vmscan.c 50.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/pagevec.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/notifier.h>
#include <linux/rwsem.h>
37
#include <linux/delay.h>
38
#include <linux/kthread.h>
39
#include <linux/freezer.h>
L
Linus Torvalds 已提交
40 41 42 43 44 45

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

46 47
#include "internal.h"

L
Linus Torvalds 已提交
48 49 50 51 52
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* This context's GFP mask */
A
Al Viro 已提交
53
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
54 55 56

	int may_writepage;

57 58 59
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

L
Linus Torvalds 已提交
60 61 62 63 64
	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
	 * In this context, it doesn't matter that we scan the
	 * whole list at once. */
	int swap_cluster_max;
65 66

	int swappiness;
67 68

	int all_unreclaimable;
A
Andy Whitcroft 已提交
69 70

	int order;
L
Linus Torvalds 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
107
long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
108 109 110 111 112 113 114

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

/*
 * Add a shrinker callback to be called from the vm
 */
115
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
116
{
117 118 119 120
	shrinker->nr = 0;
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
121
}
122
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
123 124 125 126

/*
 * Remove one
 */
127
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
128 129 130 131 132
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
133
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
 * If the vm encounted mapped pages on the LRU it increase the pressure on
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
152 153
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
154
 */
155 156
unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
			unsigned long lru_pages)
L
Linus Torvalds 已提交
157 158
{
	struct shrinker *shrinker;
159
	unsigned long ret = 0;
L
Linus Torvalds 已提交
160 161 162 163 164

	if (scanned == 0)
		scanned = SWAP_CLUSTER_MAX;

	if (!down_read_trylock(&shrinker_rwsem))
165
		return 1;	/* Assume we'll be able to shrink next time */
L
Linus Torvalds 已提交
166 167 168 169

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
		unsigned long total_scan;
170
		unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
L
Linus Torvalds 已提交
171 172

		delta = (4 * scanned) / shrinker->seeks;
173
		delta *= max_pass;
L
Linus Torvalds 已提交
174 175
		do_div(delta, lru_pages + 1);
		shrinker->nr += delta;
176 177 178 179 180 181 182 183 184 185 186 187 188
		if (shrinker->nr < 0) {
			printk(KERN_ERR "%s: nr=%ld\n",
					__FUNCTION__, shrinker->nr);
			shrinker->nr = max_pass;
		}

		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
		if (shrinker->nr > max_pass * 2)
			shrinker->nr = max_pass * 2;
L
Linus Torvalds 已提交
189 190 191 192 193 194 195

		total_scan = shrinker->nr;
		shrinker->nr = 0;

		while (total_scan >= SHRINK_BATCH) {
			long this_scan = SHRINK_BATCH;
			int shrink_ret;
196
			int nr_before;
L
Linus Torvalds 已提交
197

198 199
			nr_before = (*shrinker->shrink)(0, gfp_mask);
			shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
L
Linus Torvalds 已提交
200 201
			if (shrink_ret == -1)
				break;
202 203
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
204
			count_vm_events(SLABS_SCANNED, this_scan);
L
Linus Torvalds 已提交
205 206 207 208 209 210 211 212
			total_scan -= this_scan;

			cond_resched();
		}

		shrinker->nr += total_scan;
	}
	up_read(&shrinker_rwsem);
213
	return ret;
L
Linus Torvalds 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
}

/* Called without lock on whether page is mapped, so answer is unstable */
static inline int page_mapping_inuse(struct page *page)
{
	struct address_space *mapping;

	/* Page is in somebody's page tables. */
	if (page_mapped(page))
		return 1;

	/* Be more reluctant to reclaim swapcache than pagecache */
	if (PageSwapCache(page))
		return 1;

	mapping = page_mapping(page);
	if (!mapping)
		return 0;

	/* File is mmap'd by somebody? */
	return mapping_mapped(mapping);
}

static inline int is_page_cache_freeable(struct page *page)
{
	return page_count(page) - !!PagePrivate(page) == 2;
}

static int may_write_to_queue(struct backing_dev_info *bdi)
{
244
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
	lock_page(page);
269 270
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
271 272 273
	unlock_page(page);
}

274 275 276 277 278 279 280 281 282 283 284 285
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
286
/*
A
Andrew Morton 已提交
287 288
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
289
 */
290
static pageout_t pageout(struct page *page, struct address_space *mapping)
L
Linus Torvalds 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
	 * If this process is currently in generic_file_write() against
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 * See swapfile.c:page_queue_congested().
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
316
		if (PagePrivate(page)) {
L
Linus Torvalds 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
				printk("%s: orphaned page\n", __FUNCTION__);
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
	if (!may_write_to_queue(mapping->backing_dev_info))
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
335 336
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
337 338 339 340 341 342 343 344
			.nonblocking = 1,
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
345
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
346 347 348 349 350 351 352
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
353
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
354 355 356 357 358 359
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

360 361 362 363 364 365
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
C
Christoph Lameter 已提交
366
int remove_mapping(struct address_space *mapping, struct page *page)
367
{
368 369
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
370 371 372

	write_lock_irq(&mapping->tree_lock);
	/*
N
Nick Piggin 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
	 */
	if (unlikely(page_count(page) != 2))
		goto cannot_free;
	smp_rmb();
	if (unlikely(PageDirty(page)))
		goto cannot_free;

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
		write_unlock_irq(&mapping->tree_lock);
		swap_free(swap);
		__put_page(page);	/* The pagecache ref */
		return 1;
	}

	__remove_from_page_cache(page);
	write_unlock_irq(&mapping->tree_lock);
	__put_page(page);
	return 1;

cannot_free:
	write_unlock_irq(&mapping->tree_lock);
	return 0;
}

L
Linus Torvalds 已提交
422
/*
A
Andrew Morton 已提交
423
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
424
 */
A
Andrew Morton 已提交
425 426
static unsigned long shrink_page_list(struct list_head *page_list,
					struct scan_control *sc)
L
Linus Torvalds 已提交
427 428 429 430
{
	LIST_HEAD(ret_pages);
	struct pagevec freed_pvec;
	int pgactivate = 0;
431
	unsigned long nr_reclaimed = 0;
L
Linus Torvalds 已提交
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449

	cond_resched();

	pagevec_init(&freed_pvec, 1);
	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
		int referenced;

