ixgbe_common.c 114.8 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel 10 Gigabit PCI Express Linux driver
4
  Copyright(c) 1999 - 2016 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
23
  Linux NICS <linux.nics@intel.com>
24 25 26 27 28 29 30 31
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/sched.h>
J
Jiri Pirko 已提交
32
#include <linux/netdevice.h>
33

34
#include "ixgbe.h"
35 36 37
#include "ixgbe_common.h"
#include "ixgbe_phy.h"

38
static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
39 40
static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
41 42 43
static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
44
					u16 count);
45 46 47 48
static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
49 50

static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
51
static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
52 53 54 55 56 57
static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
					     u16 words, u16 *data);
static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
					     u16 words, u16 *data);
static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
						 u16 offset);
58
static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
59

60 61 62 63 64
/* Base table for registers values that change by MAC */
const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
	IXGBE_MVALS_INIT(8259X)
};

65 66 67 68 69 70 71 72 73
/**
 *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
 *  control
 *  @hw: pointer to hardware structure
 *
 *  There are several phys that do not support autoneg flow control. This
 *  function check the device id to see if the associated phy supports
 *  autoneg flow control.
 **/
74
bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
75
{
76 77 78
	bool supported = false;
	ixgbe_link_speed speed;
	bool link_up;
79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
	switch (hw->phy.media_type) {
	case ixgbe_media_type_fiber:
		hw->mac.ops.check_link(hw, &speed, &link_up, false);
		/* if link is down, assume supported */
		if (link_up)
			supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
				true : false;
		else
			supported = true;
		break;
	case ixgbe_media_type_backplane:
		supported = true;
		break;
	case ixgbe_media_type_copper:
		/* only some copper devices support flow control autoneg */
		switch (hw->device_id) {
		case IXGBE_DEV_ID_82599_T3_LOM:
		case IXGBE_DEV_ID_X540T:
		case IXGBE_DEV_ID_X540T1:
99
		case IXGBE_DEV_ID_X550T:
100
		case IXGBE_DEV_ID_X550T1:
101
		case IXGBE_DEV_ID_X550EM_X_10G_T:
102
		case IXGBE_DEV_ID_X550EM_A_10G_T:
103 104 105 106 107
			supported = true;
			break;
		default:
			break;
		}
108
	default:
109
		break;
110
	}
111 112

	return supported;
113 114 115
}

/**
116
 *  ixgbe_setup_fc_generic - Set up flow control
117 118 119 120
 *  @hw: pointer to hardware structure
 *
 *  Called at init time to set up flow control.
 **/
121
s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
122 123 124 125
{
	s32 ret_val = 0;
	u32 reg = 0, reg_bp = 0;
	u16 reg_cu = 0;
126
	bool locked = false;
127 128 129 130 131 132 133

	/*
	 * Validate the requested mode.  Strict IEEE mode does not allow
	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
	 */
	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
134
		return IXGBE_ERR_INVALID_LINK_SETTINGS;
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
	}

	/*
	 * 10gig parts do not have a word in the EEPROM to determine the
	 * default flow control setting, so we explicitly set it to full.
	 */
	if (hw->fc.requested_mode == ixgbe_fc_default)
		hw->fc.requested_mode = ixgbe_fc_full;

	/*
	 * Set up the 1G and 10G flow control advertisement registers so the
	 * HW will be able to do fc autoneg once the cable is plugged in.  If
	 * we link at 10G, the 1G advertisement is harmless and vice versa.
	 */
	switch (hw->phy.media_type) {
150 151 152
	case ixgbe_media_type_backplane:
		/* some MAC's need RMW protection on AUTOC */
		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
153
		if (ret_val)
154
			return ret_val;
155 156

		/* only backplane uses autoc so fall though */
157 158
	case ixgbe_media_type_fiber:
		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
159

160 161 162 163 164 165
		break;
	case ixgbe_media_type_copper:
		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
					MDIO_MMD_AN, &reg_cu);
		break;
	default:
166
		break;
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
	}

	/*
	 * The possible values of fc.requested_mode are:
	 * 0: Flow control is completely disabled
	 * 1: Rx flow control is enabled (we can receive pause frames,
	 *    but not send pause frames).
	 * 2: Tx flow control is enabled (we can send pause frames but
	 *    we do not support receiving pause frames).
	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
	 * other: Invalid.
	 */
	switch (hw->fc.requested_mode) {
	case ixgbe_fc_none:
		/* Flow control completely disabled by software override. */
		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
		if (hw->phy.media_type == ixgbe_media_type_backplane)
			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
				    IXGBE_AUTOC_ASM_PAUSE);
		else if (hw->phy.media_type == ixgbe_media_type_copper)
			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
		break;
	case ixgbe_fc_tx_pause:
		/*
		 * Tx Flow control is enabled, and Rx Flow control is
		 * disabled by software override.
		 */
194 195
		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
196
		if (hw->phy.media_type == ixgbe_media_type_backplane) {
197 198
			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
199
		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
200 201
			reg_cu |= IXGBE_TAF_ASM_PAUSE;
			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
202 203
		}
		break;
204 205 206 207 208 209 210 211 212 213
	case ixgbe_fc_rx_pause:
		/*
		 * Rx Flow control is enabled and Tx Flow control is
		 * disabled by software override. Since there really
		 * isn't a way to advertise that we are capable of RX
		 * Pause ONLY, we will advertise that we support both
		 * symmetric and asymmetric Rx PAUSE, as such we fall
		 * through to the fc_full statement.  Later, we will
		 * disable the adapter's ability to send PAUSE frames.
		 */
214 215
	case ixgbe_fc_full:
		/* Flow control (both Rx and Tx) is enabled by SW override. */
216
		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
217
		if (hw->phy.media_type == ixgbe_media_type_backplane)
218 219
			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
				  IXGBE_AUTOC_ASM_PAUSE;
220
		else if (hw->phy.media_type == ixgbe_media_type_copper)
221
			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
222 223 224
		break;
	default:
		hw_dbg(hw, "Flow control param set incorrectly\n");
225
		return IXGBE_ERR_CONFIG;
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
	}

	if (hw->mac.type != ixgbe_mac_X540) {
		/*
		 * Enable auto-negotiation between the MAC & PHY;
		 * the MAC will advertise clause 37 flow control.
		 */
		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);

		/* Disable AN timeout */
		if (hw->fc.strict_ieee)
			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;

		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
	}

	/*
	 * AUTOC restart handles negotiation of 1G and 10G on backplane
	 * and copper. There is no need to set the PCS1GCTL register.
	 *
	 */
	if (hw->phy.media_type == ixgbe_media_type_backplane) {
250 251 252 253
		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
		 * LESM is on, likewise reset_pipeline requries the lock as
		 * it also writes AUTOC.
		 */
254 255
		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
		if (ret_val)
256
			return ret_val;
257

258
	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
259
		   ixgbe_device_supports_autoneg_fc(hw)) {
260 261 262 263 264 265 266 267
		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
				      MDIO_MMD_AN, reg_cu);
	}

	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
	return ret_val;
}

268
/**
269
 *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
270 271 272 273 274 275 276
 *  @hw: pointer to hardware structure
 *
 *  Starts the hardware by filling the bus info structure and media type, clears
 *  all on chip counters, initializes receive address registers, multicast
 *  table, VLAN filter table, calls routine to set up link and flow control
 *  settings, and leaves transmit and receive units disabled and uninitialized
 **/
277
s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
278
{
279
	s32 ret_val;
280
	u32 ctrl_ext;
D
Don Skidmore 已提交
281
	u16 device_caps;
282 283 284 285 286

	/* Set the media type */
	hw->phy.media_type = hw->mac.ops.get_media_type(hw);

	/* Identify the PHY */
287
	hw->phy.ops.identify(hw);
288 289

	/* Clear the VLAN filter table */
290
	hw->mac.ops.clear_vfta(hw);
291 292

	/* Clear statistics registers */
293
	hw->mac.ops.clear_hw_cntrs(hw);
294 295 296 297 298

	/* Set No Snoop Disable */
	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
299
	IXGBE_WRITE_FLUSH(hw);
300

301
	/* Setup flow control */
302
	ret_val = hw->mac.ops.setup_fc(hw);
303 304
	if (ret_val)
		return ret_val;
305

D
Don Skidmore 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
	/* Cashe bit indicating need for crosstalk fix */
	switch (hw->mac.type) {
	case ixgbe_mac_82599EB:
	case ixgbe_mac_X550EM_x:
	case ixgbe_mac_x550em_a:
		hw->mac.ops.get_device_caps(hw, &device_caps);
		if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
			hw->need_crosstalk_fix = false;
		else
			hw->need_crosstalk_fix = true;
		break;
	default:
		hw->need_crosstalk_fix = false;
		break;
	}

322 323 324
	/* Clear adapter stopped flag */
	hw->adapter_stopped = false;

325
	return 0;
326 327
}

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
/**
 *  ixgbe_start_hw_gen2 - Init sequence for common device family
 *  @hw: pointer to hw structure
 *
 * Performs the init sequence common to the second generation
 * of 10 GbE devices.
 * Devices in the second generation:
 *     82599
 *     X540
 **/
s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
{
	u32 i;

	/* Clear the rate limiters */
	for (i = 0; i < hw->mac.max_tx_queues; i++) {
		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
	}
	IXGBE_WRITE_FLUSH(hw);

349
#ifndef CONFIG_SPARC
350 351
	/* Disable relaxed ordering */
	for (i = 0; i < hw->mac.max_tx_queues; i++) {
352 353
		u32 regval;

354
		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
355
		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
356 357 358 359
		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
	}

	for (i = 0; i < hw->mac.max_rx_queues; i++) {
360 361
		u32 regval;

362
		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
363 364
		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
365 366
		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
	}
367
#endif
368 369 370
	return 0;
}

371
/**
372
 *  ixgbe_init_hw_generic - Generic hardware initialization
373 374
 *  @hw: pointer to hardware structure
 *
375
 *  Initialize the hardware by resetting the hardware, filling the bus info
376 377 378 379 380
 *  structure and media type, clears all on chip counters, initializes receive
 *  address registers, multicast table, VLAN filter table, calls routine to set
 *  up link and flow control settings, and leaves transmit and receive units
 *  disabled and uninitialized
 **/
381
s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
382
{
383 384
	s32 status;

385
	/* Reset the hardware */
386
	status = hw->mac.ops.reset_hw(hw);
387

388 389 390 391
	if (status == 0) {
		/* Start the HW */
		status = hw->mac.ops.start_hw(hw);
	}
392

393
	return status;
394 395 396
}

/**
397
 *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
398 399 400 401 402
 *  @hw: pointer to hardware structure
 *
 *  Clears all hardware statistics counters by reading them from the hardware
 *  Statistics counters are clear on read.
 **/
403
s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
{
	u16 i = 0;

	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
	IXGBE_READ_REG(hw, IXGBE_ERRBC);
	IXGBE_READ_REG(hw, IXGBE_MSPDC);
	for (i = 0; i < 8; i++)
		IXGBE_READ_REG(hw, IXGBE_MPC(i));

	IXGBE_READ_REG(hw, IXGBE_MLFC);
	IXGBE_READ_REG(hw, IXGBE_MRFC);
	IXGBE_READ_REG(hw, IXGBE_RLEC);
	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
419 420 421 422 423 424 425
	if (hw->mac.type >= ixgbe_mac_82599EB) {
		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
	} else {
		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
	}
426 427 428 429

	for (i = 0; i < 8; i++) {
		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
430 431 432 433 434 435 436
		if (hw->mac.type >= ixgbe_mac_82599EB) {
			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
		} else {
			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
		}
437
	}
438 439 440
	if (hw->mac.type >= ixgbe_mac_82599EB)
		for (i = 0; i < 8; i++)
			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
441 442 443 444 445 446 447 448 449 450 451 452 453 454
	IXGBE_READ_REG(hw, IXGBE_PRC64);
	IXGBE_READ_REG(hw, IXGBE_PRC127);
	IXGBE_READ_REG(hw, IXGBE_PRC255);
	IXGBE_READ_REG(hw, IXGBE_PRC511);
	IXGBE_READ_REG(hw, IXGBE_PRC1023);
	IXGBE_READ_REG(hw, IXGBE_PRC1522);
	IXGBE_READ_REG(hw, IXGBE_GPRC);
	IXGBE_READ_REG(hw, IXGBE_BPRC);
	IXGBE_READ_REG(hw, IXGBE_MPRC);
	IXGBE_READ_REG(hw, IXGBE_GPTC);
	IXGBE_READ_REG(hw, IXGBE_GORCL);
	IXGBE_READ_REG(hw, IXGBE_GORCH);
	IXGBE_READ_REG(hw, IXGBE_GOTCL);
	IXGBE_READ_REG(hw, IXGBE_GOTCH);
E
Emil Tantilov 已提交
455 456 457
	if (hw->mac.type == ixgbe_mac_82598EB)
		for (i = 0; i < 8; i++)
			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
	IXGBE_READ_REG(hw, IXGBE_RUC);
	IXGBE_READ_REG(hw, IXGBE_RFC);
	IXGBE_READ_REG(hw, IXGBE_ROC);
	IXGBE_READ_REG(hw, IXGBE_RJC);
	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
	IXGBE_READ_REG(hw, IXGBE_TORL);
	IXGBE_READ_REG(hw, IXGBE_TORH);
	IXGBE_READ_REG(hw, IXGBE_TPR);
	IXGBE_READ_REG(hw, IXGBE_TPT);
	IXGBE_READ_REG(hw, IXGBE_PTC64);
	IXGBE_READ_REG(hw, IXGBE_PTC127);
	IXGBE_READ_REG(hw, IXGBE_PTC255);
	IXGBE_READ_REG(hw, IXGBE_PTC511);
	IXGBE_READ_REG(hw, IXGBE_PTC1023);
	IXGBE_READ_REG(hw, IXGBE_PTC1522);
	IXGBE_READ_REG(hw, IXGBE_MPTC);
	IXGBE_READ_REG(hw, IXGBE_BPTC);
	for (i = 0; i < 16; i++) {
		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
480 481 482 483 484 485 486 487 488 489
		if (hw->mac.type >= ixgbe_mac_82599EB) {
			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
		} else {
			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
		}
490 491
	}

492
	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
493 494
		if (hw->phy.id == 0)
			hw->phy.ops.identify(hw);
495 496 497 498
		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
499 500
	}

