numa.c 36.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * pSeries NUMA support
 *
 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
#include <linux/threads.h>
#include <linux/bootmem.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/mmzone.h>
#include <linux/module.h>
#include <linux/nodemask.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
Y
Yinghai Lu 已提交
20
#include <linux/memblock.h>
21
#include <linux/of.h>
22
#include <linux/pfn.h>
23 24
#include <linux/cpuset.h>
#include <linux/node.h>
25
#include <asm/sparsemem.h>
26
#include <asm/prom.h>
27
#include <asm/system.h>
P
Paul Mackerras 已提交
28
#include <asm/smp.h>
29 30
#include <asm/firmware.h>
#include <asm/paca.h>
31
#include <asm/hvcall.h>
L
Linus Torvalds 已提交
32 33 34

static int numa_enabled = 1;

35 36
static char *cmdline __initdata;

L
Linus Torvalds 已提交
37 38 39
static int numa_debug;
#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }

40
int numa_cpu_lookup_table[NR_CPUS];
41
cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
L
Linus Torvalds 已提交
42
struct pglist_data *node_data[MAX_NUMNODES];
43 44

EXPORT_SYMBOL(numa_cpu_lookup_table);
45
EXPORT_SYMBOL(node_to_cpumask_map);
46 47
EXPORT_SYMBOL(node_data);

L
Linus Torvalds 已提交
48
static int min_common_depth;
49
static int n_mem_addr_cells, n_mem_size_cells;
50 51 52 53 54 55
static int form1_affinity;

#define MAX_DISTANCE_REF_POINTS 4
static int distance_ref_points_depth;
static const unsigned int *distance_ref_points;
static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
L
Linus Torvalds 已提交
56

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
/*
 * Allocate node_to_cpumask_map based on number of available nodes
 * Requires node_possible_map to be valid.
 *
 * Note: node_to_cpumask() is not valid until after this is done.
 */
static void __init setup_node_to_cpumask_map(void)
{
	unsigned int node, num = 0;

	/* setup nr_node_ids if not done yet */
	if (nr_node_ids == MAX_NUMNODES) {
		for_each_node_mask(node, node_possible_map)
			num = node;
		nr_node_ids = num + 1;
	}

	/* allocate the map */
	for (node = 0; node < nr_node_ids; node++)
		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);

	/* cpumask_of_node() will now work */
	dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
}

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
static int __cpuinit fake_numa_create_new_node(unsigned long end_pfn,
						unsigned int *nid)
{
	unsigned long long mem;
	char *p = cmdline;
	static unsigned int fake_nid;
	static unsigned long long curr_boundary;

	/*
	 * Modify node id, iff we started creating NUMA nodes
	 * We want to continue from where we left of the last time
	 */
	if (fake_nid)
		*nid = fake_nid;
	/*
	 * In case there are no more arguments to parse, the
	 * node_id should be the same as the last fake node id
	 * (we've handled this above).
	 */
	if (!p)
		return 0;

	mem = memparse(p, &p);
	if (!mem)
		return 0;

	if (mem < curr_boundary)
		return 0;

	curr_boundary = mem;

	if ((end_pfn << PAGE_SHIFT) > mem) {
		/*
		 * Skip commas and spaces
		 */
		while (*p == ',' || *p == ' ' || *p == '\t')
			p++;

		cmdline = p;
		fake_nid++;
		*nid = fake_nid;
		dbg("created new fake_node with id %d\n", fake_nid);
		return 1;
	}
	return 0;
}

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
/*
 * get_active_region_work_fn - A helper function for get_node_active_region
 *	Returns datax set to the start_pfn and end_pfn if they contain
 *	the initial value of datax->start_pfn between them
 * @start_pfn: start page(inclusive) of region to check
 * @end_pfn: end page(exclusive) of region to check
 * @datax: comes in with ->start_pfn set to value to search for and
 *	goes out with active range if it contains it
 * Returns 1 if search value is in range else 0
 */
static int __init get_active_region_work_fn(unsigned long start_pfn,
					unsigned long end_pfn, void *datax)
{
	struct node_active_region *data;
	data = (struct node_active_region *)datax;

	if (start_pfn <= data->start_pfn && end_pfn > data->start_pfn) {
		data->start_pfn = start_pfn;
		data->end_pfn = end_pfn;
		return 1;
	}
	return 0;

}

/*
 * get_node_active_region - Return active region containing start_pfn
156
 * Active range returned is empty if none found.
157 158 159 160 161 162 163 164 165 166
 * @start_pfn: The page to return the region for.
 * @node_ar: Returned set to the active region containing start_pfn
 */
static void __init get_node_active_region(unsigned long start_pfn,
		       struct node_active_region *node_ar)
{
	int nid = early_pfn_to_nid(start_pfn);

	node_ar->nid = nid;
	node_ar->start_pfn = start_pfn;
167
	node_ar->end_pfn = start_pfn;
168 169 170
	work_with_active_regions(nid, get_active_region_work_fn, node_ar);
}

171
static void map_cpu_to_node(int cpu, int node)
L
Linus Torvalds 已提交
172 173
{
	numa_cpu_lookup_table[cpu] = node;
174

175 176
	dbg("adding cpu %d to node %d\n", cpu, node);

177 178
	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
L
Linus Torvalds 已提交
179 180
}

181
#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
L
Linus Torvalds 已提交
182 183 184 185 186 187
static void unmap_cpu_from_node(unsigned long cpu)
{
	int node = numa_cpu_lookup_table[cpu];

	dbg("removing cpu %lu from node %d\n", cpu, node);

188 189
	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
L
Linus Torvalds 已提交
190 191 192 193 194
	} else {
		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
		       cpu, node);
	}
}
195
#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
L
Linus Torvalds 已提交
196 197

/* must hold reference to node during call */
198
static const int *of_get_associativity(struct device_node *dev)
L
Linus Torvalds 已提交
199
{
200
	return of_get_property(dev, "ibm,associativity", NULL);
L
Linus Torvalds 已提交
201 202
}