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

		if (TestSetPageLocked(page))
			goto keep;

N
Nick Piggin 已提交
450
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
451 452

		sc->nr_scanned++;
453 454 455 456

		if (!sc->may_swap && page_mapped(page))
			goto keep_locked;

L
Linus Torvalds 已提交
457 458 459 460 461 462 463
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

		if (PageWriteback(page))
			goto keep_locked;

464
		referenced = page_referenced(page, 1);
L
Linus Torvalds 已提交
465
		/* In active use or really unfreeable?  Activate it. */
A
Andy Whitcroft 已提交
466 467
		if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
					referenced && page_mapping_inuse(page))
L
Linus Torvalds 已提交
468 469 470 471 472 473 474
			goto activate_locked;

#ifdef CONFIG_SWAP
		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
475
		if (PageAnon(page) && !PageSwapCache(page))
476
			if (!add_to_swap(page, GFP_ATOMIC))
L
Linus Torvalds 已提交
477 478 479 480 481 482 483 484 485 486 487 488
				goto activate_locked;
#endif /* CONFIG_SWAP */

		mapping = page_mapping(page);
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
489
			switch (try_to_unmap(page, 0)) {
L
Linus Torvalds 已提交
490 491 492 493 494 495 496 497 498 499
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
A
Andy Whitcroft 已提交
500
			if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
L
Linus Torvalds 已提交
501 502 503
				goto keep_locked;
			if (!may_enter_fs)
				goto keep_locked;
504
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
				goto keep_locked;

			/* Page is dirty, try to write it out here */
			switch(pageout(page, mapping)) {
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
				if (PageWriteback(page) || PageDirty(page))
					goto keep;
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
				if (TestSetPageLocked(page))
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
		 * will do this, as well as the blockdev mapping. 
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
		if (PagePrivate(page)) {
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
			if (!mapping && page_count(page) == 1)
				goto free_it;
		}

558
		if (!mapping || !remove_mapping(mapping, page))
559
			goto keep_locked;
L
Linus Torvalds 已提交
560 561 562

free_it:
		unlock_page(page);
563
		nr_reclaimed++;
L
Linus Torvalds 已提交
564 565 566 567 568 569 570 571 572 573 574
		if (!pagevec_add(&freed_pvec, page))
			__pagevec_release_nonlru(&freed_pvec);
		continue;

activate_locked:
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
575
		VM_BUG_ON(PageLRU(page));
L
Linus Torvalds 已提交
576 577 578 579
	}
	list_splice(&ret_pages, page_list);
	if (pagevec_count(&freed_pvec))
		__pagevec_release_nonlru(&freed_pvec);
580
	count_vm_events(PGACTIVATE, pgactivate);
581
	return nr_reclaimed;
L
Linus Torvalds 已提交
582 583
}

A
Andy Whitcroft 已提交
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
/* LRU Isolation modes. */
#define ISOLATE_INACTIVE 0	/* Isolate inactive pages. */
#define ISOLATE_ACTIVE 1	/* Isolate active pages. */
#define ISOLATE_BOTH 2		/* Isolate both active and inactive pages. */

/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
static int __isolate_lru_page(struct page *page, int mode)
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

	/*
	 * When checking the active state, we need to be sure we are
	 * dealing with comparible boolean values.  Take the logical not
	 * of each.
	 */
	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
		return ret;

	ret = -EBUSY;
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
629 630 631 632 633 634 635 636 637 638 639 640 641 642
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
 * @src:	The LRU list to pull pages off.
 * @dst:	The temp list to put pages on to.
 * @scanned:	The number of pages that were scanned.
A
Andy Whitcroft 已提交
643 644
 * @order:	The caller's attempted allocation order
 * @mode:	One of the LRU isolation modes
L
Linus Torvalds 已提交
645 646 647
 *
 * returns how many pages were moved onto *@dst.
 */
648 649
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
		struct list_head *src, struct list_head *dst,
A
Andy Whitcroft 已提交
650
		unsigned long *scanned, int order, int mode)
L
Linus Torvalds 已提交
651
{
652
	unsigned long nr_taken = 0;
653
	unsigned long scan;
L
Linus Torvalds 已提交
654

655
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
656 657 658 659 660 661
		struct page *page;
		unsigned long pfn;
		unsigned long end_pfn;
		unsigned long page_pfn;
		int zone_id;

L
Linus Torvalds 已提交
662 663 664
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
665
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
666

A
Andy Whitcroft 已提交
667 668 669
		switch (__isolate_lru_page(page, mode)) {
		case 0:
			list_move(&page->lru, dst);
670
			nr_taken++;
A
Andy Whitcroft 已提交
671 672 673 674 675 676
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
677

A
Andy Whitcroft 已提交
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
		default:
			BUG();
		}

		if (!order)
			continue;

		/*
		 * Attempt to take all pages in the order aligned region
		 * surrounding the tag page.  Only take those pages of
		 * the same active state as that tag page.  We may safely
		 * round the target page pfn down to the requested order
		 * as the mem_map is guarenteed valid out to MAX_ORDER,
		 * where that page is in a different zone we will detect
		 * it from its zone id and abort this block scan.
		 */
		zone_id = page_zone_id(page);
		page_pfn = page_to_pfn(page);
		pfn = page_pfn & ~((1 << order) - 1);
		end_pfn = pfn + (1 << order);
		for (; pfn < end_pfn; pfn++) {
			struct page *cursor_page;

			/* The target page is in the block, ignore it. */
			if (unlikely(pfn == page_pfn))
				continue;