501 502 503 504
	return 0;
}

/**
505
 *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
506
 *  @hw: pointer to hardware structure
507 508
 *  @pba_num: stores the part number string from the EEPROM
 *  @pba_num_size: part number string buffer length
509
 *
510
 *  Reads the part number string from the EEPROM.
511
 **/
512
s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
513
				  u32 pba_num_size)
514 515 516
{
	s32 ret_val;
	u16 data;
517 518 519 520 521 522 523 524
	u16 pba_ptr;
	u16 offset;
	u16 length;

	if (pba_num == NULL) {
		hw_dbg(hw, "PBA string buffer was null\n");
		return IXGBE_ERR_INVALID_ARGUMENT;
	}
525 526 527 528 529 530 531

	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
	if (ret_val) {
		hw_dbg(hw, "NVM Read Error\n");
		return ret_val;
	}

532
	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
533 534 535 536
	if (ret_val) {
		hw_dbg(hw, "NVM Read Error\n");
		return ret_val;
	}
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608

	/*
	 * if data is not ptr guard the PBA must be in legacy format which
	 * means pba_ptr is actually our second data word for the PBA number
	 * and we can decode it into an ascii string
	 */
	if (data != IXGBE_PBANUM_PTR_GUARD) {
		hw_dbg(hw, "NVM PBA number is not stored as string\n");

		/* we will need 11 characters to store the PBA */
		if (pba_num_size < 11) {
			hw_dbg(hw, "PBA string buffer too small\n");
			return IXGBE_ERR_NO_SPACE;
		}

		/* extract hex string from data and pba_ptr */
		pba_num[0] = (data >> 12) & 0xF;
		pba_num[1] = (data >> 8) & 0xF;
		pba_num[2] = (data >> 4) & 0xF;
		pba_num[3] = data & 0xF;
		pba_num[4] = (pba_ptr >> 12) & 0xF;
		pba_num[5] = (pba_ptr >> 8) & 0xF;
		pba_num[6] = '-';
		pba_num[7] = 0;
		pba_num[8] = (pba_ptr >> 4) & 0xF;
		pba_num[9] = pba_ptr & 0xF;

		/* put a null character on the end of our string */
		pba_num[10] = '\0';

		/* switch all the data but the '-' to hex char */
		for (offset = 0; offset < 10; offset++) {
			if (pba_num[offset] < 0xA)
				pba_num[offset] += '0';
			else if (pba_num[offset] < 0x10)
				pba_num[offset] += 'A' - 0xA;
		}

		return 0;
	}

	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
	if (ret_val) {
		hw_dbg(hw, "NVM Read Error\n");
		return ret_val;
	}

	if (length == 0xFFFF || length == 0) {
		hw_dbg(hw, "NVM PBA number section invalid length\n");
		return IXGBE_ERR_PBA_SECTION;
	}

	/* check if pba_num buffer is big enough */
	if (pba_num_size  < (((u32)length * 2) - 1)) {
		hw_dbg(hw, "PBA string buffer too small\n");
		return IXGBE_ERR_NO_SPACE;
	}

	/* trim pba length from start of string */
	pba_ptr++;
	length--;

	for (offset = 0; offset < length; offset++) {
		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
		if (ret_val) {
			hw_dbg(hw, "NVM Read Error\n");
			return ret_val;
		}
		pba_num[offset * 2] = (u8)(data >> 8);
		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
	}
	pba_num[offset * 2] = '\0';
609 610 611 612 613 614

	return 0;
}

/**
 *  ixgbe_get_mac_addr_generic - Generic get MAC address
615 616 617 618 619 620 621
 *  @hw: pointer to hardware structure
 *  @mac_addr: Adapter MAC address
 *
 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
 *  A reset of the adapter must be performed prior to calling this function
 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
 **/
622
s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
{
	u32 rar_high;
	u32 rar_low;
	u16 i;

	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));

	for (i = 0; i < 4; i++)
		mac_addr[i] = (u8)(rar_low >> (i*8));

	for (i = 0; i < 2; i++)
		mac_addr[i+4] = (u8)(rar_high >> (i*8));

	return 0;
}

640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
{
	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
	case IXGBE_PCI_LINK_WIDTH_1:
		return ixgbe_bus_width_pcie_x1;
	case IXGBE_PCI_LINK_WIDTH_2:
		return ixgbe_bus_width_pcie_x2;
	case IXGBE_PCI_LINK_WIDTH_4:
		return ixgbe_bus_width_pcie_x4;
	case IXGBE_PCI_LINK_WIDTH_8:
		return ixgbe_bus_width_pcie_x8;
	default:
		return ixgbe_bus_width_unknown;
	}
}

enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
{
	switch (link_status & IXGBE_PCI_LINK_SPEED) {
	case IXGBE_PCI_LINK_SPEED_2500:
		return ixgbe_bus_speed_2500;
	case IXGBE_PCI_LINK_SPEED_5000:
		return ixgbe_bus_speed_5000;
	case IXGBE_PCI_LINK_SPEED_8000:
		return ixgbe_bus_speed_8000;
	default:
		return ixgbe_bus_speed_unknown;
	}
}

670 671 672 673 674 675 676 677 678 679 680 681 682
/**
 *  ixgbe_get_bus_info_generic - Generic set PCI bus info
 *  @hw: pointer to hardware structure
 *
 *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
 **/
s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
{
	u16 link_status;

	hw->bus.type = ixgbe_bus_type_pci_express;

	/* Get the negotiated link width and speed from PCI config space */
683
	link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
684

685 686
	hw->bus.width = ixgbe_convert_bus_width(link_status);
	hw->bus.speed = ixgbe_convert_bus_speed(link_status);
687

688
	hw->mac.ops.set_lan_id(hw);
689 690 691 692 693 694 695 696 697 698 699 700 701 702

	return 0;
}

/**
 *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
 *  @hw: pointer to the HW structure
 *
 *  Determines the LAN function id by reading memory-mapped registers
 *  and swaps the port value if requested.
 **/
void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
{
	struct ixgbe_bus_info *bus = &hw->bus;
M
Mark Rustad 已提交
703
	u16 ee_ctrl_4;
704 705 706 707 708 709 710
	u32 reg;

	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
	bus->lan_id = bus->func;

	/* check for a port swap */
711
	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
712 713
	if (reg & IXGBE_FACTPS_LFS)
		bus->func ^= 0x1;
M
Mark Rustad 已提交
714 715 716 717 718 719 720

	/* Get MAC instance from EEPROM for configuring CS4227 */
	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
		bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
				   IXGBE_EE_CTRL_4_INST_ID_SHIFT;
	}
721 722
}

723
/**
724
 *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
725 726 727 728 729 730 731
 *  @hw: pointer to hardware structure
 *
 *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
 *  disables transmit and receive units. The adapter_stopped flag is used by
 *  the shared code and drivers to determine if the adapter is in a stopped
 *  state and should not touch the hardware.
 **/
732
s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
733 734 735 736 737 738 739 740 741 742 743
{
	u32 reg_val;
	u16 i;

	/*
	 * Set the adapter_stopped flag so other driver functions stop touching
	 * the hardware
	 */
	hw->adapter_stopped = true;

	/* Disable the receive unit */
744
	hw->mac.ops.disable_rx(hw);
745

746
	/* Clear interrupt mask to stop interrupts from being generated */
747 748
	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);

749
	/* Clear any pending interrupts, flush previous writes */
750 751 752
	IXGBE_READ_REG(hw, IXGBE_EICR);

	/* Disable the transmit unit.  Each queue must be disabled. */
753 754 755 756 757 758 759 760 761
	for (i = 0; i < hw->mac.max_tx_queues; i++)
		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);

	/* Disable the receive unit by stopping each queue */
	for (i = 0; i < hw->mac.max_rx_queues; i++) {
		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
		reg_val &= ~IXGBE_RXDCTL_ENABLE;
		reg_val |= IXGBE_RXDCTL_SWFLSH;
		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
762 763
	}

764 765 766 767
	/* flush all queues disables */
	IXGBE_WRITE_FLUSH(hw);
	usleep_range(1000, 2000);

768 769 770 771
	/*
	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
	 * access and verify no pending requests
	 */
772
	return ixgbe_disable_pcie_master(hw);
773 774 775
}

/**
776
 *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
777 778 779
 *  @hw: pointer to hardware structure
 *  @index: led number to turn on
 **/
780
s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
781 782 783
{
	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);

784 785 786
	if (index > 3)
		return IXGBE_ERR_PARAM;

787 788 789 790
	/* To turn on the LED, set mode to ON. */
	led_reg &= ~IXGBE_LED_MODE_MASK(index);
	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
791
	IXGBE_WRITE_FLUSH(hw);
792 793 794 795 796

	return 0;
}

/**
797
 *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
798 799 800
 *  @hw: pointer to hardware structure
 *  @index: led number to turn off
 **/
801
s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
802 803 804
{
	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);

805 806 807
	if (index > 3)
		return IXGBE_ERR_PARAM;

808 809 810 811
	/* To turn off the LED, set mode to OFF. */
	led_reg &= ~IXGBE_LED_MODE_MASK(index);
	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
812
	IXGBE_WRITE_FLUSH(hw);
813 814 815 816 817

	return 0;
}

/**
818
 *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
819 820 821 822 823
 *  @hw: pointer to hardware structure
 *
 *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
 *  ixgbe_hw struct in order to set up EEPROM access.
 **/
824
s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
825 826 827 828 829 830 831
{
	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
	u32 eec;
	u16 eeprom_size;

	if (eeprom->type == ixgbe_eeprom_uninitialized) {
		eeprom->type = ixgbe_eeprom_none;
832 833 834
		/* Set default semaphore delay to 10ms which is a well
		 * tested value */
		eeprom->semaphore_delay = 10;
835 836
		/* Clear EEPROM page size, it will be initialized as needed */
		eeprom->word_page_size = 0;
837 838 839 840 841

		/*
		 * Check for EEPROM present first.
		 * If not present leave as none
		 */
842
		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
843 844 845 846 847 848 849 850 851
		if (eec & IXGBE_EEC_PRES) {
			eeprom->type = ixgbe_eeprom_spi;

			/*
			 * SPI EEPROM is assumed here.  This code would need to
			 * change if a future EEPROM is not SPI.
			 */
			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
					    IXGBE_EEC_SIZE_SHIFT);
J
Jacob Keller 已提交
852 853
			eeprom->word_size = BIT(eeprom_size +
						 IXGBE_EEPROM_WORD_SIZE_SHIFT);
854 855 856 857 858 859
		}

		if (eec & IXGBE_EEC_ADDR_SIZE)
			eeprom->address_bits = 16;
		else
			eeprom->address_bits = 8;
860 861
		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
		       eeprom->type, eeprom->word_size, eeprom->address_bits);
862 863 864 865 866
	}

	return 0;
}

867
/**
868
 *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
869
 *  @hw: pointer to hardware structure
870 871 872
 *  @offset: offset within the EEPROM to write
 *  @words: number of words
 *  @data: 16 bit word(s) to write to EEPROM
873
 *
874
 *  Reads 16 bit word(s) from EEPROM through bit-bang method
875
 **/
876 877
s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
					       u16 words, u16 *data)
878
{
879
	s32 status;
880
	u16 i, count;
881 882 883

	hw->eeprom.ops.init_params(hw);

884 885
	if (words == 0)
		return IXGBE_ERR_INVALID_ARGUMENT;
886

887 888
	if (offset + words > hw->eeprom.word_size)
		return IXGBE_ERR_EEPROM;
889

890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
	/*
	 * The EEPROM page size cannot be queried from the chip. We do lazy
	 * initialization. It is worth to do that when we write large buffer.
	 */
	if ((hw->eeprom.word_page_size == 0) &&
	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
		ixgbe_detect_eeprom_page_size_generic(hw, offset);

	/*
	 * We cannot hold synchronization semaphores for too long
	 * to avoid other entity starvation. However it is more efficient
	 * to read in bursts than synchronizing access for each word.
	 */
	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
							    count, &data[i]);

		if (status != 0)
			break;
	}

	return status;
}

/**
 *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be written to
 *  @words: number of word(s)
 *  @data: 16 bit word(s) to be written to the EEPROM
 *
 *  If ixgbe_eeprom_update_checksum is not called after this function, the
 *  EEPROM will most likely contain an invalid checksum.
 **/
static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
					      u16 words, u16 *data)
{
	s32 status;
	u16 word;
	u16 page_size;
	u16 i;
	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;

935 936
	/* Prepare the EEPROM for writing  */
	status = ixgbe_acquire_eeprom(hw);
937 938
	if (status)
		return status;
939

940 941 942
	if (ixgbe_ready_eeprom(hw) != 0) {
		ixgbe_release_eeprom(hw);
		return IXGBE_ERR_EEPROM;
943 944
	}

945 946 947 948 949 950 951
	for (i = 0; i < words; i++) {
		ixgbe_standby_eeprom(hw);

		/* Send the WRITE ENABLE command (8 bit opcode) */
		ixgbe_shift_out_eeprom_bits(hw,
					    IXGBE_EEPROM_WREN_OPCODE_SPI,
					    IXGBE_EEPROM_OPCODE_BITS);
952

953
		ixgbe_standby_eeprom(hw);
954

955 956 957 958 959 960
		/* Some SPI eeproms use the 8th address bit embedded
		 * in the opcode
		 */
		if ((hw->eeprom.address_bits == 8) &&
		    ((offset + i) >= 128))
			write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
961

962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
		/* Send the Write command (8-bit opcode + addr) */
		ixgbe_shift_out_eeprom_bits(hw, write_opcode,
					    IXGBE_EEPROM_OPCODE_BITS);
		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
					    hw->eeprom.address_bits);

		page_size = hw->eeprom.word_page_size;

		/* Send the data in burst via SPI */
		do {
			word = data[i];
			word = (word >> 8) | (word << 8);
			ixgbe_shift_out_eeprom_bits(hw, word, 16);

			if (page_size == 0)
				break;

			/* do not wrap around page */
			if (((offset + i) & (page_size - 1)) ==
			    (page_size - 1))
				break;
		} while (++i < words);

		ixgbe_standby_eeprom(hw);
		usleep_range(10000, 20000);
987
	}
988 989
	/* Done with writing - release the EEPROM */
	ixgbe_release_eeprom(hw);
990

991
	return 0;
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
}

/**
 *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be written to
 *  @data: 16 bit word to be written to the EEPROM
 *
 *  If ixgbe_eeprom_update_checksum is not called after this function, the
 *  EEPROM will most likely contain an invalid checksum.
 **/
s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
{
	hw->eeprom.ops.init_params(hw);
1006