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
/*
 * Returns the property linux,drconf-usable-memory if
 * it exists (the property exists only in kexec/kdump kernels,
 * added by kexec-tools)
 */
static const u32 *of_get_usable_memory(struct device_node *memory)
{
	const u32 *prop;
	u32 len;
	prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
	if (!prop || len < sizeof(unsigned int))
		return 0;
	return prop;
}

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
int __node_distance(int a, int b)
{
	int i;
	int distance = LOCAL_DISTANCE;

	if (!form1_affinity)
		return distance;

	for (i = 0; i < distance_ref_points_depth; i++) {
		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
			break;

		/* Double the distance for each NUMA level */
		distance *= 2;
	}

	return distance;
}

static void initialize_distance_lookup_table(int nid,
		const unsigned int *associativity)
{
	int i;

	if (!form1_affinity)
		return;

	for (i = 0; i < distance_ref_points_depth; i++) {
		distance_lookup_table[nid][i] =
			associativity[distance_ref_points[i]];
	}
}

251 252 253
/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
 * info is found.
 */
254
static int associativity_to_nid(const unsigned int *associativity)
L
Linus Torvalds 已提交
255
{
256
	int nid = -1;
L
Linus Torvalds 已提交
257 258

	if (min_common_depth == -1)
259
		goto out;
L
Linus Torvalds 已提交
260

261 262
	if (associativity[0] >= min_common_depth)
		nid = associativity[min_common_depth];
263 264

	/* POWER4 LPAR uses 0xffff as invalid node */
265 266
	if (nid == 0xffff || nid >= MAX_NUMNODES)
		nid = -1;
267

268 269
	if (nid > 0 && associativity[0] >= distance_ref_points_depth)
		initialize_distance_lookup_table(nid, associativity);
270

271
out:
272
	return nid;
L
Linus Torvalds 已提交
273 274
}

275 276 277 278 279 280 281 282 283 284 285 286 287 288
/* Returns the nid associated with the given device tree node,
 * or -1 if not found.
 */
static int of_node_to_nid_single(struct device_node *device)
{
	int nid = -1;
	const unsigned int *tmp;

	tmp = of_get_associativity(device);
	if (tmp)
		nid = associativity_to_nid(tmp);
	return nid;
}

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
/* Walk the device tree upwards, looking for an associativity id */
int of_node_to_nid(struct device_node *device)
{
	struct device_node *tmp;
	int nid = -1;

	of_node_get(device);
	while (device) {
		nid = of_node_to_nid_single(device);
		if (nid != -1)
			break;

	        tmp = device;
		device = of_get_parent(tmp);
		of_node_put(tmp);
	}
	of_node_put(device);

	return nid;
}
EXPORT_SYMBOL_GPL(of_node_to_nid);

L
Linus Torvalds 已提交
311 312
static int __init find_min_common_depth(void)
{
313
	int depth;
L
Linus Torvalds 已提交
314
	struct device_node *rtas_root;
315 316
	struct device_node *chosen;
	const char *vec5;
L
Linus Torvalds 已提交
317 318 319 320 321 322 323

	rtas_root = of_find_node_by_path("/rtas");

	if (!rtas_root)
		return -1;

	/*
324 325 326 327 328 329 330 331 332 333
	 * This property is a set of 32-bit integers, each representing
	 * an index into the ibm,associativity nodes.
	 *
	 * With form 0 affinity the first integer is for an SMP configuration
	 * (should be all 0's) and the second is for a normal NUMA
	 * configuration. We have only one level of NUMA.
	 *
	 * With form 1 affinity the first integer is the most significant
	 * NUMA boundary and the following are progressively less significant
	 * boundaries. There can be more than one level of NUMA.
L
Linus Torvalds 已提交
334
	 */
335 336 337 338 339 340 341 342 343 344
	distance_ref_points = of_get_property(rtas_root,
					"ibm,associativity-reference-points",
					&distance_ref_points_depth);

	if (!distance_ref_points) {
		dbg("NUMA: ibm,associativity-reference-points not found.\n");
		goto err;
	}

	distance_ref_points_depth /= sizeof(int);
L
Linus Torvalds 已提交
345

346 347 348 349 350 351 352
#define VEC5_AFFINITY_BYTE	5
#define VEC5_AFFINITY		0x80
	chosen = of_find_node_by_path("/chosen");
	if (chosen) {
		vec5 = of_get_property(chosen, "ibm,architecture-vec-5", NULL);
		if (vec5 && (vec5[VEC5_AFFINITY_BYTE] & VEC5_AFFINITY)) {
			dbg("Using form 1 affinity\n");
353
			form1_affinity = 1;
354
		}
355 356
	}

357 358
	if (form1_affinity) {
		depth = distance_ref_points[0];
L
Linus Torvalds 已提交
359
	} else {
360 361 362 363 364 365 366
		if (distance_ref_points_depth < 2) {
			printk(KERN_WARNING "NUMA: "
				"short ibm,associativity-reference-points\n");
			goto err;
		}

		depth = distance_ref_points[1];
L
Linus Torvalds 已提交
367 368
	}

369 370 371 372 373 374 375 376 377 378 379
	/*
	 * Warn and cap if the hardware supports more than
	 * MAX_DISTANCE_REF_POINTS domains.
	 */
	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
		printk(KERN_WARNING "NUMA: distance array capped at "
			"%d entries\n", MAX_DISTANCE_REF_POINTS);
		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
	}

	of_node_put(rtas_root);
L
Linus Torvalds 已提交
380
	return depth;
381 382 383 384

err:
	of_node_put(rtas_root);
	return -1;
L
Linus Torvalds 已提交
385 386
}

387
static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
L
Linus Torvalds 已提交
388 389 390 391
{
	struct device_node *memory = NULL;

	memory = of_find_node_by_type(memory, "memory");
392
	if (!memory)
393
		panic("numa.c: No memory nodes found!");
394

395
	*n_addr_cells = of_n_addr_cells(memory);
396
	*n_size_cells = of_n_size_cells(memory);
397
	of_node_put(memory);
L
Linus Torvalds 已提交
398 399
}