			/* Avoid holes within the zone. */
			if (unlikely(!pfn_valid_within(pfn)))
				break;

			cursor_page = pfn_to_page(pfn);
			/* Check that we have not crossed a zone boundary. */
			if (unlikely(page_zone_id(cursor_page) != zone_id))
				continue;
			switch (__isolate_lru_page(cursor_page, mode)) {
			case 0:
				list_move(&cursor_page->lru, dst);
				nr_taken++;
				scan++;
				break;

			case -EBUSY:
				/* else it is being freed elsewhere */
				list_move(&cursor_page->lru, src);
			default:
				break;
			}
		}
L
Linus Torvalds 已提交
727 728 729 730 731 732
	}

	*scanned = scan;
	return nr_taken;
}

A
Andy Whitcroft 已提交
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
/*
 * clear_active_flags() is a helper for shrink_active_list(), clearing
 * any active bits from the pages in the list.
 */
static unsigned long clear_active_flags(struct list_head *page_list)
{
	int nr_active = 0;
	struct page *page;

	list_for_each_entry(page, page_list, lru)
		if (PageActive(page)) {
			ClearPageActive(page);
			nr_active++;
		}

	return nr_active;
}

L
Linus Torvalds 已提交
751
/*
A
Andrew Morton 已提交
752 753
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
754
 */
A
Andrew Morton 已提交
755 756
static unsigned long shrink_inactive_list(unsigned long max_scan,
				struct zone *zone, struct scan_control *sc)
L
Linus Torvalds 已提交
757 758 759
{
	LIST_HEAD(page_list);
	struct pagevec pvec;
760
	unsigned long nr_scanned = 0;
761
	unsigned long nr_reclaimed = 0;
L
Linus Torvalds 已提交
762 763 764 765 766

	pagevec_init(&pvec, 1);

	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
767
	do {
L
Linus Torvalds 已提交
768
		struct page *page;
769 770 771
		unsigned long nr_taken;
		unsigned long nr_scan;
		unsigned long nr_freed;
A
Andy Whitcroft 已提交
772
		unsigned long nr_active;
L
Linus Torvalds 已提交
773 774

		nr_taken = isolate_lru_pages(sc->swap_cluster_max,
A
Andy Whitcroft 已提交
775 776 777 778 779 780 781 782 783
			     &zone->inactive_list,
			     &page_list, &nr_scan, sc->order,
			     (sc->order > PAGE_ALLOC_COSTLY_ORDER)?
					     ISOLATE_BOTH : ISOLATE_INACTIVE);
		nr_active = clear_active_flags(&page_list);

		__mod_zone_page_state(zone, NR_ACTIVE, -nr_active);
		__mod_zone_page_state(zone, NR_INACTIVE,
						-(nr_taken - nr_active));
L
Linus Torvalds 已提交
784 785 786
		zone->pages_scanned += nr_scan;
		spin_unlock_irq(&zone->lru_lock);

787
		nr_scanned += nr_scan;
A
Andrew Morton 已提交
788
		nr_freed = shrink_page_list(&page_list, sc);
789
		nr_reclaimed += nr_freed;
N
Nick Piggin 已提交
790 791
		local_irq_disable();
		if (current_is_kswapd()) {
792 793
			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
			__count_vm_events(KSWAPD_STEAL, nr_freed);
N
Nick Piggin 已提交
794
		} else
795
			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
S
Shantanu Goel 已提交
796
		__count_zone_vm_events(PGSTEAL, zone, nr_freed);
N
Nick Piggin 已提交
797

798 799 800
		if (nr_taken == 0)
			goto done;

N
Nick Piggin 已提交
801
		spin_lock(&zone->lru_lock);
L
Linus Torvalds 已提交
802 803 804 805 806
		/*
		 * Put back any unfreeable pages.
		 */
		while (!list_empty(&page_list)) {
			page = lru_to_page(&page_list);
N
Nick Piggin 已提交
807
			VM_BUG_ON(PageLRU(page));
N
Nick Piggin 已提交
808
			SetPageLRU(page);
L
Linus Torvalds 已提交
809 810 811 812 813 814 815 816 817 818 819
			list_del(&page->lru);
			if (PageActive(page))
				add_page_to_active_list(zone, page);
			else
				add_page_to_inactive_list(zone, page);
			if (!pagevec_add(&pvec, page)) {
				spin_unlock_irq(&zone->lru_lock);
				__pagevec_release(&pvec);
				spin_lock_irq(&zone->lru_lock);
			}
		}
820
  	} while (nr_scanned < max_scan);
821
	spin_unlock(&zone->lru_lock);
L
Linus Torvalds 已提交
822
done:
823
	local_irq_enable();
L
Linus Torvalds 已提交
824
	pagevec_release(&pvec);
825
	return nr_reclaimed;
L
Linus Torvalds 已提交
826 827
}

828 829 830 831 832 833 834 835 836 837 838 839 840 841
/*
 * We are about to scan this zone at a certain priority level.  If that priority
 * level is smaller (ie: more urgent) than the previous priority, then note
 * that priority level within the zone.  This is done so that when the next
 * process comes in to scan this zone, it will immediately start out at this
 * priority level rather than having to build up its own scanning priority.
 * Here, this priority affects only the reclaim-mapped threshold.
 */
static inline void note_zone_scanning_priority(struct zone *zone, int priority)
{
	if (priority < zone->prev_priority)
		zone->prev_priority = priority;
}

N
Nick Piggin 已提交
842 843
static inline int zone_is_near_oom(struct zone *zone)
{
844 845
	return zone->pages_scanned >= (zone_page_state(zone, NR_ACTIVE)
				+ zone_page_state(zone, NR_INACTIVE))*3;
N
Nick Piggin 已提交
846 847
}

L
Linus Torvalds 已提交
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
A
Andrew Morton 已提交
865
static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
866
				struct scan_control *sc, int priority)
L
Linus Torvalds 已提交
867
{
868
	unsigned long pgmoved;
L
Linus Torvalds 已提交
869
	int pgdeactivate = 0;
870
	unsigned long pgscanned;
L
Linus Torvalds 已提交
871 872 873 874 875 876
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
	LIST_HEAD(l_inactive);	/* Pages to go onto the inactive_list */
	LIST_HEAD(l_active);	/* Pages to go onto the active_list */
	struct page *page;
	struct pagevec pvec;
	int reclaim_mapped = 0;
877