1007 1008
	if (offset >= hw->eeprom.word_size)
		return IXGBE_ERR_EEPROM;
1009

1010
	return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1011 1012
}

1013
/**
1014
 *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1015 1016
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be read
1017 1018
 *  @words: number of word(s)
 *  @data: read 16 bit words(s) from EEPROM
1019
 *
1020
 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1021
 **/
1022 1023
s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
					      u16 words, u16 *data)
1024
{
1025
	s32 status;
1026
	u16 i, count;
1027 1028 1029

	hw->eeprom.ops.init_params(hw);

1030 1031
	if (words == 0)
		return IXGBE_ERR_INVALID_ARGUMENT;
1032

1033 1034
	if (offset + words > hw->eeprom.word_size)
		return IXGBE_ERR_EEPROM;
1035

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
	/*
	 * We cannot hold synchronization semaphores for too long
	 * to avoid other entity starvation. However it is more efficient
	 * to read in bursts than synchronizing access for each word.
	 */
	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);

		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
							   count, &data[i]);

1048 1049
		if (status)
			return status;
1050 1051
	}

1052
	return 0;
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
}

/**
 *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be read
 *  @words: number of word(s)
 *  @data: read 16 bit word(s) from EEPROM
 *
 *  Reads 16 bit word(s) from EEPROM through bit-bang method
 **/
static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
					     u16 words, u16 *data)
{
	s32 status;
	u16 word_in;
	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
	u16 i;

1072 1073
	/* Prepare the EEPROM for reading  */
	status = ixgbe_acquire_eeprom(hw);
1074 1075
	if (status)
		return status;
1076

1077 1078 1079
	if (ixgbe_ready_eeprom(hw) != 0) {
		ixgbe_release_eeprom(hw);
		return IXGBE_ERR_EEPROM;
1080 1081
	}

1082 1083 1084 1085 1086 1087 1088 1089
	for (i = 0; i < words; i++) {
		ixgbe_standby_eeprom(hw);
		/* Some SPI eeproms use the 8th address bit embedded
		 * in the opcode
		 */
		if ((hw->eeprom.address_bits == 8) &&
		    ((offset + i) >= 128))
			read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1090

1091 1092 1093 1094 1095 1096 1097 1098 1099
		/* Send the READ command (opcode + addr) */
		ixgbe_shift_out_eeprom_bits(hw, read_opcode,
					    IXGBE_EEPROM_OPCODE_BITS);
		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
					    hw->eeprom.address_bits);

		/* Read the data. */
		word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
		data[i] = (word_in >> 8) | (word_in << 8);
1100
	}
1101

1102 1103 1104 1105
	/* End this read operation */
	ixgbe_release_eeprom(hw);

	return 0;
1106
}
1107

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
/**
 *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be read
 *  @data: read 16 bit value from EEPROM
 *
 *  Reads 16 bit value from EEPROM through bit-bang method
 **/
s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
				       u16 *data)
{
	hw->eeprom.ops.init_params(hw);

1121 1122
	if (offset >= hw->eeprom.word_size)
		return IXGBE_ERR_EEPROM;
1123

1124
	return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1125 1126 1127
}

/**
1128
 *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1129
 *  @hw: pointer to hardware structure
1130 1131 1132
 *  @offset: offset of word in the EEPROM to read
 *  @words: number of word(s)
 *  @data: 16 bit word(s) from the EEPROM
1133
 *
1134
 *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1135
 **/
1136 1137
s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
				   u16 words, u16 *data)
1138 1139
{
	u32 eerd;
1140
	s32 status;
1141
	u32 i;
1142

1143 1144
	hw->eeprom.ops.init_params(hw);

1145 1146
	if (words == 0)
		return IXGBE_ERR_INVALID_ARGUMENT;
1147

1148 1149
	if (offset >= hw->eeprom.word_size)
		return IXGBE_ERR_EEPROM;
1150

1151
	for (i = 0; i < words; i++) {
1152
		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1153
		       IXGBE_EEPROM_RW_REG_START;
1154

1155 1156
		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1157

1158 1159 1160 1161 1162
		if (status == 0) {
			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
				   IXGBE_EEPROM_RW_REG_DATA);
		} else {
			hw_dbg(hw, "Eeprom read timed out\n");
1163
			return status;
1164 1165
		}
	}
1166 1167

	return 0;
1168
}
1169

1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
/**
 *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be used as a scratch pad
 *
 *  Discover EEPROM page size by writing marching data at given offset.
 *  This function is called only when we are writing a new large buffer
 *  at given offset so the data would be overwritten anyway.
 **/
static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
						 u16 offset)
{
	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1183
	s32 status;
1184 1185 1186 1187 1188 1189 1190 1191 1192
	u16 i;

	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
		data[i] = i;

	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
	hw->eeprom.word_page_size = 0;
1193 1194
	if (status)
		return status;
1195 1196

	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1197 1198
	if (status)
		return status;
1199 1200 1201 1202 1203 1204 1205

	/*
	 * When writing in burst more than the actual page size
	 * EEPROM address wraps around current page.
	 */
	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];

1206
	hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1207
	       hw->eeprom.word_page_size);
1208
	return 0;
1209 1210
}

1211
/**
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
 *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
 *  @hw: pointer to hardware structure
 *  @offset: offset of  word in the EEPROM to read
 *  @data: word read from the EEPROM
 *
 *  Reads a 16 bit word from the EEPROM using the EERD register.
 **/
s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
{
	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
}

/**
 *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1226 1227
 *  @hw: pointer to hardware structure
 *  @offset: offset of  word in the EEPROM to write
1228 1229
 *  @words: number of words
 *  @data: word(s) write to the EEPROM
1230
 *
1231
 *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1232
 **/
1233 1234
s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
				    u16 words, u16 *data)
1235 1236
{
	u32 eewr;
1237
	s32 status;
1238
	u16 i;
1239 1240 1241

	hw->eeprom.ops.init_params(hw);

1242 1243
	if (words == 0)
		return IXGBE_ERR_INVALID_ARGUMENT;
1244

1245 1246
	if (offset >= hw->eeprom.word_size)
		return IXGBE_ERR_EEPROM;
1247

1248 1249 1250 1251
	for (i = 0; i < words; i++) {
		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
		       IXGBE_EEPROM_RW_REG_START;
1252

1253
		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1254
		if (status) {
1255
			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1256
			return status;
1257
		}
1258

1259
		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1260

1261
		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1262
		if (status) {
1263
			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1264
			return status;
1265
		}
1266 1267
	}

1268
	return 0;
1269 1270
}

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
/**
 *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
 *  @hw: pointer to hardware structure
 *  @offset: offset of  word in the EEPROM to write
 *  @data: word write to the EEPROM
 *
 *  Write a 16 bit word to the EEPROM using the EEWR register.
 **/
s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
{
	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
}

1284
/**
1285
 *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1286
 *  @hw: pointer to hardware structure
1287
 *  @ee_reg: EEPROM flag for polling
1288
 *
1289 1290
 *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
 *  read or write is done respectively.
1291
 **/
1292
static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1293 1294 1295 1296
{
	u32 i;
	u32 reg;

1297 1298 1299 1300 1301 1302 1303
	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
		if (ee_reg == IXGBE_NVM_POLL_READ)
			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
		else
			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);

		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1304
			return 0;
1305 1306 1307
		}
		udelay(5);
	}
1308
	return IXGBE_ERR_EEPROM;
1309 1310
}

1311 1312 1313 1314 1315 1316 1317 1318 1319
/**
 *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
 *  @hw: pointer to hardware structure
 *
 *  Prepares EEPROM for access using bit-bang method. This function should
 *  be called before issuing a command to the EEPROM.
 **/
static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
{
1320
	u32 eec;
1321 1322
	u32 i;

1323
	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1324
		return IXGBE_ERR_SWFW_SYNC;
1325

1326
	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1327

1328 1329
	/* Request EEPROM Access */
	eec |= IXGBE_EEC_REQ;
1330
	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1331

1332
	for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1333
		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1334 1335 1336 1337
		if (eec & IXGBE_EEC_GNT)
			break;
		udelay(5);
	}
1338

1339 1340 1341
	/* Release if grant not acquired */
	if (!(eec & IXGBE_EEC_GNT)) {
		eec &= ~IXGBE_EEC_REQ;
1342
		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1343
		hw_dbg(hw, "Could not acquire EEPROM grant\n");
1344

1345 1346
		hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
		return IXGBE_ERR_EEPROM;
1347
	}
1348 1349 1350 1351

	/* Setup EEPROM for Read/Write */
	/* Clear CS and SK */
	eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1352
	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1353 1354 1355
	IXGBE_WRITE_FLUSH(hw);
	udelay(1);
	return 0;
1356 1357
}

1358 1359 1360 1361 1362 1363 1364 1365
/**
 *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
 *  @hw: pointer to hardware structure
 *
 *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
 **/
static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
{
1366
	u32 timeout = 2000;
1367 1368 1369 1370 1371 1372 1373 1374 1375
	u32 i;
	u32 swsm;

	/* Get SMBI software semaphore between device drivers first */
	for (i = 0; i < timeout; i++) {
		/*
		 * If the SMBI bit is 0 when we read it, then the bit will be
		 * set and we have the semaphore
		 */
1376
		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1377
		if (!(swsm & IXGBE_SWSM_SMBI))
1378
			break;
1379
		usleep_range(50, 100);
1380 1381
	}

E
Emil Tantilov 已提交
1382
	if (i == timeout) {
1383
		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1384
		/* this release is particularly important because our attempts
E
Emil Tantilov 已提交
1385 1386 1387 1388 1389 1390
		 * above to get the semaphore may have succeeded, and if there
		 * was a timeout, we should unconditionally clear the semaphore
		 * bits to free the driver to make progress
		 */
		ixgbe_release_eeprom_semaphore(hw);

1391
		usleep_range(50, 100);
1392
		/* one last try
E
Emil Tantilov 已提交
1393 1394 1395
		 * If the SMBI bit is 0 when we read it, then the bit will be
		 * set and we have the semaphore
		 */
1396
		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1397 1398 1399 1400
		if (swsm & IXGBE_SWSM_SMBI) {
			hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
			return IXGBE_ERR_EEPROM;
		}
E
Emil Tantilov 已提交
1401 1402
	}

1403
	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1404
	for (i = 0; i < timeout; i++) {
1405
		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1406

1407 1408
		/* Set the SW EEPROM semaphore bit to request access */
		swsm |= IXGBE_SWSM_SWESMBI;
1409
		IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1410

1411 1412 1413
		/* If we set the bit successfully then we got the
		 * semaphore.
		 */
1414
		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1415 1416
		if (swsm & IXGBE_SWSM_SWESMBI)
			break;
1417

1418 1419
		usleep_range(50, 100);
	}
1420

1421 1422 1423 1424 1425 1426 1427
	/* Release semaphores and return error if SW EEPROM semaphore
	 * was not granted because we don't have access to the EEPROM
	 */
	if (i >= timeout) {
		hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
		ixgbe_release_eeprom_semaphore(hw);
		return IXGBE_ERR_EEPROM;
1428 1429
	}

1430
	return 0;
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
}

/**
 *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
 *  @hw: pointer to hardware structure
 *
 *  This function clears hardware semaphore bits.
 **/
static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
{
	u32 swsm;

1443
	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1444 1445 1446

	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1447
	IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1448
	IXGBE_WRITE_FLUSH(hw);
1449 1450
}

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
/**
 *  ixgbe_ready_eeprom - Polls for EEPROM ready
 *  @hw: pointer to hardware structure
 **/
static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
{
	u16 i;
	u8 spi_stat_reg;

	/*
	 * Read "Status Register" repeatedly until the LSB is cleared.  The
	 * EEPROM will signal that the command has been completed by clearing
	 * bit 0 of the internal status register.  If it's not cleared within
	 * 5 milliseconds, then error out.
	 */
	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1468
					    IXGBE_EEPROM_OPCODE_BITS);
1469 1470 1471 1472 1473 1474
		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
			break;

		udelay(5);
		ixgbe_standby_eeprom(hw);
1475
	}
1476 1477 1478 1479 1480 1481 1482

	/*
	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
	 * devices (and only 0-5mSec on 5V devices)
	 */
	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
		hw_dbg(hw, "SPI EEPROM Status error\n");
1483
		return IXGBE_ERR_EEPROM;
1484 1485
	}

1486
	return 0;
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
}

/**
 *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
 *  @hw: pointer to hardware structure
 **/
static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
{
	u32 eec;

1497
	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1498 1499 1500

	/* Toggle CS to flush commands */
	eec |= IXGBE_EEC_CS;
1501
	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1502 1503 1504
	IXGBE_WRITE_FLUSH(hw);
	udelay(1);
	eec &= ~IXGBE_EEC_CS;
1505
	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
	IXGBE_WRITE_FLUSH(hw);
	udelay(1);
}

/**
 *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
 *  @hw: pointer to hardware structure
 *  @data: data to send to the EEPROM
 *  @count: number of bits to shift out
 **/
static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1517
					u16 count)
1518 1519 1520 1521 1522
{
	u32 eec;
	u32 mask;
	u32 i;

1523
	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1524 1525 1526 1527 1528

	/*
	 * Mask is used to shift "count" bits of "data" out to the EEPROM
	 * one bit at a time.  Determine the starting bit based on count
	 */
J
Jacob Keller 已提交
1529
	mask = BIT(count - 1);
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543

	for (i = 0; i < count; i++) {
		/*
		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
		 * "1", and then raising and then lowering the clock (the SK
		 * bit controls the clock input to the EEPROM).  A "0" is
		 * shifted out to the EEPROM by setting "DI" to "0" and then
		 * raising and then lowering the clock.
		 */
		if (data & mask)
			eec |= IXGBE_EEC_DI;
		else
			eec &= ~IXGBE_EEC_DI;

1544
		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
		IXGBE_WRITE_FLUSH(hw);

		udelay(1);

		ixgbe_raise_eeprom_clk(hw, &eec);
		ixgbe_lower_eeprom_clk(hw, &eec);

		/*
		 * Shift mask to signify next bit of data to shift in to the
		 * EEPROM
		 */
		mask = mask >> 1;
1557
	}
1558 1559 1560

	/* We leave the "DI" bit set to "0" when we leave this routine. */
	eec &= ~IXGBE_EEC_DI;
1561
	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
	IXGBE_WRITE_FLUSH(hw);
}

/**
 *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
 *  @hw: pointer to hardware structure
 **/
static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
{
	u32 eec;
	u32 i;
	u16 data = 0;

	/*
	 * In order to read a register from the EEPROM, we need to shift
	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
	 * the clock input to the EEPROM (setting the SK bit), and then reading
	 * the value of the "DO" bit.  During this "shifting in" process the
	 * "DI" bit should always be clear.
	 */
1582
	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1583 1584 1585 1586 1587 1588 1589

