (evo, (y << 16) | x);
617 618 619 620 621 622 623 624 625 626

	if (nv_crtc->lut.depth != fb->base.depth) {
		nv_crtc->lut.depth = fb->base.depth;
		nv50_crtc_lut_load(crtc);
	}

	return 0;
}

static int
627 628
nv50_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *umode,
		   struct drm_display_mode *mode, int x, int y,
629 630 631
		   struct drm_framebuffer *old_fb)
{
	struct drm_device *dev = crtc->dev;
632
	struct nouveau_channel *evo = nv50_display(dev)->master;
633
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
634 635 636 637 638 639
	u32 head = nv_crtc->index * 0x400;
	u32 ilace = (mode->flags & DRM_MODE_FLAG_INTERLACE) ? 2 : 1;
	u32 vscan = (mode->flags & DRM_MODE_FLAG_DBLSCAN) ? 2 : 1;
	u32 hactive, hsynce, hbackp, hfrontp, hblanke, hblanks;
	u32 vactive, vsynce, vbackp, vfrontp, vblanke, vblanks;
	u32 vblan2e = 0, vblan2s = 1;
640 641
	int ret;

642 643 644 645 646 647 648 649 650 651 652
	/* hw timing description looks like this:
	 *
	 * <sync> <back porch> <---------display---------> <front porch>
	 * ______
	 *       |____________|---------------------------|____________|
	 *
	 *       ^ synce      ^ blanke                    ^ blanks     ^ active
	 *
	 * interlaced modes also have 2 additional values pointing at the end
	 * and start of the next field's blanking period.
	 */
653

654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
	hactive = mode->htotal;
	hsynce  = mode->hsync_end - mode->hsync_start - 1;
	hbackp  = mode->htotal - mode->hsync_end;
	hblanke = hsynce + hbackp;
	hfrontp = mode->hsync_start - mode->hdisplay;
	hblanks = mode->htotal - hfrontp - 1;

	vactive = mode->vtotal * vscan / ilace;
	vsynce  = ((mode->vsync_end - mode->vsync_start) * vscan / ilace) - 1;
	vbackp  = (mode->vtotal - mode->vsync_end) * vscan / ilace;
	vblanke = vsynce + vbackp;
	vfrontp = (mode->vsync_start - mode->vdisplay) * vscan / ilace;
	vblanks = vactive - vfrontp - 1;
	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
		vblan2e = vactive + vsynce + vbackp;
		vblan2s = vblan2e + (mode->vdisplay * vscan / ilace);
		vactive = (vactive * 2) + 1;
671 672
	}

673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
	ret = RING_SPACE(evo, 18);
	if (ret == 0) {
		BEGIN_RING(evo, 0, 0x0804 + head, 2);
		OUT_RING  (evo, 0x00800000 | mode->clock);
		OUT_RING  (evo, (ilace == 2) ? 2 : 0);
		BEGIN_RING(evo, 0, 0x0810 + head, 6);
		OUT_RING  (evo, 0x00000000); /* border colour */
		OUT_RING  (evo, (vactive << 16) | hactive);
		OUT_RING  (evo, ( vsynce << 16) | hsynce);
		OUT_RING  (evo, (vblanke << 16) | hblanke);
		OUT_RING  (evo, (vblanks << 16) | hblanks);
		OUT_RING  (evo, (vblan2e << 16) | vblan2s);
		BEGIN_RING(evo, 0, 0x082c + head, 1);
		OUT_RING  (evo, 0x00000000);
		BEGIN_RING(evo, 0, 0x0900 + head, 1);
		OUT_RING  (evo, 0x00000311); /* makes sync channel work */
		BEGIN_RING(evo, 0, 0x08c8 + head, 1);
		OUT_RING  (evo, (umode->vdisplay << 16) | umode->hdisplay);
		BEGIN_RING(evo, 0, 0x08d4 + head, 1);
		OUT_RING  (evo, 0x00000000); /* screen position */
693 694
	}

695 696
	nv_crtc->set_dither(nv_crtc, false);
	nv_crtc->set_scale(nv_crtc, false);
697
	nv_crtc->set_color_vibrance(nv_crtc, false);
698

699
	return nv50_crtc_do_mode_set_base(crtc, old_fb, x, y, false);
700 701 702 703 704 705
}

static int
nv50_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
			struct drm_framebuffer *old_fb)
{
706 707
	int ret;

