numa.c 40.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 * pSeries NUMA support
 *
 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
#include <linux/threads.h>
#include <linux/bootmem.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/mmzone.h>
16
#include <linux/export.h>
L
Linus Torvalds 已提交
17 18 19
#include <linux/nodemask.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
Y
Yinghai Lu 已提交
20
#include <linux/memblock.h>
21
#include <linux/of.h>
22
#include <linux/pfn.h>
23 24
#include <linux/cpuset.h>
#include <linux/node.h>
25
#include <linux/stop_machine.h>
26 27 28
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/uaccess.h>
29
#include <linux/slab.h>
30
#include <asm/cputhreads.h>
31
#include <asm/sparsemem.h>
32
#include <asm/prom.h>
P
Paul Mackerras 已提交
33
#include <asm/smp.h>
34 35
#include <asm/firmware.h>
#include <asm/paca.h>
36
#include <asm/hvcall.h>
37
#include <asm/setup.h>
38
#include <asm/vdso.h>
L
Linus Torvalds 已提交
39 40 41

static int numa_enabled = 1;

42 43
static char *cmdline __initdata;

L
Linus Torvalds 已提交
44 45 46
static int numa_debug;
#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }

47
int numa_cpu_lookup_table[NR_CPUS];
48
cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
L
Linus Torvalds 已提交
49
struct pglist_data *node_data[MAX_NUMNODES];
50 51

EXPORT_SYMBOL(numa_cpu_lookup_table);
52
EXPORT_SYMBOL(node_to_cpumask_map);
53 54
EXPORT_SYMBOL(node_data);

L
Linus Torvalds 已提交
55
static int min_common_depth;
56
static int n_mem_addr_cells, n_mem_size_cells;
57 58 59 60 61 62
static int form1_affinity;

#define MAX_DISTANCE_REF_POINTS 4
static int distance_ref_points_depth;
static const unsigned int *distance_ref_points;
static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
L
Linus Torvalds 已提交
63

64 65 66 67
/*
 * Allocate node_to_cpumask_map based on number of available nodes
 * Requires node_possible_map to be valid.
 *
68
 * Note: cpumask_of_node() is not valid until after this is done.
69 70 71
 */
static void __init setup_node_to_cpumask_map(void)
{
72
	unsigned int node;
73 74

	/* setup nr_node_ids if not done yet */
75 76
	if (nr_node_ids == MAX_NUMNODES)
		setup_nr_node_ids();
77 78 79 80 81 82 83 84 85

	/* allocate the map */
	for (node = 0; node < nr_node_ids; node++)
		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);

	/* cpumask_of_node() will now work */
	dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
}

86
static int __init fake_numa_create_new_node(unsigned long end_pfn,
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
						unsigned int *nid)
{
	unsigned long long mem;
	char *p = cmdline;
	static unsigned int fake_nid;
	static unsigned long long curr_boundary;

	/*
	 * Modify node id, iff we started creating NUMA nodes
	 * We want to continue from where we left of the last time
	 */
	if (fake_nid)
		*nid = fake_nid;
	/*
	 * In case there are no more arguments to parse, the
	 * node_id should be the same as the last fake node id
	 * (we've handled this above).
	 */
	if (!p)
		return 0;

	mem = memparse(p, &p);
	if (!mem)
		return 0;

	if (mem < curr_boundary)
		return 0;

	curr_boundary = mem;

	if ((end_pfn << PAGE_SHIFT) > mem) {
		/*
		 * Skip commas and spaces
		 */
		while (*p == ',' || *p == ' ' || *p == '\t')
			p++;

		cmdline = p;
		fake_nid++;
		*nid = fake_nid;
		dbg("created new fake_node with id %d\n", fake_nid);
		return 1;
	}
	return 0;
}

133
/*
134
 * get_node_active_region - Return active region containing pfn
135
 * Active range returned is empty if none found.
136 137
 * @pfn: The page to return the region for
 * @node_ar: Returned set to the active region containing @pfn
138
 */
139 140
static void __init get_node_active_region(unsigned long pfn,
					  struct node_active_region *node_ar)
141
{
142 143 144 145 146 147 148 149 150 151 152
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		if (pfn >= start_pfn && pfn < end_pfn) {
			node_ar->nid = nid;
			node_ar->start_pfn = start_pfn;
			node_ar->end_pfn = end_pfn;
			break;
		}
	}
153 154
}

155
static void map_cpu_to_node(int cpu, int node)
L
Linus Torvalds 已提交
156 157
{
	numa_cpu_lookup_table[cpu] = node;
158

159 160
	dbg("adding cpu %d to node %d\n", cpu, node);

161 162
	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
L
Linus Torvalds 已提交
163 164
}

165
#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
L
Linus Torvalds 已提交
166 167 168 169 170 171
static void unmap_cpu_from_node(unsigned long cpu)
{
	int node = numa_cpu_lookup_table[cpu];

	dbg("removing cpu %lu from node %d\n", cpu, node);

172
	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
173
		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
L
Linus Torvalds 已提交
174 175 176 177 178
	} else {
		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
		       cpu, node);
	}
}
179
#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
L
Linus Torvalds 已提交
180 181

/* must hold reference to node during call */
182
static const int *of_get_associativity(struct device_node *dev)
L
Linus Torvalds 已提交
183
{
184
	return of_get_property(dev, "ibm,associativity", NULL);
L
Linus Torvalds 已提交
185 186
}

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
/*
 * Returns the property linux,drconf-usable-memory if
 * it exists (the property exists only in kexec/kdump kernels,
 * added by kexec-tools)
 */
static const u32 *of_get_usable_memory(struct device_node *memory)
{
	const u32 *prop;
	u32 len;
	prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
	if (!prop || len < sizeof(unsigned int))
		return 0;
	return prop;
}

202 203 204 205 206 207
int __node_distance(int a, int b)
{
	int i;
	int distance = LOCAL_DISTANCE;

	if (!form1_affinity)
208
		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234

	for (i = 0; i < distance_ref_points_depth; i++) {
		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
			break;

		/* Double the distance for each NUMA level */
		distance *= 2;
	}

	return distance;
}

static void initialize_distance_lookup_table(int nid,
		const unsigned int *associativity)
{
	int i;

	if (!form1_affinity)
		return;

	for (i = 0; i < distance_ref_points_depth; i++) {
		distance_lookup_table[nid][i] =
			associativity[distance_ref_points[i]];
	}
}

235 236 237
/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
 * info is found.
 */
238
static int associativity_to_nid(const unsigned int *associativity)
L
Linus Torvalds 已提交
239
{
240
	int nid = -1;
L
Linus Torvalds 已提交
241 242

	if (min_common_depth == -1)
243
		goto out;
L
Linus Torvalds 已提交
244

245 246
	if (associativity[0] >= min_common_depth)
		nid = associativity[min_common_depth];
247 248