	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);

	for (i = 0; i < count; i++) {
		data = data << 1;
		ixgbe_raise_eeprom_clk(hw, &eec);

1590
		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613

		eec &= ~(IXGBE_EEC_DI);
		if (eec & IXGBE_EEC_DO)
			data |= 1;

		ixgbe_lower_eeprom_clk(hw, &eec);
	}

	return data;
}

/**
 *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
 *  @hw: pointer to hardware structure
 *  @eec: EEC register's current value
 **/
static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
{
	/*
	 * Raise the clock input to the EEPROM
	 * (setting the SK bit), then delay
	 */
	*eec = *eec | IXGBE_EEC_SK;
1614
	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
	IXGBE_WRITE_FLUSH(hw);
	udelay(1);
}

/**
 *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
 *  @hw: pointer to hardware structure
 *  @eecd: EECD's current value
 **/
static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
{
	/*
	 * Lower the clock input to the EEPROM (clearing the SK bit), then
	 * delay
	 */
	*eec = *eec & ~IXGBE_EEC_SK;
1631
	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
	IXGBE_WRITE_FLUSH(hw);
	udelay(1);
}

/**
 *  ixgbe_release_eeprom - Release EEPROM, release semaphores
 *  @hw: pointer to hardware structure
 **/
static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
{
	u32 eec;

1644
	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1645 1646 1647 1648

	eec |= IXGBE_EEC_CS;  /* Pull CS high */
	eec &= ~IXGBE_EEC_SK; /* Lower SCK */

1649
	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1650 1651 1652 1653 1654 1655
	IXGBE_WRITE_FLUSH(hw);

	udelay(1);

	/* Stop requesting EEPROM access */
	eec &= ~IXGBE_EEC_REQ;
1656
	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1657

1658
	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1659

1660 1661 1662 1663 1664 1665
	/*
	 * Delay before attempt to obtain semaphore again to allow FW
	 * access. semaphore_delay is in ms we need us for usleep_range
	 */
	usleep_range(hw->eeprom.semaphore_delay * 1000,
		     hw->eeprom.semaphore_delay * 2000);
1666 1667
}

1668
/**
1669
 *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1670 1671
 *  @hw: pointer to hardware structure
 **/
1672
s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
{
	u16 i;
	u16 j;
	u16 checksum = 0;
	u16 length = 0;
	u16 pointer = 0;
	u16 word = 0;

	/* Include 0x0-0x3F in the checksum */
	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1683
		if (hw->eeprom.ops.read(hw, i, &word)) {
1684 1685 1686 1687 1688 1689 1690 1691
			hw_dbg(hw, "EEPROM read failed\n");
			break;
		}
		checksum += word;
	}

	/* Include all data from pointers except for the fw pointer */
	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
		if (hw->eeprom.ops.read(hw, i, &pointer)) {
			hw_dbg(hw, "EEPROM read failed\n");
			return IXGBE_ERR_EEPROM;
		}

		/* If the pointer seems invalid */
		if (pointer == 0xFFFF || pointer == 0)
			continue;

		if (hw->eeprom.ops.read(hw, pointer, &length)) {
			hw_dbg(hw, "EEPROM read failed\n");
			return IXGBE_ERR_EEPROM;
		}
1705

1706 1707
		if (length == 0xFFFF || length == 0)
			continue;
1708

1709 1710 1711 1712
		for (j = pointer + 1; j <= pointer + length; j++) {
			if (hw->eeprom.ops.read(hw, j, &word)) {
				hw_dbg(hw, "EEPROM read failed\n");
				return IXGBE_ERR_EEPROM;
1713
			}
1714
			checksum += word;
1715 1716 1717 1718 1719
		}
	}

	checksum = (u16)IXGBE_EEPROM_SUM - checksum;

1720
	return (s32)checksum;
1721 1722 1723
}

/**
1724
 *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1725 1726 1727 1728 1729 1730
 *  @hw: pointer to hardware structure
 *  @checksum_val: calculated checksum
 *
 *  Performs checksum calculation and validates the EEPROM checksum.  If the
 *  caller does not need checksum_val, the value can be NULL.
 **/
1731
s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1732
					   u16 *checksum_val)
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
{
	s32 status;
	u16 checksum;
	u16 read_checksum = 0;

	/*
	 * Read the first word from the EEPROM. If this times out or fails, do
	 * not continue or we could be in for a very long wait while every
	 * EEPROM read fails
	 */
1743
	status = hw->eeprom.ops.read(hw, 0, &checksum);
1744 1745 1746 1747
	if (status) {
		hw_dbg(hw, "EEPROM read failed\n");
		return status;
	}
1748

1749 1750 1751
	status = hw->eeprom.ops.calc_checksum(hw);
	if (status < 0)
		return status;
1752

1753
	checksum = (u16)(status & 0xffff);
1754

1755 1756
	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
	if (status) {
1757
		hw_dbg(hw, "EEPROM read failed\n");
1758
		return status;
1759 1760
	}

1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
	/* Verify read checksum from EEPROM is the same as
	 * calculated checksum
	 */
	if (read_checksum != checksum)
		status = IXGBE_ERR_EEPROM_CHECKSUM;

	/* If the user cares, return the calculated checksum */
	if (checksum_val)
		*checksum_val = checksum;

1771 1772 1773
	return status;
}

1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
/**
 *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
 *  @hw: pointer to hardware structure
 **/
s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
{
	s32 status;
	u16 checksum;

	/*
	 * Read the first word from the EEPROM. If this times out or fails, do
	 * not continue or we could be in for a very long wait while every
	 * EEPROM read fails
	 */
	status = hw->eeprom.ops.read(hw, 0, &checksum);
1789
	if (status) {
1790
		hw_dbg(hw, "EEPROM read failed\n");
1791
		return status;
1792 1793
	}

1794 1795 1796 1797 1798 1799 1800 1801
	status = hw->eeprom.ops.calc_checksum(hw);
	if (status < 0)
		return status;

	checksum = (u16)(status & 0xffff);

	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);

1802 1803 1804
	return status;
}

1805
/**
1806
 *  ixgbe_set_rar_generic - Set Rx address register
1807 1808
 *  @hw: pointer to hardware structure
 *  @index: Receive address register to write
1809 1810
 *  @addr: Address to put into receive address register
 *  @vmdq: VMDq "set" or "pool" index
1811 1812 1813 1814
 *  @enable_addr: set flag that address is active
 *
 *  Puts an ethernet address into a receive address register.
 **/
1815
s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1816
			  u32 enable_addr)
1817 1818
{
	u32 rar_low, rar_high;
1819 1820
	u32 rar_entries = hw->mac.num_rar_entries;

1821 1822 1823 1824 1825 1826
	/* Make sure we are using a valid rar index range */
	if (index >= rar_entries) {
		hw_dbg(hw, "RAR index %d is out of range.\n", index);
		return IXGBE_ERR_INVALID_ARGUMENT;
	}

1827 1828
	/* setup VMDq pool selection before this RAR gets enabled */
	hw->mac.ops.set_vmdq(hw, index, vmdq);
1829

1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
	/*
	 * HW expects these in little endian so we reverse the byte
	 * order from network order (big endian) to little endian
	 */
	rar_low = ((u32)addr[0] |
		   ((u32)addr[1] << 8) |
		   ((u32)addr[2] << 16) |
		   ((u32)addr[3] << 24));
	/*
	 * Some parts put the VMDq setting in the extra RAH bits,
	 * so save everything except the lower 16 bits that hold part
	 * of the address and the address valid bit.
	 */
	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1846

1847 1848
	if (enable_addr != 0)
		rar_high |= IXGBE_RAH_AV;
1849

1850 1851
	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868

	return 0;
}

/**
 *  ixgbe_clear_rar_generic - Remove Rx address register
 *  @hw: pointer to hardware structure
 *  @index: Receive address register to write
 *
 *  Clears an ethernet address from a receive address register.
 **/
s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
{
	u32 rar_high;
	u32 rar_entries = hw->mac.num_rar_entries;

	/* Make sure we are using a valid rar index range */
1869
	if (index >= rar_entries) {
1870
		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1871
		return IXGBE_ERR_INVALID_ARGUMENT;
1872 1873
	}

1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
	/*
	 * Some parts put the VMDq setting in the extra RAH bits,
	 * so save everything except the lower 16 bits that hold part
	 * of the address and the address valid bit.
	 */
	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);

	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);

1885 1886
	/* clear VMDq pool/queue selection for this RAR */
	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1887 1888 1889 1890

	return 0;
}

1891 1892
/**
 *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1893 1894 1895
 *  @hw: pointer to hardware structure
 *
 *  Places the MAC address in receive address register 0 and clears the rest
1896
 *  of the receive address registers. Clears the multicast table. Assumes
1897 1898
 *  the receiver is in reset when the routine is called.
 **/
1899
s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1900 1901
{
	u32 i;
1902
	u32 rar_entries = hw->mac.num_rar_entries;
1903 1904 1905 1906 1907 1908

	/*
	 * If the current mac address is valid, assume it is a software override
	 * to the permanent address.
	 * Otherwise, use the permanent address from the eeprom.
	 */
J
Joe Perches 已提交
1909
	if (!is_valid_ether_addr(hw->mac.addr)) {
1910
		/* Get the MAC address from the RAR0 for later reference */
1911
		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1912

1913
		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1914 1915 1916
	} else {
		/* Setup the receive address. */
		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1917
		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1918

1919
		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1920
	}
A
Alexander Duyck 已提交
1921 1922 1923 1924

	/*  clear VMDq pool/queue selection for RAR 0 */
	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);

1925
	hw->addr_ctrl.overflow_promisc = 0;
1926 1927 1928 1929

	hw->addr_ctrl.rar_used_count = 1;

	/* Zero out the other receive addresses. */
1930
	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
	for (i = 1; i < rar_entries; i++) {
		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
	}

	/* Clear the MTA */
	hw->addr_ctrl.mta_in_use = 0;
	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);

	hw_dbg(hw, " Clearing MTA\n");
1941
	for (i = 0; i < hw->mac.mcft_size; i++)
1942 1943
		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);

1944 1945 1946
	if (hw->mac.ops.init_uta_tables)
		hw->mac.ops.init_uta_tables(hw);

1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
	return 0;
}

/**
 *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
 *  @hw: pointer to hardware structure
 *  @mc_addr: the multicast address
 *
 *  Extracts the 12 bits, from a multicast address, to determine which
 *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
 *  incoming rx multicast addresses, to determine the bit-vector to check in
 *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1959
 *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1960 1961 1962 1963 1964 1965 1966
 *  to mc_filter_type.
 **/
static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
{
	u32 vector = 0;

	switch (hw->mac.mc_filter_type) {
1967
	case 0:   /* use bits [47:36] of the address */
1968 1969
		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
		break;
1970
	case 1:   /* use bits [46:35] of the address */
1971 1972
		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
		break;
1973
	case 2:   /* use bits [45:34] of the address */
1974 1975
		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
		break;
1976
	case 3:   /* use bits [43:32] of the address */
1977 1978
		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
		break;
1979
	default:  /* Invalid mc_filter_type */
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
		hw_dbg(hw, "MC filter type param set incorrectly\n");
		break;
	}

	/* vector can only be 12-bits or boundary will be exceeded */
	vector &= 0xFFF;
	return vector;
}

/**
 *  ixgbe_set_mta - Set bit-vector in multicast table
 *  @hw: pointer to hardware structure
 *  @hash_value: Multicast address hash value
 *
 *  Sets the bit-vector in the multicast table.
 **/
static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
{
	u32 vector;
	u32 vector_bit;
	u32 vector_reg;

	hw->addr_ctrl.mta_in_use++;

	vector = ixgbe_mta_vector(hw, mc_addr);
	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);

	/*
	 * The MTA is a register array of 128 32-bit registers. It is treated
	 * like an array of 4096 bits.  We want to set bit
	 * BitArray[vector_value]. So we figure out what register the bit is
	 * in, read it, OR in the new bit, then write back the new value.  The
	 * register is determined by the upper 7 bits of the vector value and
	 * the bit within that register are determined by the lower 5 bits of
	 * the value.
	 */
	vector_reg = (vector >> 5) & 0x7F;
	vector_bit = vector & 0x1F;
J
Jacob Keller 已提交
2018
	hw->mac.mta_shadow[vector_reg] |= BIT(vector_bit);
2019 2020 2021
}

/**
2022
 *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2023
 *  @hw: pointer to hardware structure
2024
 *  @netdev: pointer to net device structure
2025 2026
 *
 *  The given list replaces any existing list. Clears the MC addrs from receive
2027
 *  address registers and the multicast table. Uses unused receive address
2028 2029 2030
 *  registers for the first multicast addresses, and hashes the rest into the
 *  multicast table.
 **/
2031 2032
s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
				      struct net_device *netdev)
2033
{
2034
	struct netdev_hw_addr *ha;
2035 2036 2037 2038 2039 2040
	u32 i;

	/*
	 * Set the new number of MC addresses that we are being requested to
	 * use.
	 */
2041
	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2042 2043
	hw->addr_ctrl.mta_in_use = 0;

2044
	/* Clear mta_shadow */
2045
	hw_dbg(hw, " Clearing MTA\n");
2046
	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2047

2048
	/* Update mta shadow */
2049
	netdev_for_each_mc_addr(ha, netdev) {
2050
		hw_dbg(hw, " Adding the multicast addresses:\n");
2051
		ixgbe_set_mta(hw, ha->addr);
2052 2053 2054
	}

	/* Enable mta */
2055 2056 2057 2058
	for (i = 0; i < hw->mac.mcft_size; i++)
		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
				      hw->mac.mta_shadow[i]);

2059 2060
	if (hw->addr_ctrl.mta_in_use > 0)
		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2061
				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2062

2063
	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2064 2065 2066 2067
	return 0;
}

/**
2068
 *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2069 2070
 *  @hw: pointer to hardware structure
 *
2071
 *  Enables multicast address in RAR and the use of the multicast hash table.
2072
 **/
2073
s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2074
{
2075
	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2076

2077 2078
	if (a->mta_in_use > 0)
		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2079
				hw->mac.mc_filter_type);
2080 2081 2082 2083 2084

	return 0;
}

/**
2085
 *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2086 2087
 *  @hw: pointer to hardware structure
 *
2088
 *  Disables multicast address in RAR and the use of the multicast hash table.
2089
 **/
2090
s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2091
{
2092
	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2093

2094 2095
	if (a->mta_in_use > 0)
		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2096 2097 2098 2099

	return 0;
}

2100
/**
2101
 *  ixgbe_fc_enable_generic - Enable flow control
2102 2103 2104 2105
 *  @hw: pointer to hardware structure
 *
 *  Enable flow control according to the current settings.
 **/
2106
s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2107
{
2108
	u32 mflcn_reg, fccfg_reg;
2109
	u32 reg;
2110
	u32 fcrtl, fcrth;
2111
	int i;
2112

