nv50_crtc.c 21.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
/*
 * Copyright (C) 2008 Maarten Maathuis.
 * All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice (including the
 * next paragraph) shall be included in all copies or substantial
 * portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
 * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 */

#include "drmP.h"
#include "drm_mode.h"
#include "drm_crtc_helper.h"

#define NOUVEAU_DMA_DEBUG (nouveau_reg_debug & NOUVEAU_REG_DEBUG_EVO)
#include "nouveau_reg.h"
#include "nouveau_drv.h"
#include "nouveau_hw.h"
#include "nouveau_encoder.h"
#include "nouveau_crtc.h"
#include "nouveau_fb.h"
#include "nouveau_connector.h"
#include "nv50_display.h"

static void
nv50_crtc_lut_load(struct drm_crtc *crtc)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	void __iomem *lut = nvbo_kmap_obj_iovirtual(nv_crtc->lut.nvbo);
	int i;

48
	NV_DEBUG_KMS(crtc->dev, "\n");
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

	for (i = 0; i < 256; i++) {
		writew(nv_crtc->lut.r[i] >> 2, lut + 8*i + 0);
		writew(nv_crtc->lut.g[i] >> 2, lut + 8*i + 2);
		writew(nv_crtc->lut.b[i] >> 2, lut + 8*i + 4);
	}

	if (nv_crtc->lut.depth == 30) {
		writew(nv_crtc->lut.r[i - 1] >> 2, lut + 8*i + 0);
		writew(nv_crtc->lut.g[i - 1] >> 2, lut + 8*i + 2);
		writew(nv_crtc->lut.b[i - 1] >> 2, lut + 8*i + 4);
	}
}

int
nv50_crtc_blank(struct nouveau_crtc *nv_crtc, bool blanked)
{
	struct drm_device *dev = nv_crtc->base.dev;
	struct drm_nouveau_private *dev_priv = dev->dev_private;
68
	struct nouveau_channel *evo = nv50_display(dev)->master;
69 70
	int index = nv_crtc->index, ret;

71 72
	NV_DEBUG_KMS(dev, "index %d\n", nv_crtc->index);
	NV_DEBUG_KMS(dev, "%s\n", blanked ? "blanked" : "unblanked");
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

	if (blanked) {
		nv_crtc->cursor.hide(nv_crtc, false);

		ret = RING_SPACE(evo, dev_priv->chipset != 0x50 ? 7 : 5);
		if (ret) {
			NV_ERROR(dev, "no space while blanking crtc\n");
			return ret;
		}
		BEGIN_RING(evo, 0, NV50_EVO_CRTC(index, CLUT_MODE), 2);
		OUT_RING(evo, NV50_EVO_CRTC_CLUT_MODE_BLANK);
		OUT_RING(evo, 0);
		if (dev_priv->chipset != 0x50) {
			BEGIN_RING(evo, 0, NV84_EVO_CRTC(index, CLUT_DMA), 1);
			OUT_RING(evo, NV84_EVO_CRTC_CLUT_DMA_HANDLE_NONE);
		}

		BEGIN_RING(evo, 0, NV50_EVO_CRTC(index, FB_DMA), 1);
		OUT_RING(evo, NV50_EVO_CRTC_FB_DMA_HANDLE_NONE);
	} else {
		if (nv_crtc->cursor.visible)
			nv_crtc->cursor.show(nv_crtc, false);
		else
			nv_crtc->cursor.hide(nv_crtc, false);

		ret = RING_SPACE(evo, dev_priv->chipset != 0x50 ? 10 : 8);
		if (ret) {
			NV_ERROR(dev, "no space while unblanking crtc\n");
			return ret;
		}
		BEGIN_RING(evo, 0, NV50_EVO_CRTC(index, CLUT_MODE), 2);
		OUT_RING(evo, nv_crtc->lut.depth == 8 ?
				NV50_EVO_CRTC_CLUT_MODE_OFF :
				NV50_EVO_CRTC_CLUT_MODE_ON);
107
		OUT_RING(evo, nv_crtc->lut.nvbo->bo.offset >> 8);
108 109 110 111 112 113 114 115 116 117
		if (dev_priv->chipset != 0x50) {
			BEGIN_RING(evo, 0, NV84_EVO_CRTC(index, CLUT_DMA), 1);
			OUT_RING(evo, NvEvoVRAM);
		}