	/* POWER4 LPAR uses 0xffff as invalid node */
249 250
	if (nid == 0xffff || nid >= MAX_NUMNODES)
		nid = -1;
251

252 253
	if (nid > 0 && associativity[0] >= distance_ref_points_depth)
		initialize_distance_lookup_table(nid, associativity);
254

255
out:
256
	return nid;
L
Linus Torvalds 已提交
257 258
}

259 260 261 262 263 264 265 266 267 268 269 270 271 272
/* Returns the nid associated with the given device tree node,
 * or -1 if not found.
 */
static int of_node_to_nid_single(struct device_node *device)
{
	int nid = -1;
	const unsigned int *tmp;

	tmp = of_get_associativity(device);
	if (tmp)
		nid = associativity_to_nid(tmp);
	return nid;
}

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
/* Walk the device tree upwards, looking for an associativity id */
int of_node_to_nid(struct device_node *device)
{
	struct device_node *tmp;
	int nid = -1;

	of_node_get(device);
	while (device) {
		nid = of_node_to_nid_single(device);
		if (nid != -1)
			break;

	        tmp = device;
		device = of_get_parent(tmp);
		of_node_put(tmp);
	}
	of_node_put(device);

	return nid;
}
EXPORT_SYMBOL_GPL(of_node_to_nid);

L
Linus Torvalds 已提交
295 296
static int __init find_min_common_depth(void)
{
297
	int depth;
298
	struct device_node *root;
L
Linus Torvalds 已提交
299

300 301 302 303
	if (firmware_has_feature(FW_FEATURE_OPAL))
		root = of_find_node_by_path("/ibm,opal");
	else
		root = of_find_node_by_path("/rtas");
304 305
	if (!root)
		root = of_find_node_by_path("/");
L
Linus Torvalds 已提交
306 307

	/*
308 309 310 311 312 313 314 315 316 317
	 * This property is a set of 32-bit integers, each representing
	 * an index into the ibm,associativity nodes.
	 *
	 * With form 0 affinity the first integer is for an SMP configuration
	 * (should be all 0's) and the second is for a normal NUMA
	 * configuration. We have only one level of NUMA.
	 *
	 * With form 1 affinity the first integer is the most significant
	 * NUMA boundary and the following are progressively less significant
	 * boundaries. There can be more than one level of NUMA.
L
Linus Torvalds 已提交
318
	 */
319
	distance_ref_points = of_get_property(root,
320 321 322 323 324 325 326 327 328
					"ibm,associativity-reference-points",
					&distance_ref_points_depth);

	if (!distance_ref_points) {
		dbg("NUMA: ibm,associativity-reference-points not found.\n");
		goto err;
	}

	distance_ref_points_depth /= sizeof(int);
L
Linus Torvalds 已提交
329

330 331 332
	if (firmware_has_feature(FW_FEATURE_OPAL) ||
	    firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
		dbg("Using form 1 affinity\n");
333
		form1_affinity = 1;
334 335
	}

336 337
	if (form1_affinity) {
		depth = distance_ref_points[0];
L
Linus Torvalds 已提交
338
	} else {
339 340 341 342 343 344 345
		if (distance_ref_points_depth < 2) {
			printk(KERN_WARNING "NUMA: "
				"short ibm,associativity-reference-points\n");
			goto err;
		}

		depth = distance_ref_points[1];
L
Linus Torvalds 已提交
346 347
	}

348 349 350 351 352 353 354 355 356 357
	/*
	 * Warn and cap if the hardware supports more than
	 * MAX_DISTANCE_REF_POINTS domains.
	 */
	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
		printk(KERN_WARNING "NUMA: distance array capped at "
			"%d entries\n", MAX_DISTANCE_REF_POINTS);
		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
	}

358
	of_node_put(root);
L
Linus Torvalds 已提交
359
	return depth;
360 361

err:
362
	of_node_put(root);
363
	return -1;
L
Linus Torvalds 已提交
364 365
}

366
static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
L
Linus Torvalds 已提交
367 368 369 370
{
	struct device_node *memory = NULL;

	memory = of_find_node_by_type(memory, "memory");
371
	if (!memory)
372
		panic("numa.c: No memory nodes found!");
373

374
	*n_addr_cells = of_n_addr_cells(memory);
375
	*n_size_cells = of_n_size_cells(memory);
376
	of_node_put(memory);
L
Linus Torvalds 已提交
377 378
}

379
static unsigned long read_n_cells(int n, const unsigned int **buf)
L
Linus Torvalds 已提交
380 381 382 383 384 385 386 387 388 389
{
	unsigned long result = 0;

	while (n--) {
		result = (result << 32) | **buf;
		(*buf)++;
	}
	return result;
}

390
/*
Y
Yinghai Lu 已提交
391
 * Read the next memblock list entry from the ibm,dynamic-memory property
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
 * and return the information in the provided of_drconf_cell structure.
 */
static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp)
{
	const u32 *cp;

	drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);

	cp = *cellp;
	drmem->drc_index = cp[0];
	drmem->reserved = cp[1];
	drmem->aa_index = cp[2];
	drmem->flags = cp[3];

	*cellp = cp + 4;
}

/*
L
Lucas De Marchi 已提交
410
 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
411
 *
Y
Yinghai Lu 已提交
412 413
 * The layout of the ibm,dynamic-memory property is a number N of memblock
 * list entries followed by N memblock list entries.  Each memblock list entry
L
Lucas De Marchi 已提交
414
 * contains information as laid out in the of_drconf_cell struct above.
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
 */
static int of_get_drconf_memory(struct device_node *memory, const u32 **dm)
{
	const u32 *prop;
	u32 len, entries;

	prop = of_get_property(memory, "ibm,dynamic-memory", &len);
	if (!prop || len < sizeof(unsigned int))
		return 0;

	entries = *prop++;

	/* Now that we know the number of entries, revalidate the size
	 * of the property read in to ensure we have everything
	 */
	if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
		return 0;

	*dm = prop;
	return entries;
}

/*
L
Lucas De Marchi 已提交
438
 * Retrieve and validate the ibm,lmb-size property for drconf memory
439 440
 * from the device tree.
 */
441
static u64 of_get_lmb_size(struct device_node *memory)
442 443 444 445
{
	const u32 *prop;
	u32 len;

446
	prop = of_get_property(memory, "ibm,lmb-size", &len);
447 448 449 450 451 452 453 454 455 456 457 458 459
	if (!prop || len < sizeof(unsigned int))
		return 0;

	return read_n_cells(n_mem_size_cells, &prop);
}

struct assoc_arrays {
	u32	n_arrays;
	u32	array_sz;
	const u32 *arrays;
};