400
static unsigned long __devinit read_n_cells(int n, const unsigned int **buf)
L
Linus Torvalds 已提交
401 402 403 404 405 406 407 408 409 410
{
	unsigned long result = 0;

	while (n--) {
		result = (result << 32) | **buf;
		(*buf)++;
	}
	return result;
}

411 412 413 414 415 416 417 418 419 420 421 422 423
struct of_drconf_cell {
	u64	base_addr;
	u32	drc_index;
	u32	reserved;
	u32	aa_index;
	u32	flags;
};

#define DRCONF_MEM_ASSIGNED	0x00000008
#define DRCONF_MEM_AI_INVALID	0x00000040
#define DRCONF_MEM_RESERVED	0x00000080

/*
Y
Yinghai Lu 已提交
424
 * Read the next memblock list entry from the ibm,dynamic-memory property
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
 * and return the information in the provided of_drconf_cell structure.
 */
static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp)
{
	const u32 *cp;

	drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);

	cp = *cellp;
	drmem->drc_index = cp[0];
	drmem->reserved = cp[1];
	drmem->aa_index = cp[2];
	drmem->flags = cp[3];

	*cellp = cp + 4;
}

/*
 * Retreive and validate the ibm,dynamic-memory property of the device tree.
 *
Y
Yinghai Lu 已提交
445 446
 * The layout of the ibm,dynamic-memory property is a number N of memblock
 * list entries followed by N memblock list entries.  Each memblock list entry
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
 * contains information as layed out in the of_drconf_cell struct above.
 */
static int of_get_drconf_memory(struct device_node *memory, const u32 **dm)
{
	const u32 *prop;
	u32 len, entries;

	prop = of_get_property(memory, "ibm,dynamic-memory", &len);
	if (!prop || len < sizeof(unsigned int))
		return 0;

	entries = *prop++;

	/* Now that we know the number of entries, revalidate the size
	 * of the property read in to ensure we have everything
	 */
	if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
		return 0;

	*dm = prop;
	return entries;
}

/*
471
 * Retreive and validate the ibm,lmb-size property for drconf memory
472 473
 * from the device tree.
 */
474
static u64 of_get_lmb_size(struct device_node *memory)
475 476 477 478
{
	const u32 *prop;
	u32 len;

479
	prop = of_get_property(memory, "ibm,lmb-size", &len);
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
	if (!prop || len < sizeof(unsigned int))
		return 0;

	return read_n_cells(n_mem_size_cells, &prop);
}

struct assoc_arrays {
	u32	n_arrays;
	u32	array_sz;
	const u32 *arrays;
};

/*
 * Retreive and validate the list of associativity arrays for drconf
 * memory from the ibm,associativity-lookup-arrays property of the
 * device tree..
 *
 * The layout of the ibm,associativity-lookup-arrays property is a number N
 * indicating the number of associativity arrays, followed by a number M
 * indicating the size of each associativity array, followed by a list
 * of N associativity arrays.
 */
static int of_get_assoc_arrays(struct device_node *memory,
			       struct assoc_arrays *aa)
{
	const u32 *prop;
	u32 len;

	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
	if (!prop || len < 2 * sizeof(unsigned int))
		return -1;

	aa->n_arrays = *prop++;
	aa->array_sz = *prop++;

	/* Now that we know the number of arrrays and size of each array,
	 * revalidate the size of the property read in.
	 */
	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
		return -1;

	aa->arrays = prop;
	return 0;
}

/*
 * This is like of_node_to_nid_single() for memory represented in the
 * ibm,dynamic-reconfiguration-memory node.
 */
static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
				   struct assoc_arrays *aa)
{
	int default_nid = 0;
	int nid = default_nid;
	int index;

	if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
	    !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
	    drmem->aa_index < aa->n_arrays) {
		index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
		nid = aa->arrays[index];

		if (nid == 0xffff || nid >= MAX_NUMNODES)
			nid = default_nid;
	}

	return nid;
}

L
Linus Torvalds 已提交
549 550 551 552
/*
 * Figure out to which domain a cpu belongs and stick it there.
 * Return the id of the domain used.
 */
553
static int __cpuinit numa_setup_cpu(unsigned long lcpu)
L
Linus Torvalds 已提交
554
{
555
	int nid = 0;
556
	struct device_node *cpu = of_get_cpu_node(lcpu, NULL);
L
Linus Torvalds 已提交
557 558 559 560 561 562

	if (!cpu) {
		WARN_ON(1);
		goto out;
	}

563
	nid = of_node_to_nid_single(cpu);
L
Linus Torvalds 已提交
564

565
	if (nid < 0 || !node_online(nid))
566
		nid = first_online_node;
L
Linus Torvalds 已提交
567
out:
568
	map_cpu_to_node(lcpu, nid);
L
Linus Torvalds 已提交
569 570 571

	of_node_put(cpu);

572
	return nid;
L
Linus Torvalds 已提交
573 574
}

575
static int __cpuinit cpu_numa_callback(struct notifier_block *nfb,
L
Linus Torvalds 已提交
576 577 578 579 580 581 582 583
			     unsigned long action,
			     void *hcpu)
{
	unsigned long lcpu = (unsigned long)hcpu;
	int ret = NOTIFY_DONE;

	switch (action) {
	case CPU_UP_PREPARE:
584
	case CPU_UP_PREPARE_FROZEN:
585
		numa_setup_cpu(lcpu);
L
Linus Torvalds 已提交
586 587 588 589
		ret = NOTIFY_OK;
		break;
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
590
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
591
	case CPU_UP_CANCELED:
592
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
		unmap_cpu_from_node(lcpu);
		break;
		ret = NOTIFY_OK;
#endif
	}
	return ret;
}

/*
 * Check and possibly modify a memory region to enforce the memory limit.
 *
 * Returns the size the region should have to enforce the memory limit.
 * This will either be the original value of size, a truncated value,
 * or zero. If the returned value of size is 0 the region should be
 * discarded as it lies wholy above the memory limit.
 */
609 610
static unsigned long __init numa_enforce_memory_limit(unsigned long start,
						      unsigned long size)
L
Linus Torvalds 已提交
611 612
{
	/*
Y
Yinghai Lu 已提交
613
	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
L
Linus Torvalds 已提交
614
	 * we've already adjusted it for the limit and it takes care of
615 616
	 * having memory holes below the limit.  Also, in the case of
	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
L
Linus Torvalds 已提交
617 618
	 */