878
	if (sc->may_swap) {
879 880 881 882
		long mapped_ratio;
		long distress;
		long swap_tendency;

N
Nick Piggin 已提交
883 884 885
		if (zone_is_near_oom(zone))
			goto force_reclaim_mapped;

886 887 888 889
		/*
		 * `distress' is a measure of how much trouble we're having
		 * reclaiming pages.  0 -> no problems.  100 -> great trouble.
		 */
890
		distress = 100 >> min(zone->prev_priority, priority);
891 892 893 894 895 896 897

		/*
		 * The point of this algorithm is to decide when to start
		 * reclaiming mapped memory instead of just pagecache.  Work out
		 * how much memory
		 * is mapped.
		 */
898 899
		mapped_ratio = ((global_page_state(NR_FILE_MAPPED) +
				global_page_state(NR_ANON_PAGES)) * 100) /
900
					vm_total_pages;
901 902 903 904 905 906 907 908 909 910 911 912 913

		/*
		 * Now decide how much we really want to unmap some pages.  The
		 * mapped ratio is downgraded - just because there's a lot of
		 * mapped memory doesn't necessarily mean that page reclaim
		 * isn't succeeding.
		 *
		 * The distress ratio is important - we don't want to start
		 * going oom.
		 *
		 * A 100% value of vm_swappiness overrides this algorithm
		 * altogether.
		 */
914
		swap_tendency = mapped_ratio / 2 + distress + sc->swappiness;
915 916 917 918 919 920

		/*
		 * Now use this metric to decide whether to start moving mapped
		 * memory onto the inactive list.
		 */
		if (swap_tendency >= 100)
N
Nick Piggin 已提交
921
force_reclaim_mapped:
922 923
			reclaim_mapped = 1;
	}
L
Linus Torvalds 已提交
924 925 926 927

	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
	pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
A
Andy Whitcroft 已提交
928
			    &l_hold, &pgscanned, sc->order, ISOLATE_ACTIVE);
L
Linus Torvalds 已提交
929
	zone->pages_scanned += pgscanned;
930
	__mod_zone_page_state(zone, NR_ACTIVE, -pgmoved);
L
Linus Torvalds 已提交
931 932 933 934 935 936 937 938 939
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
		if (page_mapped(page)) {
			if (!reclaim_mapped ||
			    (total_swap_pages == 0 && PageAnon(page)) ||
940
			    page_referenced(page, 0)) {
L
Linus Torvalds 已提交
941 942 943 944 945 946 947 948 949 950 951 952 953
				list_add(&page->lru, &l_active);
				continue;
			}
		}
		list_add(&page->lru, &l_inactive);
	}

	pagevec_init(&pvec, 1);
	pgmoved = 0;
	spin_lock_irq(&zone->lru_lock);
	while (!list_empty(&l_inactive)) {
		page = lru_to_page(&l_inactive);
		prefetchw_prev_lru_page(page, &l_inactive, flags);
N
Nick Piggin 已提交
954
		VM_BUG_ON(PageLRU(page));
N
Nick Piggin 已提交
955
		SetPageLRU(page);
N
Nick Piggin 已提交
956
		VM_BUG_ON(!PageActive(page));
N
Nick Piggin 已提交
957 958
		ClearPageActive(page);

L
Linus Torvalds 已提交
959 960 961
		list_move(&page->lru, &zone->inactive_list);
		pgmoved++;
		if (!pagevec_add(&pvec, page)) {
962
			__mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
L
Linus Torvalds 已提交
963 964 965 966 967 968 969 970 971
			spin_unlock_irq(&zone->lru_lock);
			pgdeactivate += pgmoved;
			pgmoved = 0;
			if (buffer_heads_over_limit)
				pagevec_strip(&pvec);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
972
	__mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
L
Linus Torvalds 已提交
973 974 975 976 977 978 979 980 981 982 983
	pgdeactivate += pgmoved;
	if (buffer_heads_over_limit) {
		spin_unlock_irq(&zone->lru_lock);
		pagevec_strip(&pvec);
		spin_lock_irq(&zone->lru_lock);
	}

	pgmoved = 0;
	while (!list_empty(&l_active)) {
		page = lru_to_page(&l_active);
		prefetchw_prev_lru_page(page, &l_active, flags);
N
Nick Piggin 已提交
984
		VM_BUG_ON(PageLRU(page));
N
Nick Piggin 已提交
985
		SetPageLRU(page);
N
Nick Piggin 已提交
986
		VM_BUG_ON(!PageActive(page));
L
Linus Torvalds 已提交
987 988 989
		list_move(&page->lru, &zone->active_list);
		pgmoved++;
		if (!pagevec_add(&pvec, page)) {
990
			__mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
L
Linus Torvalds 已提交
991 992 993 994 995 996
			pgmoved = 0;
			spin_unlock_irq(&zone->lru_lock);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
997
	__mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
N
Nick Piggin 已提交
998

999 1000 1001
	__count_zone_vm_events(PGREFILL, zone, pgscanned);
	__count_vm_events(PGDEACTIVATE, pgdeactivate);
	spin_unlock_irq(&zone->lru_lock);
L
Linus Torvalds 已提交
1002

N
Nick Piggin 已提交
1003
	pagevec_release(&pvec);
L
Linus Torvalds 已提交
1004 1005 1006 1007 1008
}

/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
1009 1010
static unsigned long shrink_zone(int priority, struct zone *zone,
				struct scan_control *sc)
L
Linus Torvalds 已提交
1011 1012 1013
{
	unsigned long nr_active;
	unsigned long nr_inactive;
1014
	unsigned long nr_to_scan;
1015
	unsigned long nr_reclaimed = 0;
L
Linus Torvalds 已提交
1016

1017 1018
	atomic_inc(&zone->reclaim_in_progress);