/*
L
Lucas De Marchi 已提交
460
 * Retrieve and validate the list of associativity arrays for drconf
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
 * memory from the ibm,associativity-lookup-arrays property of the
 * device tree..
 *
 * The layout of the ibm,associativity-lookup-arrays property is a number N
 * indicating the number of associativity arrays, followed by a number M
 * indicating the size of each associativity array, followed by a list
 * of N associativity arrays.
 */
static int of_get_assoc_arrays(struct device_node *memory,
			       struct assoc_arrays *aa)
{
	const u32 *prop;
	u32 len;

	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
	if (!prop || len < 2 * sizeof(unsigned int))
		return -1;

	aa->n_arrays = *prop++;
	aa->array_sz = *prop++;

482
	/* Now that we know the number of arrays and size of each array,
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
	 * revalidate the size of the property read in.
	 */
	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
		return -1;

	aa->arrays = prop;
	return 0;
}

/*
 * This is like of_node_to_nid_single() for memory represented in the
 * ibm,dynamic-reconfiguration-memory node.
 */
static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
				   struct assoc_arrays *aa)
{
	int default_nid = 0;
	int nid = default_nid;
	int index;

	if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
	    !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
	    drmem->aa_index < aa->n_arrays) {
		index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
		nid = aa->arrays[index];

		if (nid == 0xffff || nid >= MAX_NUMNODES)
			nid = default_nid;
	}

	return nid;
}

L
Linus Torvalds 已提交
516 517 518 519
/*
 * Figure out to which domain a cpu belongs and stick it there.
 * Return the id of the domain used.
 */
520
static int numa_setup_cpu(unsigned long lcpu)
L
Linus Torvalds 已提交
521
{
522
	int nid = 0;
523
	struct device_node *cpu = of_get_cpu_node(lcpu, NULL);
L
Linus Torvalds 已提交
524 525 526 527 528 529

	if (!cpu) {
		WARN_ON(1);
		goto out;
	}

530
	nid = of_node_to_nid_single(cpu);
L
Linus Torvalds 已提交
531

532
	if (nid < 0 || !node_online(nid))
533
		nid = first_online_node;
L
Linus Torvalds 已提交
534
out:
535
	map_cpu_to_node(lcpu, nid);
L
Linus Torvalds 已提交
536 537 538

	of_node_put(cpu);

539
	return nid;
L
Linus Torvalds 已提交
540 541
}

542
static int cpu_numa_callback(struct notifier_block *nfb, unsigned long action,
L
Linus Torvalds 已提交
543 544 545 546 547 548 549
			     void *hcpu)
{
	unsigned long lcpu = (unsigned long)hcpu;
	int ret = NOTIFY_DONE;

	switch (action) {
	case CPU_UP_PREPARE:
550
	case CPU_UP_PREPARE_FROZEN:
551
		numa_setup_cpu(lcpu);
L
Linus Torvalds 已提交
552 553 554 555
		ret = NOTIFY_OK;
		break;
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
556
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
557
	case CPU_UP_CANCELED:
558
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
559 560 561 562 563 564 565 566 567 568 569 570 571 572
		unmap_cpu_from_node(lcpu);
		break;
		ret = NOTIFY_OK;
#endif
	}
	return ret;
}

/*
 * Check and possibly modify a memory region to enforce the memory limit.
 *
 * Returns the size the region should have to enforce the memory limit.
 * This will either be the original value of size, a truncated value,
 * or zero. If the returned value of size is 0 the region should be
L
Lucas De Marchi 已提交
573
 * discarded as it lies wholly above the memory limit.
L
Linus Torvalds 已提交
574
 */
575 576
static unsigned long __init numa_enforce_memory_limit(unsigned long start,
						      unsigned long size)
L
Linus Torvalds 已提交
577 578
{
	/*
Y
Yinghai Lu 已提交
579
	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
L
Linus Torvalds 已提交
580
	 * we've already adjusted it for the limit and it takes care of
581 582
	 * having memory holes below the limit.  Also, in the case of
	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
L
Linus Torvalds 已提交
583 584
	 */

Y
Yinghai Lu 已提交
585
	if (start + size <= memblock_end_of_DRAM())
L
Linus Torvalds 已提交
586 587
		return size;

Y
Yinghai Lu 已提交
588
	if (start >= memblock_end_of_DRAM())
L
Linus Torvalds 已提交
589 590
		return 0;

Y
Yinghai Lu 已提交
591
	return memblock_end_of_DRAM() - start;
L
Linus Torvalds 已提交
592 593
}

594 595 596 597 598 599 600
/*
 * Reads the counter for a given entry in
 * linux,drconf-usable-memory property
 */
static inline int __init read_usm_ranges(const u32 **usm)
{
	/*
601
	 * For each lmb in ibm,dynamic-memory a corresponding
602 603 604 605 606 607 608
	 * entry in linux,drconf-usable-memory property contains
	 * a counter followed by that many (base, size) duple.
	 * read the counter from linux,drconf-usable-memory
	 */
	return read_n_cells(n_mem_size_cells, usm);
}

609 610 611 612 613 614
/*
 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
 * node.  This assumes n_mem_{addr,size}_cells have been set.
 */
static void __init parse_drconf_memory(struct device_node *memory)
{
615
	const u32 *uninitialized_var(dm), *usm;
616
	unsigned int n, rc, ranges, is_kexec_kdump = 0;
617
	unsigned long lmb_size, base, size, sz;
618
	int nid;
619
	struct assoc_arrays aa = { .arrays = NULL };
620 621 622

	n = of_get_drconf_memory(memory, &dm);
	if (!n)
623 624
		return;

625 626
	lmb_size = of_get_lmb_size(memory);
	if (!lmb_size)
627 628 629 630
		return;

	rc = of_get_assoc_arrays(memory, &aa);
	if (rc)
631 632
		return;

633 634 635 636 637
	/* check if this is a kexec/kdump kernel */
	usm = of_get_usable_memory(memory);
	if (usm != NULL)
		is_kexec_kdump = 1;

638
	for (; n != 0; --n) {
639 640 641 642 643 644 645 646
		struct of_drconf_cell drmem;

		read_drconf_cell(&drmem, &dm);

		/* skip this block if the reserved bit is set in flags (0x80)
		   or if the block is not assigned to this partition (0x8) */
		if ((drmem.flags & DRCONF_MEM_RESERVED)
		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
647
			continue;
648