2113
	/* Validate the water mark configuration. */
2114 2115
	if (!hw->fc.pause_time)
		return IXGBE_ERR_INVALID_LINK_SETTINGS;
2116

2117 2118 2119 2120 2121 2122 2123
	/* Low water mark of zero causes XOFF floods */
	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
		    hw->fc.high_water[i]) {
			if (!hw->fc.low_water[i] ||
			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
				hw_dbg(hw, "Invalid water mark configuration\n");
2124
				return IXGBE_ERR_INVALID_LINK_SETTINGS;
2125 2126 2127 2128
			}
		}
	}

2129
	/* Negotiate the fc mode to use */
2130
	ixgbe_fc_autoneg(hw);
2131

2132
	/* Disable any previous flow control settings */
2133
	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2134
	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2135 2136 2137 2138 2139 2140 2141 2142 2143

	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);

	/*
	 * The possible values of fc.current_mode are:
	 * 0: Flow control is completely disabled
	 * 1: Rx flow control is enabled (we can receive pause frames,
	 *    but not send pause frames).
2144 2145
	 * 2: Tx flow control is enabled (we can send pause frames but
	 *    we do not support receiving pause frames).
2146 2147 2148 2149 2150
	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
	 * other: Invalid.
	 */
	switch (hw->fc.current_mode) {
	case ixgbe_fc_none:
2151 2152 2153 2154
		/*
		 * Flow control is disabled by software override or autoneg.
		 * The code below will actually disable it in the HW.
		 */
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
		break;
	case ixgbe_fc_rx_pause:
		/*
		 * Rx Flow control is enabled and Tx Flow control is
		 * disabled by software override. Since there really
		 * isn't a way to advertise that we are capable of RX
		 * Pause ONLY, we will advertise that we support both
		 * symmetric and asymmetric Rx PAUSE.  Later, we will
		 * disable the adapter's ability to send PAUSE frames.
		 */
		mflcn_reg |= IXGBE_MFLCN_RFCE;
		break;
	case ixgbe_fc_tx_pause:
		/*
		 * Tx Flow control is enabled, and Rx Flow control is
		 * disabled by software override.
		 */
		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
		break;
	case ixgbe_fc_full:
		/* Flow control (both Rx and Tx) is enabled by SW override. */
		mflcn_reg |= IXGBE_MFLCN_RFCE;
		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
		break;
	default:
		hw_dbg(hw, "Flow control param set incorrectly\n");
2181
		return IXGBE_ERR_CONFIG;
2182 2183
	}

2184
	/* Set 802.3x based flow control settings. */
2185
	mflcn_reg |= IXGBE_MFLCN_DPF;
2186 2187 2188
	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);

2189 2190 2191 2192
	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
		    hw->fc.high_water[i]) {
2193
			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2194 2195 2196 2197 2198 2199 2200
			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
		} else {
			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
			/*
			 * In order to prevent Tx hangs when the internal Tx
			 * switch is enabled we must set the high water mark
2201 2202 2203
			 * to the Rx packet buffer size - 24KB.  This allows
			 * the Tx switch to function even under heavy Rx
			 * workloads.
2204
			 */
2205
			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2206
		}
2207

2208 2209
		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
	}
2210

2211
	/* Configure pause time (2 TCs per register) */
2212 2213 2214 2215 2216
	reg = hw->fc.pause_time * 0x00010001;
	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);

	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2217

2218
	return 0;
2219 2220
}

2221
/**
2222
 *  ixgbe_negotiate_fc - Negotiate flow control
2223
 *  @hw: pointer to hardware structure
2224 2225 2226 2227 2228 2229
 *  @adv_reg: flow control advertised settings
 *  @lp_reg: link partner's flow control settings
 *  @adv_sym: symmetric pause bit in advertisement
 *  @adv_asm: asymmetric pause bit in advertisement
 *  @lp_sym: symmetric pause bit in link partner advertisement
 *  @lp_asm: asymmetric pause bit in link partner advertisement
2230
 *
2231 2232
 *  Find the intersection between advertised settings and link partner's
 *  advertised settings
2233
 **/
2234 2235
static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2236
{
2237 2238
	if ((!(adv_reg)) ||  (!(lp_reg)))
		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2239

2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
		/*
		 * Now we need to check if the user selected Rx ONLY
		 * of pause frames.  In this case, we had to advertise
		 * FULL flow control because we could not advertise RX
		 * ONLY. Hence, we must now check to see if we need to
		 * turn OFF the TRANSMISSION of PAUSE frames.
		 */
		if (hw->fc.requested_mode == ixgbe_fc_full) {
			hw->fc.current_mode = ixgbe_fc_full;
			hw_dbg(hw, "Flow Control = FULL.\n");
		} else {
			hw->fc.current_mode = ixgbe_fc_rx_pause;
			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
		}
	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
		hw->fc.current_mode = ixgbe_fc_tx_pause;
		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
		hw->fc.current_mode = ixgbe_fc_rx_pause;
		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2263
	} else {
2264 2265
		hw->fc.current_mode = ixgbe_fc_none;
		hw_dbg(hw, "Flow Control = NONE.\n");
2266
	}
2267
	return 0;
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
}

/**
 *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
 *  @hw: pointer to hardware structure
 *
 *  Enable flow control according on 1 gig fiber.
 **/
static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
{
	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2279
	s32 ret_val;
2280 2281 2282 2283 2284 2285

	/*
	 * On multispeed fiber at 1g, bail out if
	 * - link is up but AN did not complete, or if
	 * - link is up and AN completed but timed out
	 */
2286 2287

	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2288
	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2289
	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2290
		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2291

2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);

	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
			       IXGBE_PCS1GANA_ASM_PAUSE,
			       IXGBE_PCS1GANA_SYM_PAUSE,
			       IXGBE_PCS1GANA_ASM_PAUSE);

	return ret_val;
}

/**
 *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
 *  @hw: pointer to hardware structure
 *
 *  Enable flow control according to IEEE clause 37.
 **/
static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
{
	u32 links2, anlp1_reg, autoc_reg, links;
2313
	s32 ret_val;
2314

2315
	/*
2316 2317 2318
	 * On backplane, bail out if
	 * - backplane autoneg was not completed, or if
	 * - we are 82599 and link partner is not AN enabled
2319
	 */
2320
	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2321
	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2322
		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2323

2324 2325
	if (hw->mac.type == ixgbe_mac_82599EB) {
		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2326
		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2327
			return IXGBE_ERR_FC_NOT_NEGOTIATED;
2328
	}
2329
	/*
2330
	 * Read the 10g AN autoc and LP ability registers and resolve
2331 2332
	 * local flow control settings accordingly
	 */
2333 2334
	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2335

2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);

	return ret_val;
}

/**
 *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
 *  @hw: pointer to hardware structure
 *
 *  Enable flow control according to IEEE clause 37.
 **/
static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
{
	u16 technology_ability_reg = 0;
	u16 lp_technology_ability_reg = 0;

	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
			     MDIO_MMD_AN,
			     &technology_ability_reg);
	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
			     MDIO_MMD_AN,
			     &lp_technology_ability_reg);

	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
				  (u32)lp_technology_ability_reg,
				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
}

/**
2368
 *  ixgbe_fc_autoneg - Configure flow control
2369 2370
 *  @hw: pointer to hardware structure
 *
2371 2372
 *  Compares our advertised flow control capabilities to those advertised by
 *  our link partner, and determines the proper flow control mode to use.
2373
 **/
2374
void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2375
{
2376 2377 2378
	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
	ixgbe_link_speed speed;
	bool link_up;
2379 2380

	/*
2381 2382 2383 2384 2385 2386 2387
	 * AN should have completed when the cable was plugged in.
	 * Look for reasons to bail out.  Bail out if:
	 * - FC autoneg is disabled, or if
	 * - link is not up.
	 *
	 * Since we're being called from an LSC, link is already known to be up.
	 * So use link_up_wait_to_complete=false.
2388
	 */
2389
	if (hw->fc.disable_fc_autoneg)
2390
		goto out;
2391

2392 2393
	hw->mac.ops.check_link(hw, &speed, &link_up, false);
	if (!link_up)
2394
		goto out;
2395 2396

	switch (hw->phy.media_type) {
2397
	/* Autoneg flow control on fiber adapters */
2398
	case ixgbe_media_type_fiber:
2399 2400 2401 2402 2403
		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
			ret_val = ixgbe_fc_autoneg_fiber(hw);
		break;

	/* Autoneg flow control on backplane adapters */
2404
	case ixgbe_media_type_backplane:
2405
		ret_val = ixgbe_fc_autoneg_backplane(hw);
2406 2407
		break;

2408
	/* Autoneg flow control on copper adapters */
2409
	case ixgbe_media_type_copper:
2410
		if (ixgbe_device_supports_autoneg_fc(hw))
2411
			ret_val = ixgbe_fc_autoneg_copper(hw);
2412 2413 2414
		break;

	default:
2415
		break;
2416
	}
2417

2418
out:
2419 2420 2421 2422 2423 2424
	if (ret_val == 0) {
		hw->fc.fc_was_autonegged = true;
	} else {
		hw->fc.fc_was_autonegged = false;
		hw->fc.current_mode = hw->fc.requested_mode;
	}
2425 2426
}

2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
/**
 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
 * @hw: pointer to hardware structure
 *
 * System-wide timeout range is encoded in PCIe Device Control2 register.
 *
 *  Add 10% to specified maximum and return the number of times to poll for
 *  completion timeout, in units of 100 microsec.  Never return less than
 *  800 = 80 millisec.
 **/
static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
{
	s16 devctl2;
	u32 pollcnt;

2442
	devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;

	switch (devctl2) {
	case IXGBE_PCIDEVCTRL2_65_130ms:
		 pollcnt = 1300;         /* 130 millisec */
		break;
	case IXGBE_PCIDEVCTRL2_260_520ms:
		pollcnt = 5200;         /* 520 millisec */
		break;
	case IXGBE_PCIDEVCTRL2_1_2s:
		pollcnt = 20000;        /* 2 sec */
		break;
	case IXGBE_PCIDEVCTRL2_4_8s:
		pollcnt = 80000;        /* 8 sec */
		break;
	case IXGBE_PCIDEVCTRL2_17_34s:
		pollcnt = 34000;        /* 34 sec */
		break;
	case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
	case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
	case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
	case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
	default:
		pollcnt = 800;          /* 80 millisec minimum */
		break;
	}

	/* add 10% to spec maximum */
	return (pollcnt * 11) / 10;
}

2474 2475 2476 2477 2478 2479 2480 2481 2482
/**
 *  ixgbe_disable_pcie_master - Disable PCI-express master access
 *  @hw: pointer to hardware structure
 *
 *  Disables PCI-Express master access and verifies there are no pending
 *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
 *  bit hasn't caused the master requests to be disabled, else 0
 *  is returned signifying master requests disabled.
 **/
2483
static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2484
{
2485
	u32 i, poll;
2486 2487 2488 2489
	u16 value;

	/* Always set this bit to ensure any future transactions are blocked */
	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2490

2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
	/* Poll for bit to read as set */
	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
		if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
			break;
		usleep_range(100, 120);
	}
	if (i >= IXGBE_PCI_MASTER_DISABLE_TIMEOUT) {
		hw_dbg(hw, "GIO disable did not set - requesting resets\n");
		goto gio_disable_fail;
	}

2502
	/* Exit if master requests are blocked */
2503 2504
	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
	    ixgbe_removed(hw->hw_addr))
2505
		return 0;
2506

2507
	/* Poll for master request bit to clear */
2508
	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2509
		udelay(100);
2510
		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2511
			return 0;
2512 2513
	}

2514 2515 2516 2517 2518 2519 2520 2521
	/*
	 * Two consecutive resets are required via CTRL.RST per datasheet
	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
	 * of this need.  The first reset prevents new master requests from
	 * being issued by our device.  We then must wait 1usec or more for any
	 * remaining completions from the PCIe bus to trickle in, and then reset
	 * again to clear out any effects they may have had on our device.
	 */
2522
	hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2523
gio_disable_fail:
2524
	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2525

2526 2527 2528
	if (hw->mac.type >= ixgbe_mac_X550)
		return 0;

2529 2530 2531 2532
	/*
	 * Before proceeding, make sure that the PCIe block does not have
	 * transactions pending.
	 */
2533 2534
	poll = ixgbe_pcie_timeout_poll(hw);
	for (i = 0; i < poll; i++) {
2535
		udelay(100);
2536 2537
		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
		if (ixgbe_removed(hw->hw_addr))
2538
			return 0;
2539
		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2540
			return 0;
2541 2542
	}

2543
	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2544
	return IXGBE_ERR_MASTER_REQUESTS_PENDING;
2545 2546 2547
}

/**
2548
 *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2549
 *  @hw: pointer to hardware structure
2550
 *  @mask: Mask to specify which semaphore to acquire
2551
 *
E
Emil Tantilov 已提交
2552
 *  Acquires the SWFW semaphore through the GSSR register for the specified
2553 2554
 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
 **/
2555
s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2556
{
2557
	u32 gssr = 0;
2558 2559
	u32 swmask = mask;
	u32 fwmask = mask << 5;
2560 2561
	u32 timeout = 200;
	u32 i;
2562

2563
	for (i = 0; i < timeout; i++) {
2564
		/*
2565 2566
		 * SW NVM semaphore bit is used for access to all
		 * SW_FW_SYNC bits (not just NVM)
2567
		 */
2568
		if (ixgbe_get_eeprom_semaphore(hw))
2569
			return IXGBE_ERR_SWFW_SYNC;
2570 2571

		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
		if (!(gssr & (fwmask | swmask))) {
			gssr |= swmask;
			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
			ixgbe_release_eeprom_semaphore(hw);
			return 0;
		} else {
			/* Resource is currently in use by FW or SW */
			ixgbe_release_eeprom_semaphore(hw);
			usleep_range(5000, 10000);
		}
2582 2583
	}

2584 2585 2586
	/* If time expired clear the bits holding the lock and retry */
	if (gssr & (fwmask | swmask))
		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2587

2588 2589
	usleep_range(5000, 10000);
	return IXGBE_ERR_SWFW_SYNC;
2590 2591 2592 2593 2594
}