Y
Yinghai Lu 已提交
619
	if (start + size <= memblock_end_of_DRAM())
L
Linus Torvalds 已提交
620 621
		return size;

Y
Yinghai Lu 已提交
622
	if (start >= memblock_end_of_DRAM())
L
Linus Torvalds 已提交
623 624
		return 0;

Y
Yinghai Lu 已提交
625
	return memblock_end_of_DRAM() - start;
L
Linus Torvalds 已提交
626 627
}

628 629 630 631 632 633 634
/*
 * Reads the counter for a given entry in
 * linux,drconf-usable-memory property
 */
static inline int __init read_usm_ranges(const u32 **usm)
{
	/*
635
	 * For each lmb in ibm,dynamic-memory a corresponding
636 637 638 639 640 641 642
	 * entry in linux,drconf-usable-memory property contains
	 * a counter followed by that many (base, size) duple.
	 * read the counter from linux,drconf-usable-memory
	 */
	return read_n_cells(n_mem_size_cells, usm);
}

643 644 645 646 647 648
/*
 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
 * node.  This assumes n_mem_{addr,size}_cells have been set.
 */
static void __init parse_drconf_memory(struct device_node *memory)
{
649 650
	const u32 *dm, *usm;
	unsigned int n, rc, ranges, is_kexec_kdump = 0;
651
	unsigned long lmb_size, base, size, sz;
652 653 654 655 656
	int nid;
	struct assoc_arrays aa;

	n = of_get_drconf_memory(memory, &dm);
	if (!n)
657 658
		return;

659 660
	lmb_size = of_get_lmb_size(memory);
	if (!lmb_size)
661 662 663 664
		return;

	rc = of_get_assoc_arrays(memory, &aa);
	if (rc)
665 666
		return;

667 668 669 670 671
	/* check if this is a kexec/kdump kernel */
	usm = of_get_usable_memory(memory);
	if (usm != NULL)
		is_kexec_kdump = 1;

672
	for (; n != 0; --n) {
673 674 675 676 677 678 679 680
		struct of_drconf_cell drmem;

		read_drconf_cell(&drmem, &dm);

		/* skip this block if the reserved bit is set in flags (0x80)
		   or if the block is not assigned to this partition (0x8) */
		if ((drmem.flags & DRCONF_MEM_RESERVED)
		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
681
			continue;
682

683
		base = drmem.base_addr;
684
		size = lmb_size;
685
		ranges = 1;
686

687 688 689 690 691 692 693 694 695 696 697 698 699
		if (is_kexec_kdump) {
			ranges = read_usm_ranges(&usm);
			if (!ranges) /* there are no (base, size) duple */
				continue;
		}
		do {
			if (is_kexec_kdump) {
				base = read_n_cells(n_mem_addr_cells, &usm);
				size = read_n_cells(n_mem_size_cells, &usm);
			}
			nid = of_drconf_to_nid_single(&drmem, &aa);
			fake_numa_create_new_node(
				((base + size) >> PAGE_SHIFT),
700
					   &nid);
701 702 703 704 705 706 707
			node_set_online(nid);
			sz = numa_enforce_memory_limit(base, size);
			if (sz)
				add_active_range(nid, base >> PAGE_SHIFT,
						 (base >> PAGE_SHIFT)
						 + (sz >> PAGE_SHIFT));
		} while (--ranges);
708 709 710
	}
}

L
Linus Torvalds 已提交
711 712 713 714
static int __init parse_numa_properties(void)
{
	struct device_node *cpu = NULL;
	struct device_node *memory = NULL;
715
	int default_nid = 0;
L
Linus Torvalds 已提交
716 717 718 719 720 721 722 723 724 725 726 727
	unsigned long i;

	if (numa_enabled == 0) {
		printk(KERN_WARNING "NUMA disabled by user\n");
		return -1;
	}

	min_common_depth = find_min_common_depth();

	if (min_common_depth < 0)
		return min_common_depth;

728 729
	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);

L
Linus Torvalds 已提交
730
	/*
731 732 733
	 * Even though we connect cpus to numa domains later in SMP
	 * init, we need to know the node ids now. This is because
	 * each node to be onlined must have NODE_DATA etc backing it.
L
Linus Torvalds 已提交
734
	 */
735
	for_each_present_cpu(i) {
736
		int nid;
L
Linus Torvalds 已提交
737

738
		cpu = of_get_cpu_node(i, NULL);
739
		BUG_ON(!cpu);
740
		nid = of_node_to_nid_single(cpu);
741
		of_node_put(cpu);
L
Linus Torvalds 已提交
742

743 744 745 746 747 748 749 750
		/*
		 * Don't fall back to default_nid yet -- we will plug
		 * cpus into nodes once the memory scan has discovered
		 * the topology.
		 */
		if (nid < 0)
			continue;
		node_set_online(nid);
L
Linus Torvalds 已提交
751 752
	}

753
	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
L
Linus Torvalds 已提交
754 755 756 757
	memory = NULL;
	while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
		unsigned long start;
		unsigned long size;
758
		int nid;
L
Linus Torvalds 已提交
759
		int ranges;
760
		const unsigned int *memcell_buf;
L
Linus Torvalds 已提交
761 762
		unsigned int len;

763
		memcell_buf = of_get_property(memory,
764 765
			"linux,usable-memory", &len);
		if (!memcell_buf || len <= 0)
766
			memcell_buf = of_get_property(memory, "reg", &len);
L
Linus Torvalds 已提交
767 768 769
		if (!memcell_buf || len <= 0)
			continue;

770 771
		/* ranges in cell */
		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
L
Linus Torvalds 已提交
772 773
new_range:
		/* these are order-sensitive, and modify the buffer pointer */
774 775
		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
		size = read_n_cells(n_mem_size_cells, &memcell_buf);
L
Linus Torvalds 已提交
776

