ixgbe_common.c 113.0 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel 10 Gigabit PCI Express Linux driver
4
  Copyright(c) 1999 - 2016 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
23
  Linux NICS <linux.nics@intel.com>
24 25 26 27 28 29 30 31
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/sched.h>
J
Jiri Pirko 已提交
32
#include <linux/netdevice.h>
33

34
#include "ixgbe.h"
35 36 37
#include "ixgbe_common.h"
#include "ixgbe_phy.h"

38
static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
39 40
static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
41 42 43
static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
44
					u16 count);
45 46 47 48
static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
49 50

static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
51
static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
52 53 54 55 56 57
static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
					     u16 words, u16 *data);
static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
					     u16 words, u16 *data);
static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
						 u16 offset);
58
static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
59

60 61 62 63 64
/* Base table for registers values that change by MAC */
const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
	IXGBE_MVALS_INIT(8259X)
};

65 66 67 68 69 70 71 72 73
/**
 *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
 *  control
 *  @hw: pointer to hardware structure
 *
 *  There are several phys that do not support autoneg flow control. This
 *  function check the device id to see if the associated phy supports
 *  autoneg flow control.
 **/
74
bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
75
{
76 77 78
	bool supported = false;
	ixgbe_link_speed speed;
	bool link_up;
79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
	switch (hw->phy.media_type) {
	case ixgbe_media_type_fiber:
		hw->mac.ops.check_link(hw, &speed, &link_up, false);
		/* if link is down, assume supported */
		if (link_up)
			supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
				true : false;
		else
			supported = true;
		break;
	case ixgbe_media_type_backplane:
		supported = true;
		break;
	case ixgbe_media_type_copper:
		/* only some copper devices support flow control autoneg */
		switch (hw->device_id) {
		case IXGBE_DEV_ID_82599_T3_LOM:
		case IXGBE_DEV_ID_X540T:
		case IXGBE_DEV_ID_X540T1:
99
		case IXGBE_DEV_ID_X550T:
100
		case IXGBE_DEV_ID_X550T1:
101
		case IXGBE_DEV_ID_X550EM_X_10G_T:
102 103 104 105 106
			supported = true;
			break;
		default:
			break;
		}
107
	default:
108
		break;
109
	}
110 111

	return supported;
112 113 114
}

/**
115
 *  ixgbe_setup_fc_generic - Set up flow control
116 117 118 119
 *  @hw: pointer to hardware structure
 *
 *  Called at init time to set up flow control.
 **/
120
s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
121 122 123 124
{
	s32 ret_val = 0;
	u32 reg = 0, reg_bp = 0;
	u16 reg_cu = 0;
125
	bool locked = false;
126 127 128 129 130 131 132

	/*
	 * Validate the requested mode.  Strict IEEE mode does not allow
	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
	 */
	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
133
		return IXGBE_ERR_INVALID_LINK_SETTINGS;
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
	}

	/*
	 * 10gig parts do not have a word in the EEPROM to determine the
	 * default flow control setting, so we explicitly set it to full.
	 */
	if (hw->fc.requested_mode == ixgbe_fc_default)
		hw->fc.requested_mode = ixgbe_fc_full;

	/*
	 * Set up the 1G and 10G flow control advertisement registers so the
	 * HW will be able to do fc autoneg once the cable is plugged in.  If
	 * we link at 10G, the 1G advertisement is harmless and vice versa.
	 */
	switch (hw->phy.media_type) {
149 150 151
	case ixgbe_media_type_backplane:
		/* some MAC's need RMW protection on AUTOC */
		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
152
		if (ret_val)
153
			return ret_val;
154 155

		/* only backplane uses autoc so fall though */
156 157
	case ixgbe_media_type_fiber:
		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
158

159 160 161 162 163 164
		break;
	case ixgbe_media_type_copper:
		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
					MDIO_MMD_AN, &reg_cu);
		break;
	default:
165
		break;
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
	}