L
Linus Torvalds 已提交
1019 1020 1021 1022
	/*
	 * Add one to `nr_to_scan' just to make sure that the kernel will
	 * slowly sift through the active list.
	 */
1023 1024
	zone->nr_scan_active +=
		(zone_page_state(zone, NR_ACTIVE) >> priority) + 1;
L
Linus Torvalds 已提交
1025 1026 1027 1028 1029 1030
	nr_active = zone->nr_scan_active;
	if (nr_active >= sc->swap_cluster_max)
		zone->nr_scan_active = 0;
	else
		nr_active = 0;

1031 1032
	zone->nr_scan_inactive +=
		(zone_page_state(zone, NR_INACTIVE) >> priority) + 1;
L
Linus Torvalds 已提交
1033 1034 1035 1036 1037 1038 1039 1040
	nr_inactive = zone->nr_scan_inactive;
	if (nr_inactive >= sc->swap_cluster_max)
		zone->nr_scan_inactive = 0;
	else
		nr_inactive = 0;

	while (nr_active || nr_inactive) {
		if (nr_active) {
1041
			nr_to_scan = min(nr_active,
L
Linus Torvalds 已提交
1042
					(unsigned long)sc->swap_cluster_max);
1043
			nr_active -= nr_to_scan;
1044
			shrink_active_list(nr_to_scan, zone, sc, priority);
L
Linus Torvalds 已提交
1045 1046 1047
		}

		if (nr_inactive) {
1048
			nr_to_scan = min(nr_inactive,
L
Linus Torvalds 已提交
1049
					(unsigned long)sc->swap_cluster_max);
1050
			nr_inactive -= nr_to_scan;
A
Andrew Morton 已提交
1051 1052
			nr_reclaimed += shrink_inactive_list(nr_to_scan, zone,
								sc);
L
Linus Torvalds 已提交
1053 1054 1055
		}
	}

1056
	throttle_vm_writeout(sc->gfp_mask);
1057 1058

	atomic_dec(&zone->reclaim_in_progress);
1059
	return nr_reclaimed;
L
Linus Torvalds 已提交
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
}

/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * We reclaim from a zone even if that zone is over pages_high.  Because:
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
 * b) The zones may be over pages_high but they must go *over* pages_high to
 *    satisfy the `incremental min' zone defense algorithm.
 *
 * Returns the number of reclaimed pages.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
A
Andrew Morton 已提交
1078
static unsigned long shrink_zones(int priority, struct zone **zones,
1079
					struct scan_control *sc)
L
Linus Torvalds 已提交
1080
{
1081
	unsigned long nr_reclaimed = 0;
L
Linus Torvalds 已提交
1082 1083
	int i;

1084
	sc->all_unreclaimable = 1;
L
Linus Torvalds 已提交
1085 1086 1087
	for (i = 0; zones[i] != NULL; i++) {
		struct zone *zone = zones[i];

1088
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
1089 1090
			continue;

1091
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
1092 1093
			continue;

1094
		note_zone_scanning_priority(zone, priority);
L
Linus Torvalds 已提交
1095

1096
		if (zone->all_unreclaimable && priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
1097 1098
			continue;	/* Let kswapd poll it */

1099 1100
		sc->all_unreclaimable = 0;

1101
		nr_reclaimed += shrink_zone(priority, zone, sc);
L
Linus Torvalds 已提交
1102
	}
1103
	return nr_reclaimed;
L
Linus Torvalds 已提交
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
}
 
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
 * caller can't do much about.  We kick pdflush and take explicit naps in the
 * hope that some of these pages can be written.  But if the allocating task
 * holds filesystem locks which prevent writeout this might not work, and the
 * allocation attempt will fail.
 */
A
Andy Whitcroft 已提交
1119
unsigned long try_to_free_pages(struct zone **zones, int order, gfp_t gfp_mask)
L
Linus Torvalds 已提交
1120 1121 1122
{
	int priority;
	int ret = 0;
1123
	unsigned long total_scanned = 0;
1124
	unsigned long nr_reclaimed = 0;
L
Linus Torvalds 已提交
1125 1126 1127
	struct reclaim_state *reclaim_state = current->reclaim_state;
	unsigned long lru_pages = 0;
	int i;
1128 1129 1130 1131 1132
	struct scan_control sc = {
		.gfp_mask = gfp_mask,
		.may_writepage = !laptop_mode,
		.swap_cluster_max = SWAP_CLUSTER_MAX,
		.may_swap = 1,
1133
		.swappiness = vm_swappiness,
A
Andy Whitcroft 已提交
1134
		.order = order,
1135
	};
L
Linus Torvalds 已提交
1136

1137
	count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
1138 1139 1140 1141

	for (i = 0; zones[i] != NULL; i++) {
		struct zone *zone = zones[i];

1142
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
1143 1144
			continue;

1145 1146
		lru_pages += zone_page_state(zone, NR_ACTIVE)
				+ zone_page_state(zone, NR_INACTIVE);
L
Linus Torvalds 已提交
1147 1148 1149 1150
	}

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
		sc.nr_scanned = 0;
1151 1152
		if (!priority)
			disable_swap_token();
A
Andrew Morton 已提交
1153
		nr_reclaimed += shrink_zones(priority, zones, &sc);
L
Linus Torvalds 已提交
1154 1155
		shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
		if (reclaim_state) {
1156
			nr_reclaimed += reclaim_state->reclaimed_slab;
L
Linus Torvalds 已提交
1157 1158 1159
			reclaim_state->reclaimed_slab = 0;
		}
		total_scanned += sc.nr_scanned;
1160
		if (nr_reclaimed >= sc.swap_cluster_max) {
L
Linus Torvalds 已提交
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
			ret = 1;
			goto out;
		}

		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
1172 1173
		if (total_scanned > sc.swap_cluster_max +
					sc.swap_cluster_max / 2) {
1174
			wakeup_pdflush(laptop_mode ? 0 : total_scanned);
L
Linus Torvalds 已提交
1175 1176 1177 1178 1179
			sc.may_writepage = 1;
		}