777 778 779 780 781
		/*
		 * Assumption: either all memory nodes or none will
		 * have associativity properties.  If none, then
		 * everything goes to default_nid.
		 */
782
		nid = of_node_to_nid_single(memory);
783 784
		if (nid < 0)
			nid = default_nid;
785 786

		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
787
		node_set_online(nid);
L
Linus Torvalds 已提交
788

789
		if (!(size = numa_enforce_memory_limit(start, size))) {
L
Linus Torvalds 已提交
790 791 792 793 794 795
			if (--ranges)
				goto new_range;
			else
				continue;
		}

796 797
		add_active_range(nid, start >> PAGE_SHIFT,
				(start >> PAGE_SHIFT) + (size >> PAGE_SHIFT));
L
Linus Torvalds 已提交
798 799 800 801 802

		if (--ranges)
			goto new_range;
	}

803
	/*
Y
Yinghai Lu 已提交
804
	 * Now do the same thing for each MEMBLOCK listed in the ibm,dynamic-memory
805 806 807 808 809 810
	 * property in the ibm,dynamic-reconfiguration-memory node.
	 */
	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (memory)
		parse_drconf_memory(memory);

L
Linus Torvalds 已提交
811 812 813 814 815
	return 0;
}

static void __init setup_nonnuma(void)
{
Y
Yinghai Lu 已提交
816 817
	unsigned long top_of_ram = memblock_end_of_DRAM();
	unsigned long total_ram = memblock_phys_mem_size();
818
	unsigned long start_pfn, end_pfn;
819 820
	unsigned int nid = 0;
	struct memblock_region *reg;
L
Linus Torvalds 已提交
821

822
	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
L
Linus Torvalds 已提交
823
	       top_of_ram, total_ram);
824
	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
L
Linus Torvalds 已提交
825 826
	       (top_of_ram - total_ram) >> 20);

827
	for_each_memblock(memory, reg) {
828 829
		start_pfn = memblock_region_memory_base_pfn(reg);
		end_pfn = memblock_region_memory_end_pfn(reg);
830 831 832 833

		fake_numa_create_new_node(end_pfn, &nid);
		add_active_range(nid, start_pfn, end_pfn);
		node_set_online(nid);
834
	}
L
Linus Torvalds 已提交
835 836
}

837 838 839 840 841 842 843 844 845
void __init dump_numa_cpu_topology(void)
{
	unsigned int node;
	unsigned int cpu, count;

	if (min_common_depth == -1 || !numa_enabled)
		return;

	for_each_online_node(node) {
846
		printk(KERN_DEBUG "Node %d CPUs:", node);
847 848 849 850 851 852

		count = 0;
		/*
		 * If we used a CPU iterator here we would miss printing
		 * the holes in the cpumap.
		 */
853 854 855
		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
			if (cpumask_test_cpu(cpu,
					node_to_cpumask_map[node])) {
856 857 858 859 860 861 862 863 864 865 866
				if (count == 0)
					printk(" %u", cpu);
				++count;
			} else {
				if (count > 1)
					printk("-%u", cpu - 1);
				count = 0;
			}
		}

		if (count > 1)
867
			printk("-%u", nr_cpu_ids - 1);
868 869 870 871 872
		printk("\n");
	}
}

static void __init dump_numa_memory_topology(void)
L
Linus Torvalds 已提交
873 874 875 876 877 878 879 880 881 882
{
	unsigned int node;
	unsigned int count;

	if (min_common_depth == -1 || !numa_enabled)
		return;

	for_each_online_node(node) {
		unsigned long i;

883
		printk(KERN_DEBUG "Node %d Memory:", node);
L
Linus Torvalds 已提交
884 885 886

		count = 0;

Y
Yinghai Lu 已提交
887
		for (i = 0; i < memblock_end_of_DRAM();
888 889
		     i += (1 << SECTION_SIZE_BITS)) {
			if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
L
Linus Torvalds 已提交
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
				if (count == 0)
					printk(" 0x%lx", i);
				++count;
			} else {
				if (count > 0)
					printk("-0x%lx", i);
				count = 0;
			}
		}

		if (count > 0)
			printk("-0x%lx", i);
		printk("\n");
	}
}

/*
Y
Yinghai Lu 已提交
907
 * Allocate some memory, satisfying the memblock or bootmem allocator where
L
Linus Torvalds 已提交
908 909 910
 * required. nid is the preferred node and end is the physical address of
 * the highest address in the node.
 *
911
 * Returns the virtual address of the memory.
L
Linus Torvalds 已提交
912
 */
913
static void __init *careful_zallocation(int nid, unsigned long size,
914 915
				       unsigned long align,
				       unsigned long end_pfn)
L
Linus Torvalds 已提交
916
{
917
	void *ret;
918
	int new_nid;
919 920
	unsigned long ret_paddr;

Y
Yinghai Lu 已提交
921
	ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT);
L
Linus Torvalds 已提交
922 923

	/* retry over all memory */
924
	if (!ret_paddr)
Y
Yinghai Lu 已提交
925
		ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM());
L
Linus Torvalds 已提交
926

927
	if (!ret_paddr)
928
		panic("numa.c: cannot allocate %lu bytes for node %d",
L
Linus Torvalds 已提交
929 930
		      size, nid);

931 932
	ret = __va(ret_paddr);

L
Linus Torvalds 已提交
933
	/*
934
	 * We initialize the nodes in numeric order: 0, 1, 2...
Y
Yinghai Lu 已提交
935
	 * and hand over control from the MEMBLOCK allocator to the
936 937
	 * bootmem allocator.  If this function is called for
	 * node 5, then we know that all nodes <5 are using the
Y
Yinghai Lu 已提交
938
	 * bootmem allocator instead of the MEMBLOCK allocator.
939 940 941
	 *
	 * So, check the nid from which this allocation came
	 * and double check to see if we need to use bootmem
Y
Yinghai Lu 已提交
942
	 * instead of the MEMBLOCK.  We don't free the MEMBLOCK memory
943
	 * since it would be useless.
L
Linus Torvalds 已提交
944
	 */
945
	new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
946
	if (new_nid < nid) {
947
		ret = __alloc_bootmem_node(NODE_DATA(new_nid),
L
Linus Torvalds 已提交
948 949
				size, align, 0);