649
		base = drmem.base_addr;
650
		size = lmb_size;
651
		ranges = 1;
652

653 654 655 656 657 658 659 660 661 662 663 664 665
		if (is_kexec_kdump) {
			ranges = read_usm_ranges(&usm);
			if (!ranges) /* there are no (base, size) duple */
				continue;
		}
		do {
			if (is_kexec_kdump) {
				base = read_n_cells(n_mem_addr_cells, &usm);
				size = read_n_cells(n_mem_size_cells, &usm);
			}
			nid = of_drconf_to_nid_single(&drmem, &aa);
			fake_numa_create_new_node(
				((base + size) >> PAGE_SHIFT),
666
					   &nid);
667 668 669
			node_set_online(nid);
			sz = numa_enforce_memory_limit(base, size);
			if (sz)
T
Tejun Heo 已提交
670
				memblock_set_node(base, sz, nid);
671
		} while (--ranges);
672 673 674
	}
}

L
Linus Torvalds 已提交
675 676
static int __init parse_numa_properties(void)
{
677
	struct device_node *memory;
678
	int default_nid = 0;
L
Linus Torvalds 已提交
679 680 681 682 683 684 685 686 687 688 689 690
	unsigned long i;

	if (numa_enabled == 0) {
		printk(KERN_WARNING "NUMA disabled by user\n");
		return -1;
	}

	min_common_depth = find_min_common_depth();

	if (min_common_depth < 0)
		return min_common_depth;

691 692
	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);

L
Linus Torvalds 已提交
693
	/*
694 695 696
	 * Even though we connect cpus to numa domains later in SMP
	 * init, we need to know the node ids now. This is because
	 * each node to be onlined must have NODE_DATA etc backing it.
L
Linus Torvalds 已提交
697
	 */
698
	for_each_present_cpu(i) {
A
Anton Blanchard 已提交
699
		struct device_node *cpu;
700
		int nid;
L
Linus Torvalds 已提交
701

702
		cpu = of_get_cpu_node(i, NULL);
703
		BUG_ON(!cpu);
704
		nid = of_node_to_nid_single(cpu);
705
		of_node_put(cpu);
L
Linus Torvalds 已提交
706

707 708 709 710 711 712 713 714
		/*
		 * Don't fall back to default_nid yet -- we will plug
		 * cpus into nodes once the memory scan has discovered
		 * the topology.
		 */
		if (nid < 0)
			continue;
		node_set_online(nid);
L
Linus Torvalds 已提交
715 716
	}

717
	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
718 719

	for_each_node_by_type(memory, "memory") {
L
Linus Torvalds 已提交
720 721
		unsigned long start;
		unsigned long size;
722
		int nid;
L
Linus Torvalds 已提交
723
		int ranges;
724
		const unsigned int *memcell_buf;
L
Linus Torvalds 已提交
725 726
		unsigned int len;

727
		memcell_buf = of_get_property(memory,
728 729
			"linux,usable-memory", &len);
		if (!memcell_buf || len <= 0)
730
			memcell_buf = of_get_property(memory, "reg", &len);
L
Linus Torvalds 已提交
731 732 733
		if (!memcell_buf || len <= 0)
			continue;

734 735
		/* ranges in cell */
		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
L
Linus Torvalds 已提交
736 737
new_range:
		/* these are order-sensitive, and modify the buffer pointer */
738 739
		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
		size = read_n_cells(n_mem_size_cells, &memcell_buf);
L
Linus Torvalds 已提交
740

741 742 743 744 745
		/*
		 * Assumption: either all memory nodes or none will
		 * have associativity properties.  If none, then
		 * everything goes to default_nid.
		 */
746
		nid = of_node_to_nid_single(memory);
747 748
		if (nid < 0)
			nid = default_nid;
749 750

		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
751
		node_set_online(nid);
L
Linus Torvalds 已提交
752

753
		if (!(size = numa_enforce_memory_limit(start, size))) {
L
Linus Torvalds 已提交
754 755 756 757 758 759
			if (--ranges)
				goto new_range;
			else
				continue;
		}

T
Tejun Heo 已提交
760
		memblock_set_node(start, size, nid);
L
Linus Torvalds 已提交
761 762 763 764 765

		if (--ranges)
			goto new_range;
	}

766
	/*
A
Anton Blanchard 已提交
767 768 769
	 * Now do the same thing for each MEMBLOCK listed in the
	 * ibm,dynamic-memory property in the
	 * ibm,dynamic-reconfiguration-memory node.
770 771 772 773 774
	 */
	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (memory)
		parse_drconf_memory(memory);

L
Linus Torvalds 已提交
775 776 777 778 779
	return 0;
}

static void __init setup_nonnuma(void)
{
Y
Yinghai Lu 已提交
780 781
	unsigned long top_of_ram = memblock_end_of_DRAM();
	unsigned long total_ram = memblock_phys_mem_size();
782
	unsigned long start_pfn, end_pfn;
783 784
	unsigned int nid = 0;
	struct memblock_region *reg;
L
Linus Torvalds 已提交
785

786
	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
L
Linus Torvalds 已提交
787
	       top_of_ram, total_ram);
788
	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
L
Linus Torvalds 已提交
789 790
	       (top_of_ram - total_ram) >> 20);

791
	for_each_memblock(memory, reg) {
792 793
		start_pfn = memblock_region_memory_base_pfn(reg);
		end_pfn = memblock_region_memory_end_pfn(reg);
794 795

		fake_numa_create_new_node(end_pfn, &nid);
T
Tejun Heo 已提交
796 797
		memblock_set_node(PFN_PHYS(start_pfn),
				  PFN_PHYS(end_pfn - start_pfn), nid);
798
		node_set_online(nid);
799
	}
L
Linus Torvalds 已提交
800 801
}

802 803 804 805 806 807 808 809 810
void __init dump_numa_cpu_topology(void)
{
	unsigned int node;
	unsigned int cpu, count;

	if (min_common_depth == -1 || !numa_enabled)
		return;

	for_each_online_node(node) {
811
		printk(KERN_DEBUG "Node %d CPUs:", node);
812 813 814 815 816 817

		count = 0;
		/*
		 * If we used a CPU iterator here we would miss printing
		 * the holes in the cpumap.
		 */
818 819 820
		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
			if (cpumask_test_cpu(cpu,
					node_to_cpumask_map[node])) {
821 822 823 824 825 826 827 828 829 830 831
				if (count == 0)
					printk(" %u", cpu);
				++count;
			} else {
				if (count > 1)
					printk("-%u", cpu - 1);
				count = 0;
			}
		}

		if (count > 1)
832
			printk("-%u", nr_cpu_ids - 1);
833 834 835 836 837
		printk("\n");
	}
}

static void __init dump_numa_memory_topology(void)
L
Linus Torvalds 已提交
838 839 840 841 842 843 844 845 846 847
{
	unsigned int node;
	unsigned int count;

	if (min_common_depth == -1 || !numa_enabled)
		return;

	for_each_online_node(node) {
		unsigned long i;

848
		printk(KERN_DEBUG "Node %d Memory:", node);
L
Linus Torvalds 已提交
849 850 851

		count = 0;