		BEGIN_RING(evo, 0, NV50_EVO_CRTC(index, FB_OFFSET), 2);
		OUT_RING(evo, nv_crtc->fb.offset >> 8);
		OUT_RING(evo, 0);
		BEGIN_RING(evo, 0, NV50_EVO_CRTC(index, FB_DMA), 1);
		if (dev_priv->chipset != 0x50)
118 119
			if (nv_crtc->fb.tile_flags == 0x7a00 ||
			    nv_crtc->fb.tile_flags == 0xfe00)
120 121 122 123 124
				OUT_RING(evo, NvEvoFB32);
			else
			if (nv_crtc->fb.tile_flags == 0x7000)
				OUT_RING(evo, NvEvoFB16);
			else
125
				OUT_RING(evo, NvEvoVRAM_LP);
126
		else
127
			OUT_RING(evo, NvEvoVRAM_LP);
128 129 130 131 132 133 134
	}

	nv_crtc->fb.blanked = blanked;
	return 0;
}

static int
135
nv50_crtc_set_dither(struct nouveau_crtc *nv_crtc, bool update)
136
{
137 138 139 140 141 142 143 144 145 146 147 148 149
	struct nouveau_channel *evo = nv50_display(nv_crtc->base.dev)->master;
	struct nouveau_connector *nv_connector;
	struct drm_connector *connector;
	int head = nv_crtc->index, ret;
	u32 mode = 0x00;

	nv_connector = nouveau_crtc_connector_get(nv_crtc);
	connector = &nv_connector->base;
	if (nv_connector->dithering_mode == DITHERING_MODE_AUTO) {
		if (nv_crtc->base.fb->depth > connector->display_info.bpc * 3)
			mode = DITHERING_MODE_DYNAMIC2X2;
	} else {
		mode = nv_connector->dithering_mode;
150 151
	}

152 153 154 155 156 157
	if (nv_connector->dithering_depth == DITHERING_DEPTH_AUTO) {
		if (connector->display_info.bpc >= 8)
			mode |= DITHERING_DEPTH_8BPC;
	} else {
		mode |= nv_connector->dithering_depth;
	}
158

159 160 161 162 163 164 165 166 167
	ret = RING_SPACE(evo, 2 + (update ? 2 : 0));
	if (ret == 0) {
		BEGIN_RING(evo, 0, NV50_EVO_CRTC(head, DITHER_CTRL), 1);
		OUT_RING  (evo, mode);
		if (update) {
			BEGIN_RING(evo, 0, NV50_EVO_UPDATE, 1);
			OUT_RING  (evo, 0);
			FIRE_RING (evo);
		}
168 169
	}

170
	return ret;
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
}

struct nouveau_connector *
nouveau_crtc_connector_get(struct nouveau_crtc *nv_crtc)
{
	struct drm_device *dev = nv_crtc->base.dev;
	struct drm_connector *connector;
	struct drm_crtc *crtc = to_drm_crtc(nv_crtc);

	/* The safest approach is to find an encoder with the right crtc, that
	 * is also linked to a connector. */
	list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
		if (connector->encoder)
			if (connector->encoder->crtc == crtc)
				return nouveau_connector(connector);
	}

	return NULL;
}

static int
192
nv50_crtc_set_scale(struct nouveau_crtc *nv_crtc, bool update)
193
{
194
	struct nouveau_connector *nv_connector;
195 196
	struct drm_crtc *crtc = &nv_crtc->base;
	struct drm_device *dev = crtc->dev;
197
	struct nouveau_channel *evo = nv50_display(dev)->master;
198
	struct drm_display_mode *mode = &crtc->mode;
199
	int scaling_mode, ret;
200
	u32 ctrl = 0, oX, oY;
201