950
		dbg("alloc_bootmem %p %lx\n", ret, size);
L
Linus Torvalds 已提交
951 952
	}

953
	memset(ret, 0, size);
954
	return ret;
L
Linus Torvalds 已提交
955 956
}

957 958 959 960 961
static struct notifier_block __cpuinitdata ppc64_numa_nb = {
	.notifier_call = cpu_numa_callback,
	.priority = 1 /* Must run before sched domains notifier. */
};

962 963 964
static void mark_reserved_regions_for_nid(int nid)
{
	struct pglist_data *node = NODE_DATA(nid);
965
	struct memblock_region *reg;
966

967 968 969
	for_each_memblock(reserved, reg) {
		unsigned long physbase = reg->base;
		unsigned long size = reg->size;
970
		unsigned long start_pfn = physbase >> PAGE_SHIFT;
971
		unsigned long end_pfn = PFN_UP(physbase + size);
972 973 974 975 976
		struct node_active_region node_ar;
		unsigned long node_end_pfn = node->node_start_pfn +
					     node->node_spanned_pages;

		/*
Y
Yinghai Lu 已提交
977
		 * Check to make sure that this memblock.reserved area is
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
		 * within the bounds of the node that we care about.
		 * Checking the nid of the start and end points is not
		 * sufficient because the reserved area could span the
		 * entire node.
		 */
		if (end_pfn <= node->node_start_pfn ||
		    start_pfn >= node_end_pfn)
			continue;

		get_node_active_region(start_pfn, &node_ar);
		while (start_pfn < end_pfn &&
			node_ar.start_pfn < node_ar.end_pfn) {
			unsigned long reserve_size = size;
			/*
			 * if reserved region extends past active region
			 * then trim size to active region
			 */
			if (end_pfn > node_ar.end_pfn)
				reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
997
					- physbase;
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
			/*
			 * Only worry about *this* node, others may not
			 * yet have valid NODE_DATA().
			 */
			if (node_ar.nid == nid) {
				dbg("reserve_bootmem %lx %lx nid=%d\n",
					physbase, reserve_size, node_ar.nid);
				reserve_bootmem_node(NODE_DATA(node_ar.nid),
						physbase, reserve_size,
						BOOTMEM_DEFAULT);
			}
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
			/*
			 * if reserved region is contained in the active region
			 * then done.
			 */
			if (end_pfn <= node_ar.end_pfn)
				break;

			/*
			 * reserved region extends past the active region
			 *   get next active region that contains this
			 *   reserved region
			 */
			start_pfn = node_ar.end_pfn;
			physbase = start_pfn << PAGE_SHIFT;
			size = size - reserve_size;
			get_node_active_region(start_pfn, &node_ar);
		}
	}
}


L
Linus Torvalds 已提交
1030 1031 1032 1033 1034
void __init do_init_bootmem(void)
{
	int nid;

	min_low_pfn = 0;
Y
Yinghai Lu 已提交
1035
	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
L
Linus Torvalds 已提交
1036 1037 1038 1039 1040
	max_pfn = max_low_pfn;

	if (parse_numa_properties())
		setup_nonnuma();
	else
1041
		dump_numa_memory_topology();
L
Linus Torvalds 已提交
1042 1043

	for_each_online_node(nid) {
1044
		unsigned long start_pfn, end_pfn;
1045
		void *bootmem_vaddr;
L
Linus Torvalds 已提交
1046 1047
		unsigned long bootmap_pages;

1048
		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
L
Linus Torvalds 已提交
1049

1050 1051 1052 1053 1054 1055 1056
		/*
		 * Allocate the node structure node local if possible
		 *
		 * Be careful moving this around, as it relies on all
		 * previous nodes' bootmem to be initialized and have
		 * all reserved areas marked.
		 */
1057
		NODE_DATA(nid) = careful_zallocation(nid,
L
Linus Torvalds 已提交
1058
					sizeof(struct pglist_data),
1059
					SMP_CACHE_BYTES, end_pfn);
L
Linus Torvalds 已提交
1060 1061 1062 1063

  		dbg("node %d\n", nid);
		dbg("NODE_DATA() = %p\n", NODE_DATA(nid));

1064
		NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
1065 1066
		NODE_DATA(nid)->node_start_pfn = start_pfn;
		NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
L
Linus Torvalds 已提交
1067 1068 1069 1070

		if (NODE_DATA(nid)->node_spanned_pages == 0)
  			continue;

1071 1072
  		dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
  		dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
L
Linus Torvalds 已提交
1073

1074
		bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
1075
		bootmem_vaddr = careful_zallocation(nid,
1076 1077
					bootmap_pages << PAGE_SHIFT,
					PAGE_SIZE, end_pfn);
L
Linus Torvalds 已提交
1078

1079
		dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
L
Linus Torvalds 已提交
1080

1081 1082
		init_bootmem_node(NODE_DATA(nid),
				  __pa(bootmem_vaddr) >> PAGE_SHIFT,
1083
				  start_pfn, end_pfn);
L
Linus Torvalds 已提交
1084

1085
		free_bootmem_with_active_regions(nid, end_pfn);
1086 1087
		/*
		 * Be very careful about moving this around.  Future
1088
		 * calls to careful_zallocation() depend on this getting
1089 1090 1091
		 * done correctly.
		 */
		mark_reserved_regions_for_nid(nid);
1092
		sparse_memory_present_with_active_regions(nid);
1093
	}
1094 1095

	init_bootmem_done = 1;
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105

	/*
	 * Now bootmem is initialised we can create the node to cpumask
	 * lookup tables and setup the cpu callback to populate them.
	 */
	setup_node_to_cpumask_map();

	register_cpu_notifier(&ppc64_numa_nb);
	cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
			  (void *)(unsigned long)boot_cpuid);
L
Linus Torvalds 已提交
1106 1107 1108 1109
}

void __init paging_init(void)
{
1110 1111
	unsigned long max_zone_pfns[MAX_NR_ZONES];
	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
Y
Yinghai Lu 已提交
1112
	max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT;
1113
	free_area_init_nodes(max_zone_pfns);
L
Linus Torvalds 已提交
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
}

static int __init early_numa(char *p)
{
	if (!p)
		return 0;

	if (strstr(p, "off"))
		numa_enabled = 0;

	if (strstr(p, "debug"))
		numa_debug = 1;