Y
Yinghai Lu 已提交
852
		for (i = 0; i < memblock_end_of_DRAM();
853 854
		     i += (1 << SECTION_SIZE_BITS)) {
			if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
L
Linus Torvalds 已提交
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
				if (count == 0)
					printk(" 0x%lx", i);
				++count;
			} else {
				if (count > 0)
					printk("-0x%lx", i);
				count = 0;
			}
		}

		if (count > 0)
			printk("-0x%lx", i);
		printk("\n");
	}
}

/*
Y
Yinghai Lu 已提交
872
 * Allocate some memory, satisfying the memblock or bootmem allocator where
L
Linus Torvalds 已提交
873 874 875
 * required. nid is the preferred node and end is the physical address of
 * the highest address in the node.
 *
876
 * Returns the virtual address of the memory.
L
Linus Torvalds 已提交
877
 */
878
static void __init *careful_zallocation(int nid, unsigned long size,
879 880
				       unsigned long align,
				       unsigned long end_pfn)
L
Linus Torvalds 已提交
881
{
882
	void *ret;
883
	int new_nid;
884 885
	unsigned long ret_paddr;

Y
Yinghai Lu 已提交
886
	ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT);
L
Linus Torvalds 已提交
887 888

	/* retry over all memory */
889
	if (!ret_paddr)
Y
Yinghai Lu 已提交
890
		ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM());
L
Linus Torvalds 已提交
891

892
	if (!ret_paddr)
893
		panic("numa.c: cannot allocate %lu bytes for node %d",
L
Linus Torvalds 已提交
894 895
		      size, nid);

896 897
	ret = __va(ret_paddr);

L
Linus Torvalds 已提交
898
	/*
899
	 * We initialize the nodes in numeric order: 0, 1, 2...
Y
Yinghai Lu 已提交
900
	 * and hand over control from the MEMBLOCK allocator to the
901 902
	 * bootmem allocator.  If this function is called for
	 * node 5, then we know that all nodes <5 are using the
Y
Yinghai Lu 已提交
903
	 * bootmem allocator instead of the MEMBLOCK allocator.
904 905 906
	 *
	 * So, check the nid from which this allocation came
	 * and double check to see if we need to use bootmem
Y
Yinghai Lu 已提交
907
	 * instead of the MEMBLOCK.  We don't free the MEMBLOCK memory
908
	 * since it would be useless.
L
Linus Torvalds 已提交
909
	 */
910
	new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
911
	if (new_nid < nid) {
912
		ret = __alloc_bootmem_node(NODE_DATA(new_nid),
L
Linus Torvalds 已提交
913 914
				size, align, 0);

915
		dbg("alloc_bootmem %p %lx\n", ret, size);
L
Linus Torvalds 已提交
916 917
	}

918
	memset(ret, 0, size);
919
	return ret;
L
Linus Torvalds 已提交
920 921
}

922
static struct notifier_block ppc64_numa_nb = {
923 924 925 926
	.notifier_call = cpu_numa_callback,
	.priority = 1 /* Must run before sched domains notifier. */
};

927
static void __init mark_reserved_regions_for_nid(int nid)
928 929
{
	struct pglist_data *node = NODE_DATA(nid);
930
	struct memblock_region *reg;
931

932 933 934
	for_each_memblock(reserved, reg) {
		unsigned long physbase = reg->base;
		unsigned long size = reg->size;
935
		unsigned long start_pfn = physbase >> PAGE_SHIFT;
936
		unsigned long end_pfn = PFN_UP(physbase + size);
937 938 939 940 941
		struct node_active_region node_ar;
		unsigned long node_end_pfn = node->node_start_pfn +
					     node->node_spanned_pages;

		/*
Y
Yinghai Lu 已提交
942
		 * Check to make sure that this memblock.reserved area is
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
		 * within the bounds of the node that we care about.
		 * Checking the nid of the start and end points is not
		 * sufficient because the reserved area could span the
		 * entire node.
		 */
		if (end_pfn <= node->node_start_pfn ||
		    start_pfn >= node_end_pfn)
			continue;

		get_node_active_region(start_pfn, &node_ar);
		while (start_pfn < end_pfn &&
			node_ar.start_pfn < node_ar.end_pfn) {
			unsigned long reserve_size = size;
			/*
			 * if reserved region extends past active region
			 * then trim size to active region
			 */
			if (end_pfn > node_ar.end_pfn)
				reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
962
					- physbase;
963 964 965 966 967 968 969 970 971 972 973
			/*
			 * Only worry about *this* node, others may not
			 * yet have valid NODE_DATA().
			 */
			if (node_ar.nid == nid) {
				dbg("reserve_bootmem %lx %lx nid=%d\n",
					physbase, reserve_size, node_ar.nid);
				reserve_bootmem_node(NODE_DATA(node_ar.nid),
						physbase, reserve_size,
						BOOTMEM_DEFAULT);
			}
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
			/*
			 * if reserved region is contained in the active region
			 * then done.
			 */
			if (end_pfn <= node_ar.end_pfn)
				break;

			/*
			 * reserved region extends past the active region
			 *   get next active region that contains this
			 *   reserved region
			 */
			start_pfn = node_ar.end_pfn;
			physbase = start_pfn << PAGE_SHIFT;
			size = size - reserve_size;
			get_node_active_region(start_pfn, &node_ar);
		}
	}
}


L
Linus Torvalds 已提交
995 996 997 998 999
void __init do_init_bootmem(void)
{
	int nid;

	min_low_pfn = 0;
Y
Yinghai Lu 已提交
1000
	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
L
Linus Torvalds 已提交
1001 1002 1003 1004 1005
	max_pfn = max_low_pfn;

	if (parse_numa_properties())
		setup_nonnuma();
	else
1006
		dump_numa_memory_topology();
L
Linus Torvalds 已提交
1007 1008

	for_each_online_node(nid) {
1009
		unsigned long start_pfn, end_pfn;
1010
		void *bootmem_vaddr;
L
Linus Torvalds 已提交
1011 1012
		unsigned long bootmap_pages;

1013
		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
L
Linus Torvalds 已提交
1014

1015 1016 1017 1018 1019 1020 1021
		/*
		 * Allocate the node structure node local if possible
		 *
		 * Be careful moving this around, as it relies on all
		 * previous nodes' bootmem to be initialized and have
		 * all reserved areas marked.
		 */
1022
		NODE_DATA(nid) = careful_zallocation(nid,
L
Linus Torvalds 已提交
1023
					sizeof(struct pglist_data),
1024
					SMP_CACHE_BYTES, end_pfn);
L
Linus Torvalds 已提交
1025 1026 1027 1028

  		dbg("node %d\n", nid);
		dbg("NODE_DATA() = %p\n", NODE_DATA(nid));