202
	NV_DEBUG_KMS(dev, "\n");
203

204 205 206 207
	nv_connector = nouveau_crtc_connector_get(nv_crtc);
	if (!nv_connector || !nv_connector->native_mode) {
		NV_ERROR(dev, "no native mode, forcing panel scaling\n");
		scaling_mode = DRM_MODE_SCALE_NONE;
208 209
	} else {
		scaling_mode = nv_connector->scaling_mode;
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
	}

	/* start off at the resolution we programmed the crtc for, this
	 * effectively handles NONE/FULL scaling
	 */
	if (scaling_mode != DRM_MODE_SCALE_NONE) {
		oX = nv_connector->native_mode->hdisplay;
		oY = nv_connector->native_mode->vdisplay;
	} else {
		oX = mode->hdisplay;
		oY = mode->vdisplay;
	}

	/* add overscan compensation if necessary, will keep the aspect
	 * ratio the same as the backend mode unless overridden by the
	 * user setting both hborder and vborder properties.
	 */
	if (nv_connector && ( nv_connector->underscan == UNDERSCAN_ON ||
			     (nv_connector->underscan == UNDERSCAN_AUTO &&
			      nv_connector->edid &&
			      drm_detect_hdmi_monitor(nv_connector->edid)))) {
		u32 bX = nv_connector->underscan_hborder;
		u32 bY = nv_connector->underscan_vborder;
		u32 aspect = (oY << 19) / oX;

		if (bX) {
			oX -= (bX * 2);
			if (bY) oY -= (bY * 2);
			else    oY  = ((oX * aspect) + (aspect / 2)) >> 19;
239
		} else {
240 241 242
			oX -= (oX >> 4) + 32;
			if (bY) oY -= (bY * 2);
			else    oY  = ((oX * aspect) + (aspect / 2)) >> 19;
243 244 245
		}
	}

246 247 248
	/* handle CENTER/ASPECT scaling, taking into account the areas
	 * removed already for overscan compensation
	 */
249
	switch (scaling_mode) {
250 251 252 253
	case DRM_MODE_SCALE_CENTER:
		oX = min((u32)mode->hdisplay, oX);
		oY = min((u32)mode->vdisplay, oY);
		/* fall-through */
254
	case DRM_MODE_SCALE_ASPECT:
255 256 257
		if (oY < oX) {
			u32 aspect = (mode->hdisplay << 19) / mode->vdisplay;
			oX = ((oY * aspect) + (aspect / 2)) >> 19;
258
		} else {
259 260
			u32 aspect = (mode->vdisplay << 19) / mode->hdisplay;
			oY = ((oX * aspect) + (aspect / 2)) >> 19;
261 262 263 264 265 266
		}
		break;
	default:
		break;
	}

267 268 269 270 271
	if (mode->hdisplay != oX || mode->vdisplay != oY ||
	    mode->flags & DRM_MODE_FLAG_INTERLACE ||
	    mode->flags & DRM_MODE_FLAG_DBLSCAN)
		ctrl |= NV50_EVO_CRTC_SCALE_CTRL_ACTIVE;

272
	ret = RING_SPACE(evo, 5);
273 274 275 276
	if (ret)
		return ret;

	BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, SCALE_CTRL), 1);
277
	OUT_RING  (evo, ctrl);
278
	BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, SCALE_RES1), 2);
279 280
	OUT_RING  (evo, oY << 16 | oX);
	OUT_RING  (evo, oY << 16 | oX);
281 282

	if (update) {
283
		nv50_display_flip_stop(crtc);
284
		nv50_display_sync(dev);
285
		nv50_display_flip_next(crtc, crtc->fb, NULL);
286 287 288 289 290 291 292 293
	}

	return 0;
}

int
nv50_crtc_set_clock(struct drm_device *dev, int head, int pclk)
{
294
	struct drm_nouveau_private *dev_priv = dev->dev_private;
295
	struct pll_lims pll;
296
	uint32_t reg1, reg2;
297
	int ret, N1, M1, N2, M2, P;
298