1127 1128 1129 1130
	p = strstr(p, "fake=");
	if (p)
		cmdline = p + strlen("fake=");

L
Linus Torvalds 已提交
1131 1132 1133
	return 0;
}
early_param("numa", early_numa);
1134 1135

#ifdef CONFIG_MEMORY_HOTPLUG
1136
/*
1137 1138 1139
 * Find the node associated with a hot added memory section for
 * memory represented in the device tree by the property
 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1140 1141 1142 1143 1144
 */
static int hot_add_drconf_scn_to_nid(struct device_node *memory,
				     unsigned long scn_addr)
{
	const u32 *dm;
1145
	unsigned int drconf_cell_cnt, rc;
1146
	unsigned long lmb_size;
1147
	struct assoc_arrays aa;
1148
	int nid = -1;
1149

1150 1151 1152
	drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
	if (!drconf_cell_cnt)
		return -1;
1153

1154 1155
	lmb_size = of_get_lmb_size(memory);
	if (!lmb_size)
1156
		return -1;
1157 1158 1159

	rc = of_get_assoc_arrays(memory, &aa);
	if (rc)
1160
		return -1;
1161

1162
	for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
		struct of_drconf_cell drmem;

		read_drconf_cell(&drmem, &dm);

		/* skip this block if it is reserved or not assigned to
		 * this partition */
		if ((drmem.flags & DRCONF_MEM_RESERVED)
		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
			continue;

1173
		if ((scn_addr < drmem.base_addr)
1174
		    || (scn_addr >= (drmem.base_addr + lmb_size)))
1175 1176
			continue;

1177
		nid = of_drconf_to_nid_single(&drmem, &aa);
1178 1179 1180 1181 1182 1183 1184 1185 1186
		break;
	}

	return nid;
}

/*
 * Find the node associated with a hot added memory section for memory
 * represented in the device tree as a node (i.e. memory@XXXX) for
Y
Yinghai Lu 已提交
1187
 * each memblock.
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
 */
int hot_add_node_scn_to_nid(unsigned long scn_addr)
{
	struct device_node *memory = NULL;
	int nid = -1;

	while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
		unsigned long start, size;
		int ranges;
		const unsigned int *memcell_buf;
		unsigned int len;

		memcell_buf = of_get_property(memory, "reg", &len);
		if (!memcell_buf || len <= 0)
			continue;

		/* ranges in cell */
		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);

		while (ranges--) {
			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
			size = read_n_cells(n_mem_size_cells, &memcell_buf);

			if ((scn_addr < start) || (scn_addr >= (start + size)))
				continue;

			nid = of_node_to_nid_single(memory);
			break;
		}
1217

1218 1219 1220
		of_node_put(memory);
		if (nid >= 0)
			break;
1221 1222
	}

1223
	return nid;
1224 1225
}

1226 1227
/*
 * Find the node associated with a hot added memory section.  Section
Y
Yinghai Lu 已提交
1228 1229
 * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
 * sections are fully contained within a single MEMBLOCK.
1230 1231 1232 1233
 */
int hot_add_scn_to_nid(unsigned long scn_addr)
{
	struct device_node *memory = NULL;
1234
	int nid, found = 0;
1235 1236

	if (!numa_enabled || (min_common_depth < 0))
1237
		return first_online_node;
1238 1239 1240 1241 1242

	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (memory) {
		nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
		of_node_put(memory);
1243 1244
	} else {
		nid = hot_add_node_scn_to_nid(scn_addr);
1245
	}
1246

1247
	if (nid < 0 || !node_online(nid))
1248
		nid = first_online_node;
1249

1250 1251
	if (NODE_DATA(nid)->node_spanned_pages)
		return nid;
1252

1253 1254 1255 1256
	for_each_online_node(nid) {
		if (NODE_DATA(nid)->node_spanned_pages) {
			found = 1;
			break;
1257 1258
		}
	}
1259 1260 1261

	BUG_ON(!found);
	return nid;
1262
}
1263

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
static u64 hot_add_drconf_memory_max(void)
{
        struct device_node *memory = NULL;
        unsigned int drconf_cell_cnt = 0;
        u64 lmb_size = 0;
        const u32 *dm = 0;

        memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
        if (memory) {
                drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
                lmb_size = of_get_lmb_size(memory);
                of_node_put(memory);
        }
        return lmb_size * drconf_cell_cnt;
}

/*
 * memory_hotplug_max - return max address of memory that may be added
 *
 * This is currently only used on systems that support drconfig memory
 * hotplug.
 */
u64 memory_hotplug_max(void)
{
        return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
}
1290
#endif /* CONFIG_MEMORY_HOTPLUG */
1291 1292

/* Vrtual Processor Home Node (VPHN) support */
1293
#ifdef CONFIG_PPC_SPLPAR
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
#define VPHN_NR_CHANGE_CTRS (8)
static u8 vphn_cpu_change_counts[NR_CPUS][VPHN_NR_CHANGE_CTRS];
static cpumask_t cpu_associativity_changes_mask;
static int vphn_enabled;
static void set_topology_timer(void);

/*
 * Store the current values of the associativity change counters in the
 * hypervisor.
 */
static void setup_cpu_associativity_change_counters(void)
{
	int cpu = 0;

	for_each_possible_cpu(cpu) {
		int i = 0;
		u8 *counts = vphn_cpu_change_counts[cpu];
		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;

		for (i = 0; i < VPHN_NR_CHANGE_CTRS; i++) {
			counts[i] = hypervisor_counts[i];
		}
	}
}