		/* Take a nap, wait for some writeback to complete */
		if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
1180
			congestion_wait(WRITE, HZ/10);
L
Linus Torvalds 已提交
1181
	}
1182 1183 1184
	/* top priority shrink_caches still had more to do? don't OOM, then */
	if (!sc.all_unreclaimable)
		ret = 1;
L
Linus Torvalds 已提交
1185
out:
1186 1187 1188 1189 1190 1191 1192 1193 1194
	/*
	 * Now that we've scanned all the zones at this priority level, note
	 * that level within the zone so that the next thread which performs
	 * scanning of this zone will immediately start out at this priority
	 * level.  This affects only the decision whether or not to bring
	 * mapped pages onto the inactive list.
	 */
	if (priority < 0)
		priority = 0;
L
Linus Torvalds 已提交
1195 1196 1197
	for (i = 0; zones[i] != 0; i++) {
		struct zone *zone = zones[i];

1198
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
1199 1200
			continue;

1201
		zone->prev_priority = priority;
L
Linus Torvalds 已提交
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
	}
	return ret;
}

/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
 * they are all at pages_high.
 *
 * Returns the number of pages which were actually freed.
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
 * zones which have free_pages > pages_high, but once a zone is found to have
 * free_pages <= pages_high, we scan that zone and the lower zones regardless
 * of the number of free pages in the lower zones.  This interoperates with
 * the page allocator fallback scheme to ensure that aging of pages is balanced
 * across the zones.
 */
1227
static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
L
Linus Torvalds 已提交
1228 1229 1230 1231
{
	int all_zones_ok;
	int priority;
	int i;
1232
	unsigned long total_scanned;
1233
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
1234
	struct reclaim_state *reclaim_state = current->reclaim_state;
1235 1236 1237
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.may_swap = 1,
1238 1239
		.swap_cluster_max = SWAP_CLUSTER_MAX,
		.swappiness = vm_swappiness,
A
Andy Whitcroft 已提交
1240
		.order = order,
1241
	};
1242 1243 1244 1245 1246
	/*
	 * temp_priority is used to remember the scanning priority at which
	 * this zone was successfully refilled to free_pages == pages_high.
	 */
	int temp_priority[MAX_NR_ZONES];
L
Linus Torvalds 已提交
1247 1248 1249

loop_again:
	total_scanned = 0;
1250
	nr_reclaimed = 0;
C
Christoph Lameter 已提交
1251
	sc.may_writepage = !laptop_mode;
1252
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
1253

1254 1255
	for (i = 0; i < pgdat->nr_zones; i++)
		temp_priority[i] = DEF_PRIORITY;
L
Linus Torvalds 已提交
1256 1257 1258 1259 1260

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
		unsigned long lru_pages = 0;

1261 1262 1263 1264
		/* The swap token gets in the way of swapout... */
		if (!priority)
			disable_swap_token();

L
Linus Torvalds 已提交
1265 1266
		all_zones_ok = 1;

1267 1268 1269 1270 1271 1272
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
1273

1274 1275
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
1276

1277 1278
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
				continue;
L
Linus Torvalds 已提交
1279

1280 1281 1282
			if (!zone_watermark_ok(zone, order, zone->pages_high,
					       0, 0)) {
				end_zone = i;
A
Andrew Morton 已提交
1283
				break;
L
Linus Torvalds 已提交
1284 1285
			}
		}
A
Andrew Morton 已提交
1286 1287 1288
		if (i < 0)
			goto out;

L
Linus Torvalds 已提交
1289 1290 1291
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

1292 1293
			lru_pages += zone_page_state(zone, NR_ACTIVE)
					+ zone_page_state(zone, NR_INACTIVE);
L
Linus Torvalds 已提交
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;
1307
			int nr_slab;
L
Linus Torvalds 已提交
1308

1309
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
1310 1311 1312 1313 1314
				continue;

			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
				continue;

1315 1316 1317
			if (!zone_watermark_ok(zone, order, zone->pages_high,
					       end_zone, 0))
				all_zones_ok = 0;
1318
			temp_priority[i] = priority;
L
Linus Torvalds 已提交
1319
			sc.nr_scanned = 0;
1320
			note_zone_scanning_priority(zone, priority);
1321
			nr_reclaimed += shrink_zone(priority, zone, &sc);
L
Linus Torvalds 已提交
1322
			reclaim_state->reclaimed_slab = 0;
1323 1324
			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
						lru_pages);
1325
			nr_reclaimed += reclaim_state->reclaimed_slab;
L
Linus Torvalds 已提交
1326 1327 1328
			total_scanned += sc.nr_scanned;
			if (zone->all_unreclaimable)
				continue;
1329
			if (nr_slab == 0 && zone->pages_scanned >=
1330 1331 1332
				(zone_page_state(zone, NR_ACTIVE)
				+ zone_page_state(zone, NR_INACTIVE)) * 6)
					zone->all_unreclaimable = 1;
L
Linus Torvalds 已提交
1333 1334 1335 1336 1337 1338
			/*
			 * If we've done a decent amount of scanning and
			 * the reclaim ratio is low, start doing writepage
			 * even in laptop mode
			 */
			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1339
			    total_scanned > nr_reclaimed + nr_reclaimed / 2)
L
Linus Torvalds 已提交
1340 1341 1342 1343 1344 1345 1346 1347 1348
				sc.may_writepage = 1;
		}
		if (all_zones_ok)
			break;		/* kswapd: all done */
		/*
		 * OK, kswapd is getting into trouble.  Take a nap, then take
		 * another pass across the zones.
		 */
		if (total_scanned && priority < DEF_PRIORITY - 2)
1349
			congestion_wait(WRITE, HZ/10);
L
Linus Torvalds 已提交
1350 1351 1352 1353 1354 1355 1356

		/*
		 * We do this so kswapd doesn't build up large priorities for
		 * example when it is freeing in parallel with allocators. It
		 * matches the direct reclaim path behaviour in terms of impact
		 * on zone->*_priority.
		 */
1357
		if (nr_reclaimed >= SWAP_CLUSTER_MAX)
L
Linus Torvalds 已提交
1358 1359 1360
			break;
	}
out:
1361 1362 1363 1364 1365
	/*
	 * Note within each zone the priority level at which this zone was
	 * brought into a happy state.  So that the next thread which scans this
	 * zone will start out at that priority level.
	 */
L
Linus Torvalds 已提交
1366 1367 1368
	for (i = 0; i < pgdat->nr_zones; i++) {
		struct zone *zone = pgdat->node_zones + i;