299
	ret = get_pll_limits(dev, PLL_VPLL0 + head, &pll);
300 301 302
	if (ret)
		return ret;

303 304 305 306
	if (pll.vco2.maxfreq) {
		ret = nv50_calc_pll(dev, &pll, pclk, &N1, &M1, &N2, &M2, &P);
		if (ret <= 0)
			return 0;
307

308
		NV_DEBUG(dev, "pclk %d out %d NM1 %d %d NM2 %d %d P %d\n",
309 310
			 pclk, ret, N1, M1, N2, M2, P);

311 312 313 314 315
		reg1 = nv_rd32(dev, pll.reg + 4) & 0xff00ff00;
		reg2 = nv_rd32(dev, pll.reg + 8) & 0x8000ff00;
		nv_wr32(dev, pll.reg + 0, 0x10000611);
		nv_wr32(dev, pll.reg + 4, reg1 | (M1 << 16) | N1);
		nv_wr32(dev, pll.reg + 8, reg2 | (P << 28) | (M2 << 16) | N2);
316 317
	} else
	if (dev_priv->chipset < NV_C0) {
318
		ret = nva3_calc_pll(dev, &pll, pclk, &N1, &N2, &M1, &P);
319 320 321 322 323
		if (ret <= 0)
			return 0;

		NV_DEBUG(dev, "pclk %d out %d N %d fN 0x%04x M %d P %d\n",
			 pclk, ret, N1, N2, M1, P);
324

325 326 327 328
		reg1 = nv_rd32(dev, pll.reg + 4) & 0xffc00000;
		nv_wr32(dev, pll.reg + 0, 0x50000610);
		nv_wr32(dev, pll.reg + 4, reg1 | (P << 16) | (M1 << 8) | N1);
		nv_wr32(dev, pll.reg + 8, N2);
329
	} else {
330
		ret = nva3_calc_pll(dev, &pll, pclk, &N1, &N2, &M1, &P);
331 332 333 334 335 336
		if (ret <= 0)
			return 0;

		NV_DEBUG(dev, "pclk %d out %d N %d fN 0x%04x M %d P %d\n",
			 pclk, ret, N1, N2, M1, P);

337 338 339
		nv_mask(dev, pll.reg + 0x0c, 0x00000000, 0x00000100);
		nv_wr32(dev, pll.reg + 0x04, (P << 16) | (N1 << 8) | M1);
		nv_wr32(dev, pll.reg + 0x10, N2 << 16);
340 341 342 343 344 345 346 347
	}

	return 0;
}

static void
nv50_crtc_destroy(struct drm_crtc *crtc)
{
348 349
	struct drm_device *dev;
	struct nouveau_crtc *nv_crtc;
350 351 352 353

	if (!crtc)
		return;

354 355 356 357 358
	dev = crtc->dev;
	nv_crtc = nouveau_crtc(crtc);

	NV_DEBUG_KMS(dev, "\n");

359 360
	drm_crtc_cleanup(&nv_crtc->base);

361
	nouveau_bo_unmap(nv_crtc->lut.nvbo);
362
	nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
363
	nouveau_bo_unmap(nv_crtc->cursor.nvbo);
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
	nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
	kfree(nv_crtc);
}

int
nv50_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv,
		     uint32_t buffer_handle, uint32_t width, uint32_t height)
{
	struct drm_device *dev = crtc->dev;
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	struct nouveau_bo *cursor = NULL;
	struct drm_gem_object *gem;
	int ret = 0, i;

	if (!buffer_handle) {
		nv_crtc->cursor.hide(nv_crtc, true);
		return 0;
	}

383 384 385
	if (width != 64 || height != 64)
		return -EINVAL;