/**
 *  ixgbe_release_swfw_sync - Release SWFW semaphore
 *  @hw: pointer to hardware structure
2595
 *  @mask: Mask to specify which semaphore to release
2596
 *
E
Emil Tantilov 已提交
2597
 *  Releases the SWFW semaphore through the GSSR register for the specified
2598 2599
 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
 **/
2600
void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
{
	u32 gssr;
	u32 swmask = mask;

	ixgbe_get_eeprom_semaphore(hw);

	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
	gssr &= ~swmask;
	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);

	ixgbe_release_eeprom_semaphore(hw);
}

2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
/**
 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
 * @hw: pointer to hardware structure
 * @reg_val: Value we read from AUTOC
 * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
 *	    true in this the generic case.
 *
 * The default case requires no protection so just to the register read.
 **/
s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
{
	*locked = false;
	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
	return 0;
}

/**
 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
 * @hw: pointer to hardware structure
 * @reg_val: value to write to AUTOC
 * @locked: bool to indicate whether the SW/FW lock was already taken by
 *	    previous read.
 **/
s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
{
	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
	return 0;
}

2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
/**
 *  ixgbe_disable_rx_buff_generic - Stops the receive data path
 *  @hw: pointer to hardware structure
 *
 *  Stops the receive data path and waits for the HW to internally
 *  empty the Rx security block.
 **/
s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
{
#define IXGBE_MAX_SECRX_POLL 40
	int i;
	int secrxreg;

	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
			break;
		else
			/* Use interrupt-safe sleep just in case */
2665
			udelay(1000);
2666 2667 2668 2669
	}

	/* For informational purposes only */
	if (i >= IXGBE_MAX_SECRX_POLL)
2670
		hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683

	return 0;

}

/**
 *  ixgbe_enable_rx_buff - Enables the receive data path
 *  @hw: pointer to hardware structure
 *
 *  Enables the receive data path
 **/
s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
{
2684
	u32 secrxreg;
2685 2686 2687 2688 2689 2690 2691 2692 2693

	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
	IXGBE_WRITE_FLUSH(hw);

	return 0;
}

2694 2695 2696 2697 2698 2699 2700 2701 2702
/**
 *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
 *  @hw: pointer to hardware structure
 *  @regval: register value to write to RXCTRL
 *
 *  Enables the Rx DMA unit
 **/
s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
{
2703 2704 2705 2706
	if (regval & IXGBE_RXCTRL_RXEN)
		hw->mac.ops.enable_rx(hw);
	else
		hw->mac.ops.disable_rx(hw);
2707 2708 2709

	return 0;
}
2710 2711 2712 2713 2714 2715 2716 2717 2718

/**
 *  ixgbe_blink_led_start_generic - Blink LED based on index.
 *  @hw: pointer to hardware structure
 *  @index: led number to blink
 **/
s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
{
	ixgbe_link_speed speed = 0;
2719
	bool link_up = false;
2720 2721
	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2722
	bool locked = false;
2723
	s32 ret_val;
2724

2725 2726 2727
	if (index > 3)
		return IXGBE_ERR_PARAM;

2728 2729 2730 2731 2732 2733 2734
	/*
	 * Link must be up to auto-blink the LEDs;
	 * Force it if link is down.
	 */
	hw->mac.ops.check_link(hw, &speed, &link_up, false);

	if (!link_up) {
2735
		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2736
		if (ret_val)
2737
			return ret_val;
2738

2739
		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2740
		autoc_reg |= IXGBE_AUTOC_FLU;
2741 2742

		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2743
		if (ret_val)
2744
			return ret_val;
2745

2746
		IXGBE_WRITE_FLUSH(hw);
2747

2748
		usleep_range(10000, 20000);
2749 2750 2751 2752 2753 2754 2755
	}

	led_reg &= ~IXGBE_LED_MODE_MASK(index);
	led_reg |= IXGBE_LED_BLINK(index);
	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
	IXGBE_WRITE_FLUSH(hw);

2756
	return 0;
2757 2758 2759 2760 2761 2762 2763 2764 2765
}

/**
 *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
 *  @hw: pointer to hardware structure
 *  @index: led number to stop blinking
 **/
s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
{
2766
	u32 autoc_reg = 0;
2767
	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2768
	bool locked = false;
2769
	s32 ret_val;
2770

2771 2772 2773
	if (index > 3)
		return IXGBE_ERR_PARAM;

2774
	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2775
	if (ret_val)
2776
		return ret_val;
2777 2778 2779 2780

	autoc_reg &= ~IXGBE_AUTOC_FLU;
	autoc_reg |= IXGBE_AUTOC_AN_RESTART;

2781
	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2782
	if (ret_val)
2783
		return ret_val;
2784

2785 2786 2787 2788 2789 2790
	led_reg &= ~IXGBE_LED_MODE_MASK(index);
	led_reg &= ~IXGBE_LED_BLINK(index);
	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
	IXGBE_WRITE_FLUSH(hw);

2791
	return 0;
2792
}
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803

/**
 *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
 *  @hw: pointer to hardware structure
 *  @san_mac_offset: SAN MAC address offset
 *
 *  This function will read the EEPROM location for the SAN MAC address
 *  pointer, and returns the value at that location.  This is used in both
 *  get and set mac_addr routines.
 **/
static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2804
					u16 *san_mac_offset)
2805
{
2806 2807
	s32 ret_val;

2808 2809 2810 2811
	/*
	 * First read the EEPROM pointer to see if the MAC addresses are
	 * available.
	 */
2812 2813 2814 2815 2816
	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
				      san_mac_offset);
	if (ret_val)
		hw_err(hw, "eeprom read at offset %d failed\n",
		       IXGBE_SAN_MAC_ADDR_PTR);
2817

2818
	return ret_val;
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
}

/**
 *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
 *  @hw: pointer to hardware structure
 *  @san_mac_addr: SAN MAC address
 *
 *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
 *  per-port, so set_lan_id() must be called before reading the addresses.
 *  set_lan_id() is called by identify_sfp(), but this cannot be relied
 *  upon for non-SFP connections, so we must call it here.
 **/
s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
{
	u16 san_mac_data, san_mac_offset;
	u8 i;
2835
	s32 ret_val;
2836 2837 2838 2839 2840

	/*
	 * First read the EEPROM pointer to see if the MAC addresses are
	 * available.  If they're not, no point in calling set_lan_id() here.
	 */
2841 2842
	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2843

2844
		goto san_mac_addr_clr;
2845 2846 2847 2848 2849

	/* make sure we know which port we need to program */
	hw->mac.ops.set_lan_id(hw);
	/* apply the port offset to the address offset */
	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2850
			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2851
	for (i = 0; i < 3; i++) {
2852 2853 2854 2855 2856 2857 2858
		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
					      &san_mac_data);
		if (ret_val) {
			hw_err(hw, "eeprom read at offset %d failed\n",
			       san_mac_offset);
			goto san_mac_addr_clr;
		}
2859 2860 2861 2862 2863
		san_mac_addr[i * 2] = (u8)(san_mac_data);
		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
		san_mac_offset++;
	}
	return 0;
2864 2865 2866 2867 2868 2869 2870 2871

san_mac_addr_clr:
	/* No addresses available in this EEPROM.  It's not necessarily an
	 * error though, so just wipe the local address and return.
	 */
	for (i = 0; i < 6; i++)
		san_mac_addr[i] = 0xFF;
	return ret_val;
2872 2873 2874 2875 2876 2877 2878 2879 2880
}

/**
 *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
 *  @hw: pointer to hardware structure
 *
 *  Read PCIe configuration space, and get the MSI-X vector count from
 *  the capabilities table.
 **/
2881
u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2882
{
2883
	u16 msix_count;
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
	u16 max_msix_count;
	u16 pcie_offset;

	switch (hw->mac.type) {
	case ixgbe_mac_82598EB:
		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
		break;
	case ixgbe_mac_82599EB:
	case ixgbe_mac_X540:
2894 2895
	case ixgbe_mac_X550:
	case ixgbe_mac_X550EM_x:
2896
	case ixgbe_mac_x550em_a:
2897 2898 2899 2900
		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
		break;
	default:
2901
		return 1;
2902 2903
	}

2904 2905 2906
	msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
	if (ixgbe_removed(hw->hw_addr))
		msix_count = 0;
2907 2908
	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;

2909
	/* MSI-X count is zero-based in HW */
2910 2911
	msix_count++;

2912 2913 2914
	if (msix_count > max_msix_count)
		msix_count = max_msix_count;

2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
	return msix_count;
}

/**
 *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
 *  @hw: pointer to hardware struct
 *  @rar: receive address register index to disassociate
 *  @vmdq: VMDq pool index to remove from the rar
 **/
s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
{
	u32 mpsar_lo, mpsar_hi;
	u32 rar_entries = hw->mac.num_rar_entries;

2929 2930 2931 2932 2933
	/* Make sure we are using a valid rar index range */
	if (rar >= rar_entries) {
		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
		return IXGBE_ERR_INVALID_ARGUMENT;
	}
2934

2935 2936
	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2937

2938
	if (ixgbe_removed(hw->hw_addr))
2939
		return 0;
2940

2941
	if (!mpsar_lo && !mpsar_hi)
2942
		return 0;
2943

2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
		if (mpsar_lo) {
			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
			mpsar_lo = 0;
		}
		if (mpsar_hi) {
			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
			mpsar_hi = 0;
		}
	} else if (vmdq < 32) {
J
Jacob Keller 已提交
2954
		mpsar_lo &= ~BIT(vmdq);
2955
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2956
	} else {
J
Jacob Keller 已提交
2957
		mpsar_hi &= ~BIT(vmdq - 32);
2958
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2959 2960
	}

2961
	/* was that the last pool using this rar? */
2962 2963
	if (mpsar_lo == 0 && mpsar_hi == 0 &&
	    rar != 0 && rar != hw->mac.san_mac_rar_index)
2964
		hw->mac.ops.clear_rar(hw, rar);
2965

2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
	return 0;
}

/**
 *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
 *  @hw: pointer to hardware struct
 *  @rar: receive address register index to associate with a VMDq index
 *  @vmdq: VMDq pool index
 **/
s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
{
	u32 mpsar;
	u32 rar_entries = hw->mac.num_rar_entries;

2980 2981
	/* Make sure we are using a valid rar index range */
	if (rar >= rar_entries) {
2982
		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2983 2984 2985 2986 2987
		return IXGBE_ERR_INVALID_ARGUMENT;
	}

	if (vmdq < 32) {
		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
J
Jacob Keller 已提交
2988
		mpsar |= BIT(vmdq);
2989 2990 2991
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
	} else {
		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
J
Jacob Keller 已提交
2992
		mpsar |= BIT(vmdq - 32);
2993
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2994 2995 2996 2997
	}
	return 0;
}

2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
/**
 *  This function should only be involved in the IOV mode.
 *  In IOV mode, Default pool is next pool after the number of
 *  VFs advertized and not 0.
 *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
 *
 *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
 *  @hw: pointer to hardware struct
 *  @vmdq: VMDq pool index
 **/
s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
{
	u32 rar = hw->mac.san_mac_rar_index;

	if (vmdq < 32) {
J
Jacob Keller 已提交
3013
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), BIT(vmdq));
3014 3015 3016
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
	} else {
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
J
Jacob Keller 已提交
3017
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), BIT(vmdq - 32));
3018 3019 3020 3021 3022
	}

	return 0;
}

3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
/**
 *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
 *  @hw: pointer to hardware structure
 **/
s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
{
	int i;

	for (i = 0; i < 128; i++)
		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);

	return 0;
}

/**
 *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
 *  @hw: pointer to hardware structure
 *  @vlan: VLAN id to write to VLAN filter
 *
 *  return the VLVF index where this VLAN id should be placed
 *
 **/
3045
static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3046
{
3047
	s32 regindex, first_empty_slot;
3048
	u32 bits;
3049 3050 3051 3052 3053

	/* short cut the special case */
	if (vlan == 0)
		return 0;

3054 3055 3056 3057 3058 3059
	/* if vlvf_bypass is set we don't want to use an empty slot, we
	 * will simply bypass the VLVF if there are no entries present in the
	 * VLVF that contain our VLAN
	 */
	first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;

3060 3061 3062 3063 3064 3065 3066 3067 3068
	/* add VLAN enable bit for comparison */
	vlan |= IXGBE_VLVF_VIEN;

	/* Search for the vlan id in the VLVF entries. Save off the first empty
	 * slot found along the way.
	 *
	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
	 */
	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3069
		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3070 3071 3072
		if (bits == vlan)
			return regindex;
		if (!first_empty_slot && !bits)
3073 3074 3075
			first_empty_slot = regindex;
	}

3076 3077 3078 3079 3080
	/* If we are here then we didn't find the VLAN.  Return first empty
	 * slot we found during our search, else error.
	 */
	if (!first_empty_slot)
		hw_dbg(hw, "No space in VLVF.\n");
3081

3082
	return first_empty_slot ? : IXGBE_ERR_NO_SPACE;
3083 3084 3085 3086 3087 3088 3089 3090
}

/**
 *  ixgbe_set_vfta_generic - Set VLAN filter table
 *  @hw: pointer to hardware structure
 *  @vlan: VLAN id to write to VLAN filter
 *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
 *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3091
 *  @vlvf_bypass: boolean flag indicating updating default pool is okay
3092 3093 3094 3095
 *
 *  Turn on/off specified VLAN in the VLAN filter table.
 **/
s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3096
			   bool vlan_on, bool vlvf_bypass)
3097
{
3098
	u32 regidx, vfta_delta, vfta, bits;
3099
	s32 vlvf_index;
3100

3101
	if ((vlan > 4095) || (vind > 63))
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
		return IXGBE_ERR_PARAM;

	/*
	 * this is a 2 part operation - first the VFTA, then the
	 * VLVF and VLVFB if VT Mode is set
	 * We don't write the VFTA until we know the VLVF part succeeded.
	 */

	/* Part 1
	 * The VFTA is a bitstring made up of 128 32-bit registers
	 * that enable the particular VLAN id, much like the MTA:
	 *    bits[11-5]: which register
	 *    bits[4-0]:  which bit in the register
	 */
3116
	regidx = vlan / 32;
J
Jacob Keller 已提交
3117
	vfta_delta = BIT(vlan % 32);
3118 3119 3120 3121 3122 3123 3124 3125
	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));

	/* vfta_delta represents the difference between the current value
	 * of vfta and the value we want in the register.  Since the diff
	 * is an XOR mask we can just update vfta using an XOR.
	 */
	vfta_delta &= vlan_on ? ~vfta : vfta;
	vfta ^= vfta_delta;
3126 3127 3128 3129 3130 3131 3132 3133 3134