1029
		NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
1030 1031
		NODE_DATA(nid)->node_start_pfn = start_pfn;
		NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
L
Linus Torvalds 已提交
1032 1033 1034 1035

		if (NODE_DATA(nid)->node_spanned_pages == 0)
  			continue;

1036 1037
  		dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
  		dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
L
Linus Torvalds 已提交
1038

1039
		bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
1040
		bootmem_vaddr = careful_zallocation(nid,
1041 1042
					bootmap_pages << PAGE_SHIFT,
					PAGE_SIZE, end_pfn);
L
Linus Torvalds 已提交
1043

1044
		dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
L
Linus Torvalds 已提交
1045

1046 1047
		init_bootmem_node(NODE_DATA(nid),
				  __pa(bootmem_vaddr) >> PAGE_SHIFT,
1048
				  start_pfn, end_pfn);
L
Linus Torvalds 已提交
1049

1050
		free_bootmem_with_active_regions(nid, end_pfn);
1051 1052
		/*
		 * Be very careful about moving this around.  Future
1053
		 * calls to careful_zallocation() depend on this getting
1054 1055 1056
		 * done correctly.
		 */
		mark_reserved_regions_for_nid(nid);
1057
		sparse_memory_present_with_active_regions(nid);
1058
	}
1059 1060

	init_bootmem_done = 1;
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070

	/*
	 * Now bootmem is initialised we can create the node to cpumask
	 * lookup tables and setup the cpu callback to populate them.
	 */
	setup_node_to_cpumask_map();

	register_cpu_notifier(&ppc64_numa_nb);
	cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
			  (void *)(unsigned long)boot_cpuid);
L
Linus Torvalds 已提交
1071 1072 1073 1074
}

void __init paging_init(void)
{
1075 1076
	unsigned long max_zone_pfns[MAX_NR_ZONES];
	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
Y
Yinghai Lu 已提交
1077
	max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT;
1078
	free_area_init_nodes(max_zone_pfns);
L
Linus Torvalds 已提交
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
}

static int __init early_numa(char *p)
{
	if (!p)
		return 0;

	if (strstr(p, "off"))
		numa_enabled = 0;

	if (strstr(p, "debug"))
		numa_debug = 1;

1092 1093 1094 1095
	p = strstr(p, "fake=");
	if (p)
		cmdline = p + strlen("fake=");

L
Linus Torvalds 已提交
1096 1097 1098
	return 0;
}
early_param("numa", early_numa);
1099 1100

#ifdef CONFIG_MEMORY_HOTPLUG
1101
/*
1102 1103 1104
 * Find the node associated with a hot added memory section for
 * memory represented in the device tree by the property
 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1105 1106 1107 1108 1109
 */
static int hot_add_drconf_scn_to_nid(struct device_node *memory,
				     unsigned long scn_addr)
{
	const u32 *dm;
1110
	unsigned int drconf_cell_cnt, rc;
1111
	unsigned long lmb_size;
1112
	struct assoc_arrays aa;
1113
	int nid = -1;
1114

1115 1116 1117
	drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
	if (!drconf_cell_cnt)
		return -1;
1118

1119 1120
	lmb_size = of_get_lmb_size(memory);
	if (!lmb_size)
1121
		return -1;
1122 1123 1124

	rc = of_get_assoc_arrays(memory, &aa);
	if (rc)
1125
		return -1;
1126

1127
	for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
		struct of_drconf_cell drmem;

		read_drconf_cell(&drmem, &dm);

		/* skip this block if it is reserved or not assigned to
		 * this partition */
		if ((drmem.flags & DRCONF_MEM_RESERVED)
		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
			continue;

1138
		if ((scn_addr < drmem.base_addr)
1139
		    || (scn_addr >= (drmem.base_addr + lmb_size)))
1140 1141
			continue;

1142
		nid = of_drconf_to_nid_single(&drmem, &aa);
1143 1144 1145 1146 1147 1148 1149 1150 1151
		break;
	}

	return nid;
}

/*
 * Find the node associated with a hot added memory section for memory
 * represented in the device tree as a node (i.e. memory@XXXX) for
Y
Yinghai Lu 已提交
1152
 * each memblock.
1153 1154 1155
 */
int hot_add_node_scn_to_nid(unsigned long scn_addr)
{
1156
	struct device_node *memory;
1157 1158
	int nid = -1;

1159
	for_each_node_by_type(memory, "memory") {
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
		unsigned long start, size;
		int ranges;
		const unsigned int *memcell_buf;
		unsigned int len;

		memcell_buf = of_get_property(memory, "reg", &len);
		if (!memcell_buf || len <= 0)
			continue;

		/* ranges in cell */
		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);

		while (ranges--) {
			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
			size = read_n_cells(n_mem_size_cells, &memcell_buf);

			if ((scn_addr < start) || (scn_addr >= (start + size)))
				continue;

			nid = of_node_to_nid_single(memory);
			break;
		}
1182

1183 1184
		if (nid >= 0)
			break;
1185 1186
	}

1187 1188
	of_node_put(memory);

1189
	return nid;
1190 1191
}

1192 1193
/*
 * Find the node associated with a hot added memory section.  Section
Y
Yinghai Lu 已提交
1194 1195
 * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
 * sections are fully contained within a single MEMBLOCK.
1196 1197 1198 1199
 */
int hot_add_scn_to_nid(unsigned long scn_addr)
{
	struct device_node *memory = NULL;
1200
	int nid, found = 0;
1201 1202

	if (!numa_enabled || (min_common_depth < 0))
1203
		return first_online_node;
1204 1205 1206 1207 1208

	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (memory) {
		nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
		of_node_put(memory);
1209 1210
	} else {
		nid = hot_add_node_scn_to_nid(scn_addr);
1211
	}
1212

1213
	if (nid < 0 || !node_online(nid))
1214
		nid = first_online_node;
1215

1216 1217
	if (NODE_DATA(nid)->node_spanned_pages)
		return nid;
1218

1219 1220 1221 1222
	for_each_online_node(nid) {
		if (NODE_DATA(nid)->node_spanned_pages) {
			found = 1;
			break;
1223 1224
		}
	}
1225 1226 1227

	BUG_ON(!found);
	return nid;
1228
}
1229

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
static u64 hot_add_drconf_memory_max(void)
{
        struct device_node *memory = NULL;
        unsigned int drconf_cell_cnt = 0;
        u64 lmb_size = 0;
        const u32 *dm = 0;

        memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
        if (memory) {
                drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
                lmb_size = of_get_lmb_size(memory);
                of_node_put(memory);
        }
        return lmb_size * drconf_cell_cnt;
}

/*
 * memory_hotplug_max - return max address of memory that may be added
 *
 * This is currently only used on systems that support drconfig memory
 * hotplug.
 */
u64 memory_hotplug_max(void)
{
        return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
}
1256
#endif /* CONFIG_MEMORY_HOTPLUG */
1257