386 387
	gem = drm_gem_object_lookup(dev, file_priv, buffer_handle);
	if (!gem)
388
		return -ENOENT;
389 390 391 392 393 394 395 396 397 398 399 400
	cursor = nouveau_gem_object(gem);

	ret = nouveau_bo_map(cursor);
	if (ret)
		goto out;

	/* The simple will do for now. */
	for (i = 0; i < 64 * 64; i++)
		nouveau_bo_wr32(nv_crtc->cursor.nvbo, i, nouveau_bo_rd32(cursor, i));

	nouveau_bo_unmap(cursor);

401
	nv_crtc->cursor.set_offset(nv_crtc, nv_crtc->cursor.nvbo->bo.offset);
402 403 404
	nv_crtc->cursor.show(nv_crtc, true);

out:
405
	drm_gem_object_unreference_unlocked(gem);
406 407 408 409 410 411 412 413 414 415 416 417 418 419
	return ret;
}

int
nv50_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);

	nv_crtc->cursor.set_pos(nv_crtc, x, y);
	return 0;
}

static void
nv50_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
J
James Simmons 已提交
420
		    uint32_t start, uint32_t size)
421
{
J
James Simmons 已提交
422
	int end = (start + size > 256) ? 256 : start + size, i;
423 424
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);

J
James Simmons 已提交
425
	for (i = start; i < end; i++) {
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
		nv_crtc->lut.r[i] = r[i];
		nv_crtc->lut.g[i] = g[i];
		nv_crtc->lut.b[i] = b[i];
	}

	/* We need to know the depth before we upload, but it's possible to
	 * get called before a framebuffer is bound.  If this is the case,
	 * mark the lut values as dirty by setting depth==0, and it'll be
	 * uploaded on the first mode_set_base()
	 */
	if (!nv_crtc->base.fb) {
		nv_crtc->lut.depth = 0;
		return;
	}

	nv50_crtc_lut_load(crtc);
}

static void
nv50_crtc_save(struct drm_crtc *crtc)
{
	NV_ERROR(crtc->dev, "!!\n");
}

static void
nv50_crtc_restore(struct drm_crtc *crtc)
{
	NV_ERROR(crtc->dev, "!!\n");
}

static const struct drm_crtc_funcs nv50_crtc_funcs = {
	.save = nv50_crtc_save,
	.restore = nv50_crtc_restore,
	.cursor_set = nv50_crtc_cursor_set,
	.cursor_move = nv50_crtc_cursor_move,
	.gamma_set = nv50_crtc_gamma_set,
	.set_config = drm_crtc_helper_set_config,
463
	.page_flip = nouveau_crtc_page_flip,
464 465 466 467 468 469 470 471 472 473 474 475 476 477
	.destroy = nv50_crtc_destroy,
};

static void
nv50_crtc_dpms(struct drm_crtc *crtc, int mode)
{
}

static void
nv50_crtc_prepare(struct drm_crtc *crtc)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	struct drm_device *dev = crtc->dev;

478
	NV_DEBUG_KMS(dev, "index %d\n", nv_crtc->index);
479

480
	nv50_display_flip_stop(crtc);
481
	drm_vblank_pre_modeset(dev, nv_crtc->index);
482 483 484 485 486 487 488 489 490
	nv50_crtc_blank(nv_crtc, true);
}

static void
nv50_crtc_commit(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);