/*
 * The hypervisor maintains a set of 8 associativity change counters in
 * the VPA of each cpu that correspond to the associativity levels in the
 * ibm,associativity-reference-points property. When an associativity
 * level changes, the corresponding counter is incremented.
 *
 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
 * node associativity levels have changed.
 *
 * Returns the number of cpus with unhandled associativity changes.
 */
static int update_cpu_associativity_changes_mask(void)
{
	int cpu = 0, nr_cpus = 0;
	cpumask_t *changes = &cpu_associativity_changes_mask;

	cpumask_clear(changes);

	for_each_possible_cpu(cpu) {
		int i, changed = 0;
		u8 *counts = vphn_cpu_change_counts[cpu];
		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;

		for (i = 0; i < VPHN_NR_CHANGE_CTRS; i++) {
			if (hypervisor_counts[i] > counts[i]) {
				counts[i] = hypervisor_counts[i];
				changed = 1;
			}
		}
		if (changed) {
			cpumask_set_cpu(cpu, changes);
			nr_cpus++;
		}
	}

	return nr_cpus;
}

/* 6 64-bit registers unpacked into 12 32-bit associativity values */
#define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32))

/*
 * Convert the associativity domain numbers returned from the hypervisor
 * to the sequence they would appear in the ibm,associativity property.
 */
static int vphn_unpack_associativity(const long *packed, unsigned int *unpacked)
{
	int i = 0;
	int nr_assoc_doms = 0;
	const u16 *field = (const u16*) packed;

#define VPHN_FIELD_UNUSED	(0xffff)
#define VPHN_FIELD_MSB		(0x8000)
#define VPHN_FIELD_MASK		(~VPHN_FIELD_MSB)

	for (i = 0; i < VPHN_ASSOC_BUFSIZE; i++) {
		if (*field == VPHN_FIELD_UNUSED) {
			/* All significant fields processed, and remaining
			 * fields contain the reserved value of all 1's.
			 * Just store them.
			 */
			unpacked[i] = *((u32*)field);
			field += 2;
		}
		else if (*field & VPHN_FIELD_MSB) {
			/* Data is in the lower 15 bits of this field */
			unpacked[i] = *field & VPHN_FIELD_MASK;
			field++;
			nr_assoc_doms++;
		}
		else {
			/* Data is in the lower 15 bits of this field
			 * concatenated with the next 16 bit field
			 */
			unpacked[i] = *((u32*)field);
			field += 2;
			nr_assoc_doms++;
		}
	}

	return nr_assoc_doms;
}

/*
 * Retrieve the new associativity information for a virtual processor's
 * home node.
 */
static long hcall_vphn(unsigned long cpu, unsigned int *associativity)
{
	long rc = 0;
	long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
	u64 flags = 1;
	int hwcpu = get_hard_smp_processor_id(cpu);

	rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
	vphn_unpack_associativity(retbuf, associativity);

	return rc;
}

static long vphn_get_associativity(unsigned long cpu,
					unsigned int *associativity)
{
	long rc = 0;

	rc = hcall_vphn(cpu, associativity);

	switch (rc) {
	case H_FUNCTION:
		printk(KERN_INFO
			"VPHN is not supported. Disabling polling...\n");
		stop_topology_update();
		break;
	case H_HARDWARE:
		printk(KERN_ERR
			"hcall_vphn() experienced a hardware fault "
			"preventing VPHN. Disabling polling...\n");
		stop_topology_update();
	}

	return rc;
}

/*
 * Update the node maps and sysfs entries for each cpu whose home node
 * has changed.
 */
int arch_update_cpu_topology(void)
{
	int cpu = 0, nid = 0, old_nid = 0;
	unsigned int associativity[VPHN_ASSOC_BUFSIZE] = {0};
	struct sys_device *sysdev = NULL;

	for_each_cpu_mask(cpu, cpu_associativity_changes_mask) {
		vphn_get_associativity(cpu, associativity);
		nid = associativity_to_nid(associativity);

		if (nid < 0 || !node_online(nid))
			nid = first_online_node;

		old_nid = numa_cpu_lookup_table[cpu];

		/* Disable hotplug while we update the cpu
		 * masks and sysfs.
		 */
		get_online_cpus();
		unregister_cpu_under_node(cpu, old_nid);
		unmap_cpu_from_node(cpu);
		map_cpu_to_node(cpu, nid);
		register_cpu_under_node(cpu, nid);
		put_online_cpus();

		sysdev = get_cpu_sysdev(cpu);
		if (sysdev)
			kobject_uevent(&sysdev->kobj, KOBJ_CHANGE);
	}

	return 1;
}

static void topology_work_fn(struct work_struct *work)
{
	rebuild_sched_domains();
}
static DECLARE_WORK(topology_work, topology_work_fn);

void topology_schedule_update(void)
{
	schedule_work(&topology_work);
}

static void topology_timer_fn(unsigned long ignored)
{
	if (!vphn_enabled)
		return;
	if (update_cpu_associativity_changes_mask() > 0)
		topology_schedule_update();
	set_topology_timer();
}
static struct timer_list topology_timer =
	TIMER_INITIALIZER(topology_timer_fn, 0, 0);

static void set_topology_timer(void)
{
	topology_timer.data = 0;
	topology_timer.expires = jiffies + 60 * HZ;
	add_timer(&topology_timer);
}

/*
 * Start polling for VPHN associativity changes.
 */
int start_topology_update(void)
{
	int rc = 0;

	if (firmware_has_feature(FW_FEATURE_VPHN)) {
		vphn_enabled = 1;
		setup_cpu_associativity_change_counters();
		init_timer_deferrable(&topology_timer);
		set_topology_timer();
		rc = 1;
	}

	return rc;
}
__initcall(start_topology_update);

/*
 * Disable polling for VPHN associativity changes.
 */
int stop_topology_update(void)
{
	vphn_enabled = 0;
	return del_timer_sync(&topology_timer);
}
1535
#endif /* CONFIG_PPC_SPLPAR */