1369
		zone->prev_priority = temp_priority[i];
L
Linus Torvalds 已提交
1370 1371 1372
	}
	if (!all_zones_ok) {
		cond_resched();
1373 1374 1375

		try_to_freeze();

L
Linus Torvalds 已提交
1376 1377 1378
		goto loop_again;
	}

1379
	return nr_reclaimed;
L
Linus Torvalds 已提交
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
}

/*
 * The background pageout daemon, started as a kernel thread
 * from the init process. 
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
	unsigned long order;
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
	DEFINE_WAIT(wait);
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
	cpumask_t cpumask;

	cpumask = node_to_cpumask(pgdat->node_id);
	if (!cpus_empty(cpumask))
		set_cpus_allowed(tsk, cpumask);
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
1423
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1424
	set_freezable();
L
Linus Torvalds 已提交
1425 1426 1427 1428

	order = 0;
	for ( ; ; ) {
		unsigned long new_order;
1429

L
Linus Torvalds 已提交
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
		new_order = pgdat->kswapd_max_order;
		pgdat->kswapd_max_order = 0;
		if (order < new_order) {
			/*
			 * Don't sleep if someone wants a larger 'order'
			 * allocation
			 */
			order = new_order;
		} else {
1440 1441 1442
			if (!freezing(current))
				schedule();

L
Linus Torvalds 已提交
1443 1444 1445 1446
			order = pgdat->kswapd_max_order;
		}
		finish_wait(&pgdat->kswapd_wait, &wait);

1447 1448 1449 1450 1451 1452
		if (!try_to_freeze()) {
			/* We can speed up thawing tasks if we don't call
			 * balance_pgdat after returning from the refrigerator
			 */
			balance_pgdat(pgdat, order);
		}
L
Linus Torvalds 已提交
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
	}
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
void wakeup_kswapd(struct zone *zone, int order)
{
	pg_data_t *pgdat;

1464
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
1465 1466 1467
		return;

	pgdat = zone->zone_pgdat;
R
Rohit Seth 已提交
1468
	if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
L
Linus Torvalds 已提交
1469 1470 1471
		return;
	if (pgdat->kswapd_max_order < order)
		pgdat->kswapd_max_order = order;
1472
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
1473
		return;
1474
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
1475
		return;
1476
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
1477 1478 1479 1480
}

#ifdef CONFIG_PM
/*
1481 1482 1483 1484 1485 1486
 * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
 * from LRU lists system-wide, for given pass and priority, and returns the
 * number of reclaimed pages
 *
 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
 */
1487 1488
static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
				      int pass, struct scan_control *sc)
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
{
	struct zone *zone;
	unsigned long nr_to_scan, ret = 0;

	for_each_zone(zone) {

		if (!populated_zone(zone))
			continue;

		if (zone->all_unreclaimable && prio != DEF_PRIORITY)
			continue;

		/* For pass = 0 we don't shrink the active list */
		if (pass > 0) {
1503 1504
			zone->nr_scan_active +=
				(zone_page_state(zone, NR_ACTIVE) >> prio) + 1;
1505 1506
			if (zone->nr_scan_active >= nr_pages || pass > 3) {
				zone->nr_scan_active = 0;
1507 1508
				nr_to_scan = min(nr_pages,
					zone_page_state(zone, NR_ACTIVE));
1509
				shrink_active_list(nr_to_scan, zone, sc, prio);
1510 1511 1512
			}
		}

1513 1514
		zone->nr_scan_inactive +=
			(zone_page_state(zone, NR_INACTIVE) >> prio) + 1;
1515 1516
		if (zone->nr_scan_inactive >= nr_pages || pass > 3) {
			zone->nr_scan_inactive = 0;
1517 1518
			nr_to_scan = min(nr_pages,
				zone_page_state(zone, NR_INACTIVE));
1519 1520 1521 1522 1523 1524 1525 1526 1527
			ret += shrink_inactive_list(nr_to_scan, zone, sc);
			if (ret >= nr_pages)
				return ret;
		}
	}

	return ret;
}

1528 1529
static unsigned long count_lru_pages(void)
{
1530
	return global_page_state(NR_ACTIVE) + global_page_state(NR_INACTIVE);
1531 1532
}

1533 1534 1535 1536 1537 1538 1539
/*
 * Try to free `nr_pages' of memory, system-wide, and return the number of
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
1540
 */
1541
unsigned long shrink_all_memory(unsigned long nr_pages)
L
Linus Torvalds 已提交
1542
{
1543
	unsigned long lru_pages, nr_slab;
1544
	unsigned long ret = 0;
1545 1546 1547 1548 1549 1550 1551 1552
	int pass;
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.may_swap = 0,
		.swap_cluster_max = nr_pages,
		.may_writepage = 1,
		.swappiness = vm_swappiness,
L
Linus Torvalds 已提交
1553 1554 1555
	};

	current->reclaim_state = &reclaim_state;
1556

1557
	lru_pages = count_lru_pages();
1558
	nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
1559 1560 1561 1562 1563
	/* If slab caches are huge, it's better to hit them first */
	while (nr_slab >= lru_pages) {
		reclaim_state.reclaimed_slab = 0;
		shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
		if (!reclaim_state.reclaimed_slab)
L
Linus Torvalds 已提交
1564
			break;
1565 1566 1567 1568 1569 1570

		ret += reclaim_state.reclaimed_slab;
		if (ret >= nr_pages)
			goto out;

		nr_slab -= reclaim_state.reclaimed_slab;
L
Linus Torvalds 已提交
1571
	}
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598

	/*
	 * We try to shrink LRUs in 5 passes:
	 * 0 = Reclaim from inactive_list only
	 * 1 = Reclaim from active list but don't reclaim mapped
	 * 2 = 2nd pass of type 1
	 * 3 = Reclaim mapped (normal reclaim)
	 * 4 = 2nd pass of type 3
	 */
	for (pass = 0; pass < 5; pass++) {
		int prio;