	/* Part 2
	 * If VT Mode is set
	 *   Either vlan_on
	 *     make sure the vlan is in VLVF
	 *     set the vind bit in the matching VLVFB
	 *   Or !vlan_on
	 *     clear the pool bit and possibly the vind
	 */
3135 3136 3137
	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
		goto vfta_update;

3138 3139 3140 3141
	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
	if (vlvf_index < 0) {
		if (vlvf_bypass)
			goto vfta_update;
3142
		return vlvf_index;
3143
	}
3144

3145 3146 3147
	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));

	/* set the pool bit */
J
Jacob Keller 已提交
3148
	bits |= BIT(vind % 32);
3149 3150 3151 3152
	if (vlan_on)
		goto vlvf_update;

	/* clear the pool bit */
J
Jacob Keller 已提交
3153
	bits ^= BIT(vind % 32);
3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168

	if (!bits &&
	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
		/* Clear VFTA first, then disable VLVF.  Otherwise
		 * we run the risk of stray packets leaking into
		 * the PF via the default pool
		 */
		if (vfta_delta)
			IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);

		/* disable VLVF and clear remaining bit from pool */
		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);

		return 0;
3169 3170
	}

3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
	/* If there are still bits set in the VLVFB registers
	 * for the VLAN ID indicated we need to see if the
	 * caller is requesting that we clear the VFTA entry bit.
	 * If the caller has requested that we clear the VFTA
	 * entry bit but there are still pools/VFs using this VLAN
	 * ID entry then ignore the request.  We're not worried
	 * about the case where we're turning the VFTA VLAN ID
	 * entry bit on, only when requested to turn it off as
	 * there may be multiple pools and/or VFs using the
	 * VLAN ID entry.  In that case we cannot clear the
	 * VFTA bit until all pools/VFs using that VLAN ID have also
	 * been cleared.  This will be indicated by "bits" being
	 * zero.
	 */
3185
	vfta_delta = 0;
3186

3187 3188 3189 3190
vlvf_update:
	/* record pool change and enable VLAN ID if not already enabled */
	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
3191 3192

vfta_update:
3193
	/* Update VFTA now that we are ready for traffic */
3194 3195
	if (vfta_delta)
		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214

	return 0;
}

/**
 *  ixgbe_clear_vfta_generic - Clear VLAN filter table
 *  @hw: pointer to hardware structure
 *
 *  Clears the VLAN filer table, and the VMDq index associated with the filter
 **/
s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
{
	u32 offset;

	for (offset = 0; offset < hw->mac.vft_size; offset++)
		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);

	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3215 3216
		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
3217 3218 3219 3220 3221
	}

	return 0;
}

D
Don Skidmore 已提交
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
/**
 *  ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
 *  @hw: pointer to hardware structure
 *
 *  Contains the logic to identify if we need to verify link for the
 *  crosstalk fix
 **/
static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
{
	/* Does FW say we need the fix */
	if (!hw->need_crosstalk_fix)
		return false;

	/* Only consider SFP+ PHYs i.e. media type fiber */
	switch (hw->mac.ops.get_media_type(hw)) {
	case ixgbe_media_type_fiber:
	case ixgbe_media_type_fiber_qsfp:
		break;
	default:
		return false;
	}

	return true;
}

3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
/**
 *  ixgbe_check_mac_link_generic - Determine link and speed status
 *  @hw: pointer to hardware structure
 *  @speed: pointer to link speed
 *  @link_up: true when link is up
 *  @link_up_wait_to_complete: bool used to wait for link up or not
 *
 *  Reads the links register to determine if link is up and the current speed
 **/
s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3257
				 bool *link_up, bool link_up_wait_to_complete)
3258
{
3259
	u32 links_reg, links_orig;
3260 3261
	u32 i;

D
Don Skidmore 已提交
3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
	/* If Crosstalk fix enabled do the sanity check of making sure
	 * the SFP+ cage is full.
	 */
	if (ixgbe_need_crosstalk_fix(hw)) {
		u32 sfp_cage_full;

		switch (hw->mac.type) {
		case ixgbe_mac_82599EB:
			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
					IXGBE_ESDP_SDP2;
			break;
		case ixgbe_mac_X550EM_x:
		case ixgbe_mac_x550em_a:
			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
					IXGBE_ESDP_SDP0;
			break;
		default:
			/* sanity check - No SFP+ devices here */
			sfp_cage_full = false;
			break;
		}

		if (!sfp_cage_full) {
			*link_up = false;
			*speed = IXGBE_LINK_SPEED_UNKNOWN;
			return 0;
		}
	}

3291 3292 3293
	/* clear the old state */
	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);

3294
	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3295 3296 3297 3298 3299 3300

	if (links_orig != links_reg) {
		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
		       links_orig, links_reg);
	}

3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
	if (link_up_wait_to_complete) {
		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
			if (links_reg & IXGBE_LINKS_UP) {
				*link_up = true;
				break;
			} else {
				*link_up = false;
			}
			msleep(100);
			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
		}
	} else {
		if (links_reg & IXGBE_LINKS_UP)
			*link_up = true;
		else
			*link_up = false;
	}

3319 3320 3321 3322 3323 3324 3325 3326 3327
	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
	case IXGBE_LINKS_SPEED_10G_82599:
		if ((hw->mac.type >= ixgbe_mac_X550) &&
		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
			*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
		else
			*speed = IXGBE_LINK_SPEED_10GB_FULL;
		break;
	case IXGBE_LINKS_SPEED_1G_82599:
3328
		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3329 3330 3331 3332 3333 3334 3335 3336 3337
		break;
	case IXGBE_LINKS_SPEED_100_82599:
		if ((hw->mac.type >= ixgbe_mac_X550) &&
		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
			*speed = IXGBE_LINK_SPEED_5GB_FULL;
		else
			*speed = IXGBE_LINK_SPEED_100_FULL;
		break;
	default:
3338
		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3339
	}
3340 3341 3342

	return 0;
}
3343 3344

/**
3345
 *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3346 3347 3348 3349 3350 3351 3352 3353 3354
 *  the EEPROM
 *  @hw: pointer to hardware structure
 *  @wwnn_prefix: the alternative WWNN prefix
 *  @wwpn_prefix: the alternative WWPN prefix
 *
 *  This function will read the EEPROM from the alternative SAN MAC address
 *  block to check the support for the alternative WWNN/WWPN prefix support.
 **/
s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3355
					u16 *wwpn_prefix)
3356 3357 3358 3359 3360 3361 3362 3363 3364
{
	u16 offset, caps;
	u16 alt_san_mac_blk_offset;

	/* clear output first */
	*wwnn_prefix = 0xFFFF;
	*wwpn_prefix = 0xFFFF;

	/* check if alternative SAN MAC is supported */
3365 3366 3367
	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
		goto wwn_prefix_err;
3368 3369 3370

	if ((alt_san_mac_blk_offset == 0) ||
	    (alt_san_mac_blk_offset == 0xFFFF))
3371
		return 0;
3372 3373 3374

	/* check capability in alternative san mac address block */
	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3375 3376
	if (hw->eeprom.ops.read(hw, offset, &caps))
		goto wwn_prefix_err;
3377
	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3378
		return 0;
3379 3380 3381

	/* get the corresponding prefix for WWNN/WWPN */
	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3382 3383
	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
		hw_err(hw, "eeprom read at offset %d failed\n", offset);
3384 3385

	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3386 3387
	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
		goto wwn_prefix_err;
3388 3389

	return 0;
3390 3391 3392 3393

wwn_prefix_err:
	hw_err(hw, "eeprom read at offset %d failed\n", offset);
	return 0;
3394
}
3395 3396 3397 3398

/**
 *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
 *  @hw: pointer to hardware structure
3399 3400
 *  @enable: enable or disable switch for MAC anti-spoofing
 *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3401 3402
 *
 **/
3403
void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3404
{
3405 3406 3407
	int vf_target_reg = vf >> 3;
	int vf_target_shift = vf % 8;
	u32 pfvfspoof;
3408 3409 3410 3411

	if (hw->mac.type == ixgbe_mac_82598EB)
		return;

3412
	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3413
	if (enable)
3414 3415 3416 3417
		pfvfspoof |= BIT(vf_target_shift);
	else
		pfvfspoof &= ~BIT(vf_target_shift);
	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
}

/**
 *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
 *  @hw: pointer to hardware structure
 *  @enable: enable or disable switch for VLAN anti-spoofing
 *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
 *
 **/
void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
{
	int vf_target_reg = vf >> 3;
	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
	u32 pfvfspoof;

	if (hw->mac.type == ixgbe_mac_82598EB)
		return;

	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
	if (enable)
J
Jacob Keller 已提交
3438
		pfvfspoof |= BIT(vf_target_shift);
3439
	else
J
Jacob Keller 已提交
3440
		pfvfspoof &= ~BIT(vf_target_shift);
3441 3442
	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
}
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457

/**
 *  ixgbe_get_device_caps_generic - Get additional device capabilities
 *  @hw: pointer to hardware structure
 *  @device_caps: the EEPROM word with the extra device capabilities
 *
 *  This function will read the EEPROM location for the device capabilities,
 *  and return the word through device_caps.
 **/
s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
{
	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);

	return 0;
}
3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523

/**
 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
 * @hw: pointer to hardware structure
 * @num_pb: number of packet buffers to allocate
 * @headroom: reserve n KB of headroom
 * @strategy: packet buffer allocation strategy
 **/
void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
			     int num_pb,
			     u32 headroom,
			     int strategy)
{
	u32 pbsize = hw->mac.rx_pb_size;
	int i = 0;
	u32 rxpktsize, txpktsize, txpbthresh;

	/* Reserve headroom */
	pbsize -= headroom;

	if (!num_pb)
		num_pb = 1;

	/* Divide remaining packet buffer space amongst the number
	 * of packet buffers requested using supplied strategy.
	 */
	switch (strategy) {
	case (PBA_STRATEGY_WEIGHTED):
		/* pba_80_48 strategy weight first half of packet buffer with
		 * 5/8 of the packet buffer space.
		 */
		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
		pbsize -= rxpktsize * (num_pb / 2);
		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
		for (; i < (num_pb / 2); i++)
			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
		/* Fall through to configure remaining packet buffers */
	case (PBA_STRATEGY_EQUAL):
		/* Divide the remaining Rx packet buffer evenly among the TCs */
		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
		for (; i < num_pb; i++)
			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
		break;
	default:
		break;
	}

	/*
	 * Setup Tx packet buffer and threshold equally for all TCs
	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
	 * 10 since the largest packet we support is just over 9K.
	 */
	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
	for (i = 0; i < num_pb; i++) {
		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
	}

	/* Clear unused TCs, if any, to zero buffer size*/
	for (; i < IXGBE_MAX_PB; i++) {
		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
	}
}
E
Emil Tantilov 已提交
3524 3525 3526 3527 3528

/**
 *  ixgbe_calculate_checksum - Calculate checksum for buffer
 *  @buffer: pointer to EEPROM
 *  @length: size of EEPROM to calculate a checksum for
3529
 *
E
Emil Tantilov 已提交
3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
 *  Calculates the checksum for some buffer on a specified length.  The
 *  checksum calculated is returned.
 **/
static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
{
	u32 i;
	u8 sum = 0;

	if (!buffer)
		return 0;

	for (i = 0; i < length; i++)
		sum += buffer[i];

	return (u8) (0 - sum);
}

/**
 *  ixgbe_host_interface_command - Issue command to manageability block
 *  @hw: pointer to the HW structure
 *  @buffer: contains the command to write and where the return status will
 *           be placed
D
Don Skidmore 已提交
3552
 *  @length: length of buffer, must be multiple of 4 bytes
3553 3554 3555 3556 3557 3558 3559
 *  @timeout: time in ms to wait for command completion
 *  @return_data: read and return data from the buffer (true) or not (false)
 *  Needed because FW structures are big endian and decoding of
 *  these fields can be 8 bit or 16 bit based on command. Decoding
 *  is not easily understood without making a table of commands.
 *  So we will leave this up to the caller to read back the data
 *  in these cases.
E
Emil Tantilov 已提交
3560 3561 3562 3563
 *
 *  Communicates with the manageability block.  On success return 0
 *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
 **/
3564
s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, void *buffer,
3565 3566
				 u32 length, u32 timeout,
				 bool return_data)
E
Emil Tantilov 已提交
3567 3568
{
	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3569
	u32 hicr, i, bi, fwsts;
3570
	u16 buf_len, dword_len;
3571 3572 3573 3574
	union {
		struct ixgbe_hic_hdr hdr;
		u32 u32arr[1];
	} *bp = buffer;
3575
	s32 status;
E
Emil Tantilov 已提交
3576

3577
	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3578
		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3579
		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
E
Emil Tantilov 已提交
3580
	}
3581 3582 3583 3584
	/* Take management host interface semaphore */
	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
	if (status)
		return status;
E
Emil Tantilov 已提交
3585

3586 3587 3588 3589
	/* Set bit 9 of FWSTS clearing FW reset indication */
	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);

E
Emil Tantilov 已提交
3590 3591
	/* Check that the host interface is enabled. */
	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3592
	if (!(hicr & IXGBE_HICR_EN)) {
E
Emil Tantilov 已提交
3593
		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3594 3595
		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
		goto rel_out;
E
Emil Tantilov 已提交
3596 3597
	}

3598
	/* Calculate length in DWORDs. We must be DWORD aligned */
3599
	if (length % sizeof(u32)) {
3600
		hw_dbg(hw, "Buffer length failure, not aligned to dword");
3601 3602
		status = IXGBE_ERR_INVALID_ARGUMENT;
		goto rel_out;
3603 3604
	}

E
Emil Tantilov 已提交
3605 3606
	dword_len = length >> 2;

3607
	/* The device driver writes the relevant command block
E
Emil Tantilov 已提交
3608 3609 3610 3611
	 * into the ram area.
	 */
	for (i = 0; i < dword_len; i++)
		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3612
				      i, cpu_to_le32(bp->u32arr[i]));
E
Emil Tantilov 已提交
3613 3614 3615 3616

	/* Setting this bit tells the ARC that a new command is pending. */
	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);

3617
	for (i = 0; i < timeout; i++) {
E
Emil Tantilov 已提交
3618 3619 3620 3621 3622 3623 3624
		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
		if (!(hicr & IXGBE_HICR_C))
			break;
		usleep_range(1000, 2000);
	}

	/* Check command successful completion. */
3625 3626
	if ((timeout && i == timeout) ||
	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
E
Emil Tantilov 已提交
3627
		hw_dbg(hw, "Command has failed with no status valid.\n");
3628 3629
		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
		goto rel_out;
E
Emil Tantilov 已提交
3630 3631
	}