1258
/* Virtual Processor Home Node (VPHN) support */
1259
#ifdef CONFIG_PPC_SPLPAR
1260 1261 1262 1263 1264 1265 1266
struct topology_update_data {
	struct topology_update_data *next;
	unsigned int cpu;
	int old_nid;
	int new_nid;
};

1267
static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1268 1269
static cpumask_t cpu_associativity_changes_mask;
static int vphn_enabled;
1270 1271
static int prrn_enabled;
static void reset_topology_timer(void);
1272 1273 1274 1275 1276 1277 1278

/*
 * Store the current values of the associativity change counters in the
 * hypervisor.
 */
static void setup_cpu_associativity_change_counters(void)
{
1279
	int cpu;
1280

1281 1282 1283
	/* The VPHN feature supports a maximum of 8 reference points */
	BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);

1284
	for_each_possible_cpu(cpu) {
1285
		int i;
1286 1287 1288
		u8 *counts = vphn_cpu_change_counts[cpu];
		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;

1289
		for (i = 0; i < distance_ref_points_depth; i++)
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
			counts[i] = hypervisor_counts[i];
	}
}

/*
 * The hypervisor maintains a set of 8 associativity change counters in
 * the VPA of each cpu that correspond to the associativity levels in the
 * ibm,associativity-reference-points property. When an associativity
 * level changes, the corresponding counter is incremented.
 *
 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
 * node associativity levels have changed.
 *
 * Returns the number of cpus with unhandled associativity changes.
 */
static int update_cpu_associativity_changes_mask(void)
{
1307
	int cpu;
1308 1309 1310 1311 1312 1313 1314
	cpumask_t *changes = &cpu_associativity_changes_mask;

	for_each_possible_cpu(cpu) {
		int i, changed = 0;
		u8 *counts = vphn_cpu_change_counts[cpu];
		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;

1315
		for (i = 0; i < distance_ref_points_depth; i++) {
1316
			if (hypervisor_counts[i] != counts[i]) {
1317 1318 1319 1320 1321
				counts[i] = hypervisor_counts[i];
				changed = 1;
			}
		}
		if (changed) {
1322 1323
			cpumask_or(changes, changes, cpu_sibling_mask(cpu));
			cpu = cpu_last_thread_sibling(cpu);
1324 1325 1326
		}
	}

1327
	return cpumask_weight(changes);
1328 1329
}

1330 1331 1332 1333 1334
/*
 * 6 64-bit registers unpacked into 12 32-bit associativity values. To form
 * the complete property we have to add the length in the first cell.
 */
#define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1)
1335 1336 1337 1338 1339 1340 1341

/*
 * Convert the associativity domain numbers returned from the hypervisor
 * to the sequence they would appear in the ibm,associativity property.
 */
static int vphn_unpack_associativity(const long *packed, unsigned int *unpacked)
{
1342
	int i, nr_assoc_doms = 0;
1343 1344 1345 1346 1347 1348
	const u16 *field = (const u16*) packed;

#define VPHN_FIELD_UNUSED	(0xffff)
#define VPHN_FIELD_MSB		(0x8000)
#define VPHN_FIELD_MASK		(~VPHN_FIELD_MSB)

1349
	for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) {
1350 1351 1352 1353 1354 1355 1356
		if (*field == VPHN_FIELD_UNUSED) {
			/* All significant fields processed, and remaining
			 * fields contain the reserved value of all 1's.
			 * Just store them.
			 */
			unpacked[i] = *((u32*)field);
			field += 2;
1357
		} else if (*field & VPHN_FIELD_MSB) {
1358 1359 1360 1361
			/* Data is in the lower 15 bits of this field */
			unpacked[i] = *field & VPHN_FIELD_MASK;
			field++;
			nr_assoc_doms++;
1362
		} else {
1363 1364 1365 1366 1367 1368 1369 1370 1371
			/* Data is in the lower 15 bits of this field
			 * concatenated with the next 16 bit field
			 */
			unpacked[i] = *((u32*)field);
			field += 2;
			nr_assoc_doms++;
		}
	}

1372 1373 1374
	/* The first cell contains the length of the property */
	unpacked[0] = nr_assoc_doms;

1375 1376 1377 1378 1379 1380 1381 1382 1383
	return nr_assoc_doms;
}

/*
 * Retrieve the new associativity information for a virtual processor's
 * home node.
 */
static long hcall_vphn(unsigned long cpu, unsigned int *associativity)
{
1384
	long rc;
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
	long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
	u64 flags = 1;
	int hwcpu = get_hard_smp_processor_id(cpu);

	rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
	vphn_unpack_associativity(retbuf, associativity);

	return rc;
}

static long vphn_get_associativity(unsigned long cpu,
					unsigned int *associativity)
{
1398
	long rc;
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417

	rc = hcall_vphn(cpu, associativity);

	switch (rc) {
	case H_FUNCTION:
		printk(KERN_INFO
			"VPHN is not supported. Disabling polling...\n");
		stop_topology_update();
		break;
	case H_HARDWARE:
		printk(KERN_ERR
			"hcall_vphn() experienced a hardware fault "
			"preventing VPHN. Disabling polling...\n");
		stop_topology_update();
	}

	return rc;
}

1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
/*
 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
 * characteristics change. This function doesn't perform any locking and is
 * only safe to call from stop_machine().
 */
static int update_cpu_topology(void *data)
{
	struct topology_update_data *update;
	unsigned long cpu;

	if (!data)
		return -EINVAL;

1431
	cpu = smp_processor_id();
1432 1433 1434 1435 1436 1437 1438

	for (update = data; update; update = update->next) {
		if (cpu != update->cpu)
			continue;

		unmap_cpu_from_node(update->cpu);
		map_cpu_to_node(update->cpu, update->new_nid);
1439
		vdso_getcpu_init();
1440 1441 1442 1443 1444
	}

	return 0;
}

1445 1446
/*
 * Update the node maps and sysfs entries for each cpu whose home node
1447
 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1448 1449 1450
 */
int arch_update_cpu_topology(void)
{
1451
	unsigned int cpu, sibling, changed = 0;
1452
	struct topology_update_data *updates, *ud;
1453
	unsigned int associativity[VPHN_ASSOC_BUFSIZE] = {0};
1454
	cpumask_t updated_cpus;
1455
	struct device *dev;
1456
	int weight, new_nid, i = 0;
1457

1458 1459 1460 1461 1462 1463 1464
	weight = cpumask_weight(&cpu_associativity_changes_mask);
	if (!weight)
		return 0;

	updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
	if (!updates)
		return 0;
1465

1466 1467
	cpumask_clear(&updated_cpus);