		/* Force reclaiming mapped pages in the passes #3 and #4 */
		if (pass > 2) {
			sc.may_swap = 1;
			sc.swappiness = 100;
		}

		for (prio = DEF_PRIORITY; prio >= 0; prio--) {
			unsigned long nr_to_scan = nr_pages - ret;

			sc.nr_scanned = 0;
			ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
			if (ret >= nr_pages)
				goto out;

			reclaim_state.reclaimed_slab = 0;
1599 1600
			shrink_slab(sc.nr_scanned, sc.gfp_mask,
					count_lru_pages());
1601 1602 1603 1604 1605
			ret += reclaim_state.reclaimed_slab;
			if (ret >= nr_pages)
				goto out;

			if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
1606
				congestion_wait(WRITE, HZ / 10);
1607
		}
1608
	}
1609 1610 1611 1612 1613

	/*
	 * If ret = 0, we could not shrink LRUs, but there may be something
	 * in slab caches
	 */
1614
	if (!ret) {
1615 1616
		do {
			reclaim_state.reclaimed_slab = 0;
1617
			shrink_slab(nr_pages, sc.gfp_mask, count_lru_pages());
1618 1619
			ret += reclaim_state.reclaimed_slab;
		} while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
1620
	}
1621 1622

out:
L
Linus Torvalds 已提交
1623
	current->reclaim_state = NULL;
1624

L
Linus Torvalds 已提交
1625 1626 1627 1628 1629 1630 1631 1632
	return ret;
}
#endif

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
1633
static int __devinit cpu_callback(struct notifier_block *nfb,
1634
				  unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
1635 1636 1637 1638
{
	pg_data_t *pgdat;
	cpumask_t mask;

1639
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
1640
		for_each_online_pgdat(pgdat) {
L
Linus Torvalds 已提交
1641 1642 1643 1644 1645 1646 1647 1648 1649
			mask = node_to_cpumask(pgdat->node_id);
			if (any_online_cpu(mask) != NR_CPUS)
				/* One of our CPUs online: restore mask */
				set_cpus_allowed(pgdat->kswapd, mask);
		}
	}
	return NOTIFY_OK;
}

1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
		printk("Failed to start kswapd on node %d\n",nid);
		ret = -1;
	}
	return ret;
}

L
Linus Torvalds 已提交
1672 1673
static int __init kswapd_init(void)
{
1674
	int nid;
1675

L
Linus Torvalds 已提交
1676
	swap_setup();
1677 1678
	for_each_online_node(nid)
 		kswapd_run(nid);
L
Linus Torvalds 已提交
1679 1680 1681 1682 1683
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

1694 1695 1696 1697 1698
#define RECLAIM_OFF 0
#define RECLAIM_ZONE (1<<0)	/* Run shrink_cache on the zone */
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

1699 1700 1701 1702 1703 1704 1705
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

1706 1707 1708 1709 1710 1711
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

1712 1713 1714 1715 1716 1717
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

1718 1719 1720
/*
 * Try to free up some pages from this zone through reclaim.
 */
1721
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1722
{
1723
	/* Minimum pages needed in order to stay on node */
1724
	const unsigned long nr_pages = 1 << order;
1725 1726
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
1727
	int priority;
1728
	unsigned long nr_reclaimed = 0;
1729 1730 1731
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
		.may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
1732 1733
		.swap_cluster_max = max_t(unsigned long, nr_pages,
					SWAP_CLUSTER_MAX),
1734
		.gfp_mask = gfp_mask,
1735
		.swappiness = vm_swappiness,
1736
	};
1737
	unsigned long slab_reclaimable;
1738 1739 1740

	disable_swap_token();
	cond_resched();
1741 1742 1743 1744 1745 1746
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
1747 1748
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
1749

1750 1751 1752 1753 1754 1755 1756 1757 1758
	if (zone_page_state(zone, NR_FILE_PAGES) -
		zone_page_state(zone, NR_FILE_MAPPED) >
		zone->min_unmapped_pages) {
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		priority = ZONE_RECLAIM_PRIORITY;
		do {
1759
			note_zone_scanning_priority(zone, priority);
1760 1761 1762 1763
			nr_reclaimed += shrink_zone(priority, zone, &sc);
			priority--;
		} while (priority >= 0 && nr_reclaimed < nr_pages);
	}
1764

1765 1766
	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (slab_reclaimable > zone->min_slab_pages) {
1767
		/*
1768
		 * shrink_slab() does not currently allow us to determine how
1769 1770 1771 1772
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
1773
		 *
1774 1775
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
1776
		 */
1777
		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
1778 1779
			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
				slab_reclaimable - nr_pages)
1780
			;
1781 1782 1783 1784 1785 1786 1787

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
		nr_reclaimed += slab_reclaimable -
			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
1788 1789
	}

1790
	p->reclaim_state = NULL;
1791
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
1792
	return nr_reclaimed >= nr_pages;
1793
}
1794 1795 1796 1797 1798 1799 1800

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	cpumask_t mask;
	int node_id;

	/*
1801 1802
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
1803
	 *
1804 1805 1806 1807 1808
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
1809
	 */
1810
	if (zone_page_state(zone, NR_FILE_PAGES) -
1811 1812 1813
	    zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
	    && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
			<= zone->min_slab_pages)
1814
		return 0;
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832

	/*
	 * Avoid concurrent zone reclaims, do not reclaim in a zone that does
	 * not have reclaimable pages and if we should not delay the allocation
	 * then do not scan.
	 */
	if (!(gfp_mask & __GFP_WAIT) ||
		zone->all_unreclaimable ||
		atomic_read(&zone->reclaim_in_progress) > 0 ||
		(current->flags & PF_MEMALLOC))
			return 0;

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
1833
	node_id = zone_to_nid(zone);
1834 1835 1836 1837 1838
	mask = node_to_cpumask(node_id);
	if (!cpus_empty(mask) && node_id != numa_node_id())
		return 0;
	return __zone_reclaim(zone, gfp_mask, order);
}
1839
#endif