708
	nv50_display_flip_stop(crtc);
709 710 711 712
	ret = nv50_crtc_do_mode_set_base(crtc, old_fb, x, y, false);
	if (ret)
		return ret;

713
	ret = nv50_display_sync(crtc->dev);
714 715 716 717
	if (ret)
		return ret;

	return nv50_display_flip_next(crtc, crtc->fb, NULL);
718 719 720 721 722
}

static int
nv50_crtc_mode_set_base_atomic(struct drm_crtc *crtc,
			       struct drm_framebuffer *fb,
723
			       int x, int y, enum mode_set_atomic state)
724
{
725 726
	int ret;

727
	nv50_display_flip_stop(crtc);
728 729 730 731
	ret = nv50_crtc_do_mode_set_base(crtc, fb, x, y, true);
	if (ret)
		return ret;

732
	return nv50_display_sync(crtc->dev);
733 734 735 736 737 738 739 740 741
}

static const struct drm_crtc_helper_funcs nv50_crtc_helper_funcs = {
	.dpms = nv50_crtc_dpms,
	.prepare = nv50_crtc_prepare,
	.commit = nv50_crtc_commit,
	.mode_fixup = nv50_crtc_mode_fixup,
	.mode_set = nv50_crtc_mode_set,
	.mode_set_base = nv50_crtc_mode_set_base,
742
	.mode_set_base_atomic = nv50_crtc_mode_set_base_atomic,
743 744 745 746 747 748 749 750 751
	.load_lut = nv50_crtc_lut_load,
};

int
nv50_crtc_create(struct drm_device *dev, int index)
{
	struct nouveau_crtc *nv_crtc = NULL;
	int ret, i;

752
	NV_DEBUG_KMS(dev, "\n");
753 754 755 756 757

	nv_crtc = kzalloc(sizeof(*nv_crtc), GFP_KERNEL);
	if (!nv_crtc)
		return -ENOMEM;

758 759 760
	nv_crtc->color_vibrance = 50;
	nv_crtc->vibrant_hue = 0;

761 762 763 764 765 766 767 768 769 770
	/* Default CLUT parameters, will be activated on the hw upon
	 * first mode set.
	 */
	for (i = 0; i < 256; i++) {
		nv_crtc->lut.r[i] = i << 8;
		nv_crtc->lut.g[i] = i << 8;
		nv_crtc->lut.b[i] = i << 8;
	}
	nv_crtc->lut.depth = 0;

771
	ret = nouveau_bo_new(dev, 4096, 0x100, TTM_PL_FLAG_VRAM,
772
			     0, 0x0000, &nv_crtc->lut.nvbo);
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
	if (!ret) {
		ret = nouveau_bo_pin(nv_crtc->lut.nvbo, TTM_PL_FLAG_VRAM);
		if (!ret)
			ret = nouveau_bo_map(nv_crtc->lut.nvbo);
		if (ret)
			nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
	}

	if (ret) {
		kfree(nv_crtc);
		return ret;
	}

	nv_crtc->index = index;

	/* set function pointers */
	nv_crtc->set_dither = nv50_crtc_set_dither;
	nv_crtc->set_scale = nv50_crtc_set_scale;
791
	nv_crtc->set_color_vibrance = nv50_crtc_set_color_vibrance;
792 793 794 795 796

	drm_crtc_init(dev, &nv_crtc->base, &nv50_crtc_funcs);
	drm_crtc_helper_add(&nv_crtc->base, &nv50_crtc_helper_funcs);
	drm_mode_crtc_set_gamma_size(&nv_crtc->base, 256);

797
	ret = nouveau_bo_new(dev, 64*64*4, 0x100, TTM_PL_FLAG_VRAM,
798
			     0, 0x0000, &nv_crtc->cursor.nvbo);
799 800 801 802 803 804 805 806 807 808 809
	if (!ret) {
		ret = nouveau_bo_pin(nv_crtc->cursor.nvbo, TTM_PL_FLAG_VRAM);
		if (!ret)
			ret = nouveau_bo_map(nv_crtc->cursor.nvbo);
		if (ret)
			nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
	}

	nv50_cursor_init(nv_crtc);
	return 0;
}