3632
	if (!return_data)
3633
		goto rel_out;
3634

E
Emil Tantilov 已提交
3635 3636 3637 3638
	/* Calculate length in DWORDs */
	dword_len = hdr_size >> 2;

	/* first pull in the header so we know the buffer length */
3639
	for (bi = 0; bi < dword_len; bi++) {
3640 3641
		bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
		le32_to_cpus(&bp->u32arr[bi]);
3642
	}
E
Emil Tantilov 已提交
3643 3644

	/* If there is any thing in data position pull it in */
3645 3646
	buf_len = bp->hdr.buf_len;
	if (!buf_len)
3647
		goto rel_out;
E
Emil Tantilov 已提交
3648

3649
	if (length < round_up(buf_len, 4) + hdr_size) {
E
Emil Tantilov 已提交
3650
		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3651 3652
		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
		goto rel_out;
E
Emil Tantilov 已提交
3653 3654
	}

3655 3656
	/* Calculate length in DWORDs, add 3 for odd lengths */
	dword_len = (buf_len + 3) >> 2;
E
Emil Tantilov 已提交
3657

3658
	/* Pull in the rest of the buffer (bi is where we left off) */
3659
	for (; bi <= dword_len; bi++) {
3660 3661
		bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
		le32_to_cpus(&bp->u32arr[bi]);
3662
	}
E
Emil Tantilov 已提交
3663

3664 3665 3666 3667
rel_out:
	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);

	return status;
E
Emil Tantilov 已提交
3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
}

/**
 *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
 *  @hw: pointer to the HW structure
 *  @maj: driver version major number
 *  @min: driver version minor number
 *  @build: driver version build number
 *  @sub: driver version sub build number
 *
 *  Sends driver version number to firmware through the manageability
 *  block.  On success return 0
 *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
 *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
 **/
s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
				 u8 build, u8 sub)
{
	struct ixgbe_hic_drv_info fw_cmd;
	int i;
3688
	s32 ret_val;
E
Emil Tantilov 已提交
3689 3690 3691 3692

	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3693
	fw_cmd.port_num = hw->bus.func;
E
Emil Tantilov 已提交
3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
	fw_cmd.ver_maj = maj;
	fw_cmd.ver_min = min;
	fw_cmd.ver_build = build;
	fw_cmd.ver_sub = sub;
	fw_cmd.hdr.checksum = 0;
	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
	fw_cmd.pad = 0;
	fw_cmd.pad2 = 0;

	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3705
		ret_val = ixgbe_host_interface_command(hw, &fw_cmd,
3706 3707 3708
						       sizeof(fw_cmd),
						       IXGBE_HI_COMMAND_TIMEOUT,
						       true);
E
Emil Tantilov 已提交
3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722
		if (ret_val != 0)
			continue;

		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
		    FW_CEM_RESP_STATUS_SUCCESS)
			ret_val = 0;
		else
			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;

		break;
	}

	return ret_val;
}
3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733

/**
 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
 * @hw: pointer to the hardware structure
 *
 * The 82599 and x540 MACs can experience issues if TX work is still pending
 * when a reset occurs.  This function prevents this by flushing the PCIe
 * buffers on the system.
 **/
void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
{
D
Don Skidmore 已提交
3734 3735
	u32 gcr_ext, hlreg0, i, poll;
	u16 value;
3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751

	/*
	 * If double reset is not requested then all transactions should
	 * already be clear and as such there is no work to do
	 */
	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
		return;

	/*
	 * Set loopback enable to prevent any transmits from being sent
	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
	 * has already been cleared.
	 */
	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);

D
Don Skidmore 已提交
3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768
	/* wait for a last completion before clearing buffers */
	IXGBE_WRITE_FLUSH(hw);
	usleep_range(3000, 6000);

	/* Before proceeding, make sure that the PCIe block does not have
	 * transactions pending.
	 */
	poll = ixgbe_pcie_timeout_poll(hw);
	for (i = 0; i < poll; i++) {
		usleep_range(100, 200);
		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
		if (ixgbe_removed(hw->hw_addr))
			break;
		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
			break;
	}

3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781
	/* initiate cleaning flow for buffers in the PCIe transaction layer */
	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);

	/* Flush all writes and allow 20usec for all transactions to clear */
	IXGBE_WRITE_FLUSH(hw);
	udelay(20);

	/* restore previous register values */
	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
}
3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806

static const u8 ixgbe_emc_temp_data[4] = {
	IXGBE_EMC_INTERNAL_DATA,
	IXGBE_EMC_DIODE1_DATA,
	IXGBE_EMC_DIODE2_DATA,
	IXGBE_EMC_DIODE3_DATA
};
static const u8 ixgbe_emc_therm_limit[4] = {
	IXGBE_EMC_INTERNAL_THERM_LIMIT,
	IXGBE_EMC_DIODE1_THERM_LIMIT,
	IXGBE_EMC_DIODE2_THERM_LIMIT,
	IXGBE_EMC_DIODE3_THERM_LIMIT
};

/**
 *  ixgbe_get_ets_data - Extracts the ETS bit data
 *  @hw: pointer to hardware structure
 *  @ets_cfg: extected ETS data
 *  @ets_offset: offset of ETS data
 *
 *  Returns error code.
 **/
static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
			      u16 *ets_offset)
{
3807
	s32 status;
3808 3809 3810

	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
	if (status)
3811
		return status;
3812

3813 3814
	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
		return IXGBE_NOT_IMPLEMENTED;
3815 3816 3817

	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
	if (status)
3818
		return status;
3819

3820 3821
	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
		return IXGBE_NOT_IMPLEMENTED;
3822

3823
	return 0;
3824 3825 3826 3827 3828 3829 3830 3831 3832 3833
}

/**
 *  ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
 *  @hw: pointer to hardware structure
 *
 *  Returns the thermal sensor data structure
 **/
s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
{
3834
	s32 status;
3835 3836 3837 3838 3839 3840 3841
	u16 ets_offset;
	u16 ets_cfg;
	u16 ets_sensor;
	u8  num_sensors;
	u8  i;
	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;

3842
	/* Only support thermal sensors attached to physical port 0 */
3843 3844
	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
		return IXGBE_NOT_IMPLEMENTED;
3845 3846 3847

	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
	if (status)
3848
		return status;
3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860

	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
	if (num_sensors > IXGBE_MAX_SENSORS)
		num_sensors = IXGBE_MAX_SENSORS;

	for (i = 0; i < num_sensors; i++) {
		u8  sensor_index;
		u8  sensor_location;

		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
					     &ets_sensor);
		if (status)
3861
			return status;
3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873

		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
				IXGBE_ETS_DATA_INDEX_SHIFT);
		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
				   IXGBE_ETS_DATA_LOC_SHIFT);

		if (sensor_location != 0) {
			status = hw->phy.ops.read_i2c_byte(hw,
					ixgbe_emc_temp_data[sensor_index],
					IXGBE_I2C_THERMAL_SENSOR_ADDR,
					&data->sensor[i].temp);
			if (status)
3874
				return status;
3875 3876
		}
	}
3877 3878

	return 0;
3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889
}

/**
 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
 * @hw: pointer to hardware structure
 *
 * Inits the thermal sensor thresholds according to the NVM map
 * and save off the threshold and location values into mac.thermal_sensor_data
 **/
s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
{
3890
	s32 status;
3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901
	u16 ets_offset;
	u16 ets_cfg;
	u16 ets_sensor;
	u8  low_thresh_delta;
	u8  num_sensors;
	u8  therm_limit;
	u8  i;
	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;

	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));

3902
	/* Only support thermal sensors attached to physical port 0 */
3903 3904
	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
		return IXGBE_NOT_IMPLEMENTED;
3905 3906 3907

	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
	if (status)
3908
		return status;
3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919

	low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
			     IXGBE_ETS_LTHRES_DELTA_SHIFT);
	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
	if (num_sensors > IXGBE_MAX_SENSORS)
		num_sensors = IXGBE_MAX_SENSORS;

	for (i = 0; i < num_sensors; i++) {
		u8  sensor_index;
		u8  sensor_location;

3920 3921 3922 3923 3924
		if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
			hw_err(hw, "eeprom read at offset %d failed\n",
			       ets_offset + 1 + i);
			continue;
		}
3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941
		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
				IXGBE_ETS_DATA_INDEX_SHIFT);
		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
				   IXGBE_ETS_DATA_LOC_SHIFT);
		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;

		hw->phy.ops.write_i2c_byte(hw,
			ixgbe_emc_therm_limit[sensor_index],
			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);

		if (sensor_location == 0)
			continue;

		data->sensor[i].location = sensor_location;
		data->sensor[i].caution_thresh = therm_limit;
		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
	}
3942 3943

	return 0;
3944 3945
}

3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
{
	u32 rxctrl;

	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
	if (rxctrl & IXGBE_RXCTRL_RXEN) {
		if (hw->mac.type != ixgbe_mac_82598EB) {
			u32 pfdtxgswc;

			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
				hw->mac.set_lben = true;
			} else {
				hw->mac.set_lben = false;
			}
		}
		rxctrl &= ~IXGBE_RXCTRL_RXEN;
		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
	}
}

void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
{
	u32 rxctrl;

	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));

	if (hw->mac.type != ixgbe_mac_82598EB) {
		if (hw->mac.set_lben) {
			u32 pfdtxgswc;

			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
			hw->mac.set_lben = false;
		}
	}
}
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001

/** ixgbe_mng_present - returns true when management capability is present
 * @hw: pointer to hardware structure
 **/
bool ixgbe_mng_present(struct ixgbe_hw *hw)
{
	u32 fwsm;

	if (hw->mac.type < ixgbe_mac_82599EB)
		return false;

	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
	fwsm &= IXGBE_FWSM_MODE_MASK;
	return fwsm == IXGBE_FWSM_FW_MODE_PT;
}
4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211

/**
 *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
 *  @hw: pointer to hardware structure
 *  @speed: new link speed
 *  @autoneg_wait_to_complete: true when waiting for completion is needed
 *
 *  Set the link speed in the MAC and/or PHY register and restarts link.
 */
s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
					  ixgbe_link_speed speed,
					  bool autoneg_wait_to_complete)
{
	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
	s32 status = 0;
	u32 speedcnt = 0;
	u32 i = 0;
	bool autoneg, link_up = false;

	/* Mask off requested but non-supported speeds */
	status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
	if (status)
		return status;

	speed &= link_speed;

	/* Try each speed one by one, highest priority first.  We do this in
	 * software because 10Gb fiber doesn't support speed autonegotiation.
	 */
	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
		speedcnt++;
		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;

		/* If we already have link at this speed, just jump out */
		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
						false);
		if (status)
			return status;

		if (link_speed == IXGBE_LINK_SPEED_10GB_FULL && link_up)
			goto out;

		/* Set the module link speed */
		switch (hw->phy.media_type) {
		case ixgbe_media_type_fiber:
			hw->mac.ops.set_rate_select_speed(hw,
						    IXGBE_LINK_SPEED_10GB_FULL);
			break;
		case ixgbe_media_type_fiber_qsfp:
			/* QSFP module automatically detects MAC link speed */
			break;
		default:
			hw_dbg(hw, "Unexpected media type\n");
			break;
		}

		/* Allow module to change analog characteristics (1G->10G) */
		msleep(40);

		status = hw->mac.ops.setup_mac_link(hw,
						    IXGBE_LINK_SPEED_10GB_FULL,
						    autoneg_wait_to_complete);
		if (status)
			return status;

		/* Flap the Tx laser if it has not already been done */
		if (hw->mac.ops.flap_tx_laser)
			hw->mac.ops.flap_tx_laser(hw);

		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
		 * Section 73.10.2, we may have to wait up to 500ms if KR is
		 * attempted.  82599 uses the same timing for 10g SFI.
		 */
		for (i = 0; i < 5; i++) {
			/* Wait for the link partner to also set speed */
			msleep(100);

			/* If we have link, just jump out */
			status = hw->mac.ops.check_link(hw, &link_speed,
							&link_up, false);
			if (status)
				return status;

			if (link_up)
				goto out;
		}
	}

	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
		speedcnt++;
		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;

		/* If we already have link at this speed, just jump out */
		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
						false);
		if (status)
			return status;

		if (link_speed == IXGBE_LINK_SPEED_1GB_FULL && link_up)
			goto out;

		/* Set the module link speed */
		switch (hw->phy.media_type) {
		case ixgbe_media_type_fiber:
			hw->mac.ops.set_rate_select_speed(hw,
						     IXGBE_LINK_SPEED_1GB_FULL);
			break;
		case ixgbe_media_type_fiber_qsfp:
			/* QSFP module automatically detects link speed */
			break;
		default:
			hw_dbg(hw, "Unexpected media type\n");
			break;
		}

		/* Allow module to change analog characteristics (10G->1G) */
		msleep(40);

		status = hw->mac.ops.setup_mac_link(hw,
						    IXGBE_LINK_SPEED_1GB_FULL,
						    autoneg_wait_to_complete);
		if (status)
			return status;

		/* Flap the Tx laser if it has not already been done */
		if (hw->mac.ops.flap_tx_laser)
			hw->mac.ops.flap_tx_laser(hw);

		/* Wait for the link partner to also set speed */
		msleep(100);

		/* If we have link, just jump out */
		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
						false);
		if (status)
			return status;

		if (link_up)
			goto out;
	}

	/* We didn't get link.  Configure back to the highest speed we tried,
	 * (if there was more than one).  We call ourselves back with just the
	 * single highest speed that the user requested.
	 */
	if (speedcnt > 1)
		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
						      highest_link_speed,
						      autoneg_wait_to_complete);

out:
	/* Set autoneg_advertised value based on input link speed */
	hw->phy.autoneg_advertised = 0;

	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;

	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;

	return status;
}

/**
 *  ixgbe_set_soft_rate_select_speed - Set module link speed
 *  @hw: pointer to hardware structure
 *  @speed: link speed to set
 *
 *  Set module link speed via the soft rate select.
 */
void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
				      ixgbe_link_speed speed)
{
	s32 status;
	u8 rs, eeprom_data;

	switch (speed) {
	case IXGBE_LINK_SPEED_10GB_FULL:
		/* one bit mask same as setting on */
		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
		break;
	case IXGBE_LINK_SPEED_1GB_FULL:
		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
		break;
	default:
		hw_dbg(hw, "Invalid fixed module speed\n");
		return;
	}

	/* Set RS0 */
	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
					   IXGBE_I2C_EEPROM_DEV_ADDR2,
					   &eeprom_data);
	if (status) {
		hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
		return;
	}

	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;

	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
					    IXGBE_I2C_EEPROM_DEV_ADDR2,
					    eeprom_data);
	if (status) {
		hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
		return;
	}
}