491
	NV_DEBUG_KMS(dev, "index %d\n", nv_crtc->index);
492 493

	nv50_crtc_blank(nv_crtc, false);
494
	drm_vblank_post_modeset(dev, nv_crtc->index);
495
	nv50_display_sync(dev);
496
	nv50_display_flip_next(crtc, crtc->fb, NULL);
497 498 499 500 501 502 503 504 505 506
}

static bool
nv50_crtc_mode_fixup(struct drm_crtc *crtc, struct drm_display_mode *mode,
		     struct drm_display_mode *adjusted_mode)
{
	return true;
}

static int
507 508
nv50_crtc_do_mode_set_base(struct drm_crtc *crtc,
			   struct drm_framebuffer *passed_fb,
509
			   int x, int y, bool atomic)
510 511 512 513
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	struct drm_device *dev = nv_crtc->base.dev;
	struct drm_nouveau_private *dev_priv = dev->dev_private;
514
	struct nouveau_channel *evo = nv50_display(dev)->master;
515 516
	struct drm_framebuffer *drm_fb;
	struct nouveau_framebuffer *fb;
517
	int ret;
518

519
	NV_DEBUG_KMS(dev, "index %d\n", nv_crtc->index);
520

521 522 523 524 525 526
	/* no fb bound */
	if (!atomic && !crtc->fb) {
		NV_DEBUG_KMS(dev, "No FB bound\n");
		return 0;
	}

527 528 529 530 531 532 533
	/* If atomic, we want to switch to the fb we were passed, so
	 * now we update pointers to do that.  (We don't pin; just
	 * assume we're already pinned and update the base address.)
	 */
	if (atomic) {
		drm_fb = passed_fb;
		fb = nouveau_framebuffer(passed_fb);
534
	} else {
535 536
		drm_fb = crtc->fb;
		fb = nouveau_framebuffer(crtc->fb);
537 538 539 540 541 542 543 544 545 546 547 548 549
		/* If not atomic, we can go ahead and pin, and unpin the
		 * old fb we were passed.
		 */
		ret = nouveau_bo_pin(fb->nvbo, TTM_PL_FLAG_VRAM);
		if (ret)
			return ret;

		if (passed_fb) {
			struct nouveau_framebuffer *ofb = nouveau_framebuffer(passed_fb);
			nouveau_bo_unpin(ofb->nvbo);
		}
	}

550
	nv_crtc->fb.offset = fb->nvbo->bo.offset;
551
	nv_crtc->fb.tile_flags = nouveau_bo_tile_layout(fb->nvbo);
552 553 554 555 556 557 558
	nv_crtc->fb.cpp = drm_fb->bits_per_pixel / 8;
	if (!nv_crtc->fb.blanked && dev_priv->chipset != 0x50) {
		ret = RING_SPACE(evo, 2);
		if (ret)
			return ret;

		BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, FB_DMA), 1);
559
		OUT_RING  (evo, fb->r_dma);
560 561 562 563 564 565 566
	}

	ret = RING_SPACE(evo, 12);
	if (ret)
		return ret;

	BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, FB_OFFSET), 5);
567 568 569 570 571
	OUT_RING  (evo, nv_crtc->fb.offset >> 8);
	OUT_RING  (evo, 0);
	OUT_RING  (evo, (drm_fb->height << 16) | drm_fb->width);
	OUT_RING  (evo, fb->r_pitch);
	OUT_RING  (evo, fb->r_format);
572 573

	BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, CLUT_MODE), 1);
574 575
	OUT_RING  (evo, fb->base.depth == 8 ?
		   NV50_EVO_CRTC_CLUT_MODE_OFF : NV50_EVO_CRTC_CLUT_MODE_ON);
576 577

	BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, COLOR_CTRL), 1);
578
	OUT_RING  (evo, NV50_EVO_CRTC_COLOR_CTRL_COLOR);
579
	BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, FB_POS), 1);
580
	OUT_RING  (evo, (y << 16) | x);
581 582 583 584 585 586 587 588 589 590

	if (nv_crtc->lut.depth != fb->base.depth) {
		nv_crtc->lut.depth = fb->base.depth;
		nv50_crtc_lut_load(crtc);
	}