1468
	for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
		/*
		 * If siblings aren't flagged for changes, updates list
		 * will be too short. Skip on this update and set for next
		 * update.
		 */
		if (!cpumask_subset(cpu_sibling_mask(cpu),
					&cpu_associativity_changes_mask)) {
			pr_info("Sibling bits not set for associativity "
					"change, cpu%d\n", cpu);
			cpumask_or(&cpu_associativity_changes_mask,
					&cpu_associativity_changes_mask,
					cpu_sibling_mask(cpu));
			cpu = cpu_last_thread_sibling(cpu);
			continue;
		}
1484

1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
		/* Use associativity from first thread for all siblings */
		vphn_get_associativity(cpu, associativity);
		new_nid = associativity_to_nid(associativity);
		if (new_nid < 0 || !node_online(new_nid))
			new_nid = first_online_node;

		if (new_nid == numa_cpu_lookup_table[cpu]) {
			cpumask_andnot(&cpu_associativity_changes_mask,
					&cpu_associativity_changes_mask,
					cpu_sibling_mask(cpu));
			cpu = cpu_last_thread_sibling(cpu);
			continue;
		}
1498

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
		for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
			ud = &updates[i++];
			ud->cpu = sibling;
			ud->new_nid = new_nid;
			ud->old_nid = numa_cpu_lookup_table[sibling];
			cpumask_set_cpu(sibling, &updated_cpus);
			if (i < weight)
				ud->next = &updates[i];
		}
		cpu = cpu_last_thread_sibling(cpu);
1509 1510
	}

1511
	stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1512 1513

	for (ud = &updates[0]; ud; ud = ud->next) {
1514 1515 1516
		unregister_cpu_under_node(ud->cpu, ud->old_nid);
		register_cpu_under_node(ud->cpu, ud->new_nid);

1517
		dev = get_cpu_device(ud->cpu);
1518 1519
		if (dev)
			kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1520
		cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1521
		changed = 1;
1522 1523
	}

1524
	kfree(updates);
1525
	return changed;
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
}

static void topology_work_fn(struct work_struct *work)
{
	rebuild_sched_domains();
}
static DECLARE_WORK(topology_work, topology_work_fn);

void topology_schedule_update(void)
{
	schedule_work(&topology_work);
}

static void topology_timer_fn(unsigned long ignored)
{
1541
	if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1542
		topology_schedule_update();
1543 1544 1545 1546 1547
	else if (vphn_enabled) {
		if (update_cpu_associativity_changes_mask() > 0)
			topology_schedule_update();
		reset_topology_timer();
	}
1548 1549 1550 1551
}
static struct timer_list topology_timer =
	TIMER_INITIALIZER(topology_timer_fn, 0, 0);

1552
static void reset_topology_timer(void)
1553 1554 1555
{
	topology_timer.data = 0;
	topology_timer.expires = jiffies + 60 * HZ;
1556
	mod_timer(&topology_timer, topology_timer.expires);
1557 1558
}

1559 1560
#ifdef CONFIG_SMP

1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
static void stage_topology_update(int core_id)
{
	cpumask_or(&cpu_associativity_changes_mask,
		&cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
	reset_topology_timer();
}

static int dt_update_callback(struct notifier_block *nb,
				unsigned long action, void *data)
{
	struct of_prop_reconfig *update;
	int rc = NOTIFY_DONE;

	switch (action) {
	case OF_RECONFIG_UPDATE_PROPERTY:
		update = (struct of_prop_reconfig *)data;
1577 1578
		if (!of_prop_cmp(update->dn->type, "cpu") &&
		    !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1579 1580 1581 1582 1583 1584 1585 1586 1587
			u32 core_id;
			of_property_read_u32(update->dn, "reg", &core_id);
			stage_topology_update(core_id);
			rc = NOTIFY_OK;
		}
		break;
	}

	return rc;
1588 1589
}

1590 1591 1592 1593
static struct notifier_block dt_update_nb = {
	.notifier_call = dt_update_callback,
};

1594 1595
#endif

1596
/*
1597
 * Start polling for associativity changes.
1598 1599 1600 1601 1602
 */
int start_topology_update(void)
{
	int rc = 0;

1603 1604 1605 1606
	if (firmware_has_feature(FW_FEATURE_PRRN)) {
		if (!prrn_enabled) {
			prrn_enabled = 1;
			vphn_enabled = 0;
1607
#ifdef CONFIG_SMP
1608
			rc = of_reconfig_notifier_register(&dt_update_nb);
1609
#endif
1610
		}
1611
	} else if (firmware_has_feature(FW_FEATURE_VPHN) &&
1612 1613 1614 1615 1616 1617 1618 1619
		   get_lppaca()->shared_proc) {
		if (!vphn_enabled) {
			prrn_enabled = 0;
			vphn_enabled = 1;
			setup_cpu_associativity_change_counters();
			init_timer_deferrable(&topology_timer);
			reset_topology_timer();
		}
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
	}

	return rc;
}

/*
 * Disable polling for VPHN associativity changes.
 */
int stop_topology_update(void)
{
1630 1631 1632 1633
	int rc = 0;

	if (prrn_enabled) {
		prrn_enabled = 0;
1634
#ifdef CONFIG_SMP
1635
		rc = of_reconfig_notifier_unregister(&dt_update_nb);
1636
#endif
1637 1638 1639 1640 1641 1642
	} else if (vphn_enabled) {
		vphn_enabled = 0;
		rc = del_timer_sync(&topology_timer);
	}

	return rc;
1643
}
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699

int prrn_is_enabled(void)
{
	return prrn_enabled;
}

static int topology_read(struct seq_file *file, void *v)
{
	if (vphn_enabled || prrn_enabled)
		seq_puts(file, "on\n");
	else
		seq_puts(file, "off\n");

	return 0;
}

static int topology_open(struct inode *inode, struct file *file)
{
	return single_open(file, topology_read, NULL);
}

static ssize_t topology_write(struct file *file, const char __user *buf,
			      size_t count, loff_t *off)
{
	char kbuf[4]; /* "on" or "off" plus null. */
	int read_len;

	read_len = count < 3 ? count : 3;
	if (copy_from_user(kbuf, buf, read_len))
		return -EINVAL;

	kbuf[read_len] = '\0';

	if (!strncmp(kbuf, "on", 2))
		start_topology_update();
	else if (!strncmp(kbuf, "off", 3))
		stop_topology_update();
	else
		return -EINVAL;

	return count;
}

static const struct file_operations topology_ops = {
	.read = seq_read,
	.write = topology_write,
	.open = topology_open,
	.release = single_release
};

static int topology_update_init(void)
{
	start_topology_update();
	proc_create("powerpc/topology_updates", 644, NULL, &topology_ops);

	return 0;
1700
}
1701
device_initcall(topology_update_init);
1702
#endif /* CONFIG_PPC_SPLPAR */