	return 0;
}

static int
591 592
nv50_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *umode,
		   struct drm_display_mode *mode, int x, int y,
593 594 595
		   struct drm_framebuffer *old_fb)
{
	struct drm_device *dev = crtc->dev;
596
	struct nouveau_channel *evo = nv50_display(dev)->master;
597
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
598 599 600 601 602 603
	u32 head = nv_crtc->index * 0x400;
	u32 ilace = (mode->flags & DRM_MODE_FLAG_INTERLACE) ? 2 : 1;
	u32 vscan = (mode->flags & DRM_MODE_FLAG_DBLSCAN) ? 2 : 1;
	u32 hactive, hsynce, hbackp, hfrontp, hblanke, hblanks;
	u32 vactive, vsynce, vbackp, vfrontp, vblanke, vblanks;
	u32 vblan2e = 0, vblan2s = 1;
604 605
	int ret;

606 607 608 609 610 611 612 613 614 615 616
	/* hw timing description looks like this:
	 *
	 * <sync> <back porch> <---------display---------> <front porch>
	 * ______
	 *       |____________|---------------------------|____________|
	 *
	 *       ^ synce      ^ blanke                    ^ blanks     ^ active
	 *
	 * interlaced modes also have 2 additional values pointing at the end
	 * and start of the next field's blanking period.
	 */
617

618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
	hactive = mode->htotal;
	hsynce  = mode->hsync_end - mode->hsync_start - 1;
	hbackp  = mode->htotal - mode->hsync_end;
	hblanke = hsynce + hbackp;
	hfrontp = mode->hsync_start - mode->hdisplay;
	hblanks = mode->htotal - hfrontp - 1;

	vactive = mode->vtotal * vscan / ilace;
	vsynce  = ((mode->vsync_end - mode->vsync_start) * vscan / ilace) - 1;
	vbackp  = (mode->vtotal - mode->vsync_end) * vscan / ilace;
	vblanke = vsynce + vbackp;
	vfrontp = (mode->vsync_start - mode->vdisplay) * vscan / ilace;
	vblanks = vactive - vfrontp - 1;
	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
		vblan2e = vactive + vsynce + vbackp;
		vblan2s = vblan2e + (mode->vdisplay * vscan / ilace);
		vactive = (vactive * 2) + 1;
635 636
	}

637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
	ret = RING_SPACE(evo, 18);
	if (ret == 0) {
		BEGIN_RING(evo, 0, 0x0804 + head, 2);
		OUT_RING  (evo, 0x00800000 | mode->clock);
		OUT_RING  (evo, (ilace == 2) ? 2 : 0);
		BEGIN_RING(evo, 0, 0x0810 + head, 6);
		OUT_RING  (evo, 0x00000000); /* border colour */
		OUT_RING  (evo, (vactive << 16) | hactive);
		OUT_RING  (evo, ( vsynce << 16) | hsynce);
		OUT_RING  (evo, (vblanke << 16) | hblanke);
		OUT_RING  (evo, (vblanks << 16) | hblanks);
		OUT_RING  (evo, (vblan2e << 16) | vblan2s);
		BEGIN_RING(evo, 0, 0x082c + head, 1);
		OUT_RING  (evo, 0x00000000);
		BEGIN_RING(evo, 0, 0x0900 + head, 1);
		OUT_RING  (evo, 0x00000311); /* makes sync channel work */
		BEGIN_RING(evo, 0, 0x08c8 + head, 1);
		OUT_RING  (evo, (umode->vdisplay << 16) | umode->hdisplay);
		BEGIN_RING(evo, 0, 0x08d4 + head, 1);
		OUT_RING  (evo, 0x00000000); /* screen position */
657 658
	}

659 660
	nv_crtc->set_dither(nv_crtc, false);
	nv_crtc->set_scale(nv_crtc, false);
661

662
	return nv50_crtc_do_mode_set_base(crtc, old_fb, x, y, false);
663 664 665 666 667 668
}

static int
nv50_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
			struct drm_framebuffer *old_fb)
{
669 670
	int ret;

671
	nv50_display_flip_stop(crtc);
672 673 674 675
	ret = nv50_crtc_do_mode_set_base(crtc, old_fb, x, y, false);
	if (ret)
		return ret;

676
	ret = nv50_display_sync(crtc->dev);
677 678 679 680
	if (ret)
		return ret;

	return nv50_display_flip_next(crtc, crtc->fb, NULL);
681 682 683 684 685
}

static int
nv50_crtc_mode_set_base_atomic(struct drm_crtc *crtc,
			       struct drm_framebuffer *fb,
686
			       int x, int y, enum mode_set_atomic state)
687
{
688 689
	int ret;

690
	nv50_display_flip_stop(crtc);
691 692 693 694
	ret = nv50_crtc_do_mode_set_base(crtc, fb, x, y, true);
	if (ret)
		return ret;

695
	return nv50_display_sync(crtc->dev);
696 697 698 699 700 701 702 703 704
}

static const struct drm_crtc_helper_funcs nv50_crtc_helper_funcs = {
	.dpms = nv50_crtc_dpms,
	.prepare = nv50_crtc_prepare,
	.commit = nv50_crtc_commit,
	.mode_fixup = nv50_crtc_mode_fixup,
	.mode_set = nv50_crtc_mode_set,
	.mode_set_base = nv50_crtc_mode_set_base,
705
	.mode_set_base_atomic = nv50_crtc_mode_set_base_atomic,
706 707 708 709 710 711 712 713 714
	.load_lut = nv50_crtc_lut_load,
};

int
nv50_crtc_create(struct drm_device *dev, int index)
{
	struct nouveau_crtc *nv_crtc = NULL;
	int ret, i;

715
	NV_DEBUG_KMS(dev, "\n");
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730

	nv_crtc = kzalloc(sizeof(*nv_crtc), GFP_KERNEL);
	if (!nv_crtc)
		return -ENOMEM;

	/* Default CLUT parameters, will be activated on the hw upon
	 * first mode set.
	 */
	for (i = 0; i < 256; i++) {
		nv_crtc->lut.r[i] = i << 8;
		nv_crtc->lut.g[i] = i << 8;
		nv_crtc->lut.b[i] = i << 8;
	}
	nv_crtc->lut.depth = 0;

731
	ret = nouveau_bo_new(dev, 4096, 0x100, TTM_PL_FLAG_VRAM,
732
			     0, 0x0000, &nv_crtc->lut.nvbo);
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
	if (!ret) {
		ret = nouveau_bo_pin(nv_crtc->lut.nvbo, TTM_PL_FLAG_VRAM);
		if (!ret)
			ret = nouveau_bo_map(nv_crtc->lut.nvbo);
		if (ret)
			nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
	}

	if (ret) {
		kfree(nv_crtc);
		return ret;
	}

	nv_crtc->index = index;

	/* set function pointers */
	nv_crtc->set_dither = nv50_crtc_set_dither;
	nv_crtc->set_scale = nv50_crtc_set_scale;

	drm_crtc_init(dev, &nv_crtc->base, &nv50_crtc_funcs);
	drm_crtc_helper_add(&nv_crtc->base, &nv50_crtc_helper_funcs);
	drm_mode_crtc_set_gamma_size(&nv_crtc->base, 256);

756
	ret = nouveau_bo_new(dev, 64*64*4, 0x100, TTM_PL_FLAG_VRAM,
757
			     0, 0x0000, &nv_crtc->cursor.nvbo);
758 759 760 761 762 763 764 765 766 767 768
	if (!ret) {
		ret = nouveau_bo_pin(nv_crtc->cursor.nvbo, TTM_PL_FLAG_VRAM);
		if (!ret)
			ret = nouveau_bo_map(nv_crtc->cursor.nvbo);
		if (ret)
			nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
	}

	nv50_cursor_init(nv_crtc);
	return 0;
}