	/*
	 * The possible values of fc.requested_mode are:
	 * 0: Flow control is completely disabled
	 * 1: Rx flow control is enabled (we can receive pause frames,
	 *    but not send pause frames).
	 * 2: Tx flow control is enabled (we can send pause frames but
	 *    we do not support receiving pause frames).
	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
	 * other: Invalid.
	 */
	switch (hw->fc.requested_mode) {
	case ixgbe_fc_none:
		/* Flow control completely disabled by software override. */
		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
		if (hw->phy.media_type == ixgbe_media_type_backplane)
			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
				    IXGBE_AUTOC_ASM_PAUSE);
		else if (hw->phy.media_type == ixgbe_media_type_copper)
			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
		break;
	case ixgbe_fc_tx_pause:
		/*
		 * Tx Flow control is enabled, and Rx Flow control is
		 * disabled by software override.
		 */
193 194
		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
195
		if (hw->phy.media_type == ixgbe_media_type_backplane) {
196 197
			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
198
		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
199 200
			reg_cu |= IXGBE_TAF_ASM_PAUSE;
			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
201 202
		}
		break;
203 204 205 206 207 208 209 210 211 212
	case ixgbe_fc_rx_pause:
		/*
		 * Rx Flow control is enabled and Tx Flow control is
		 * disabled by software override. Since there really
		 * isn't a way to advertise that we are capable of RX
		 * Pause ONLY, we will advertise that we support both
		 * symmetric and asymmetric Rx PAUSE, as such we fall
		 * through to the fc_full statement.  Later, we will
		 * disable the adapter's ability to send PAUSE frames.
		 */
213 214
	case ixgbe_fc_full:
		/* Flow control (both Rx and Tx) is enabled by SW override. */
215
		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
216
		if (hw->phy.media_type == ixgbe_media_type_backplane)
217 218
			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
				  IXGBE_AUTOC_ASM_PAUSE;
219
		else if (hw->phy.media_type == ixgbe_media_type_copper)
220
			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
221 222 223
		break;
	default:
		hw_dbg(hw, "Flow control param set incorrectly\n");
224
		return IXGBE_ERR_CONFIG;
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
	}

	if (hw->mac.type != ixgbe_mac_X540) {
		/*
		 * Enable auto-negotiation between the MAC & PHY;
		 * the MAC will advertise clause 37 flow control.
		 */
		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);

		/* Disable AN timeout */
		if (hw->fc.strict_ieee)
			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;

		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
	}

	/*
	 * AUTOC restart handles negotiation of 1G and 10G on backplane
	 * and copper. There is no need to set the PCS1GCTL register.
	 *
	 */
	if (hw->phy.media_type == ixgbe_media_type_backplane) {
249 250 251 252
		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
		 * LESM is on, likewise reset_pipeline requries the lock as
		 * it also writes AUTOC.
		 */
253 254
		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
		if (ret_val)
255
			return ret_val;
256

257
	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
258
		   ixgbe_device_supports_autoneg_fc(hw)) {
259 260 261 262 263 264 265 266
		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
				      MDIO_MMD_AN, reg_cu);
	}

	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
	return ret_val;
}

267
/**
268
 *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
269 270 271 272 273 274 275
 *  @hw: pointer to hardware structure
 *
 *  Starts the hardware by filling the bus info structure and media type, clears
 *  all on chip counters, initializes receive address registers, multicast
 *  table, VLAN filter table, calls routine to set up link and flow control
 *  settings, and leaves transmit and receive units disabled and uninitialized
 **/
276
s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
277
{
278
	s32 ret_val;
279 280 281 282 283 284
	u32 ctrl_ext;

	/* Set the media type */
	hw->phy.media_type = hw->mac.ops.get_media_type(hw);

	/* Identify the PHY */
285
	hw->phy.ops.identify(hw);
286 287

	/* Clear the VLAN filter table */
288
	hw->mac.ops.clear_vfta(hw);
289 290

	/* Clear statistics registers */
291
	hw->mac.ops.clear_hw_cntrs(hw);
292 293 294 295 296

	/* Set No Snoop Disable */
	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
297
	IXGBE_WRITE_FLUSH(hw);
298

299
	/* Setup flow control */
300
	ret_val = hw->mac.ops.setup_fc(hw);
301 302
	if (ret_val)
		return ret_val;
303

304 305 306
	/* Clear adapter stopped flag */
	hw->adapter_stopped = false;

307
	return 0;
308 309
}

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
/**
 *  ixgbe_start_hw_gen2 - Init sequence for common device family
 *  @hw: pointer to hw structure
 *
 * Performs the init sequence common to the second generation
 * of 10 GbE devices.
 * Devices in the second generation:
 *     82599
 *     X540
 **/
s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
{
	u32 i;

	/* Clear the rate limiters */
	for (i = 0; i < hw->mac.max_tx_queues; i++) {
		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
	}
	IXGBE_WRITE_FLUSH(hw);

331
#ifndef CONFIG_SPARC
332 333
	/* Disable relaxed ordering */
	for (i = 0; i < hw->mac.max_tx_queues; i++) {
334 335
		u32 regval;

336
		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
337
		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
338 339 340 341
		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
	}

	for (i = 0; i < hw->mac.max_rx_queues; i++) {
342 343
		u32 regval;

344
		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
345 346
		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
347 348
		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
	}
349
#endif
350 351 352
	return 0;
}

353
/**
354
 *  ixgbe_init_hw_generic - Generic hardware initialization
355 356
 *  @hw: pointer to hardware structure
 *
357
 *  Initialize the hardware by resetting the hardware, filling the bus info
358 359 360 361 362
 *  structure and media type, clears all on chip counters, initializes receive
 *  address registers, multicast table, VLAN filter table, calls routine to set
 *  up link and flow control settings, and leaves transmit and receive units
 *  disabled and uninitialized
 **/
363
s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
364
{
365 366
	s32 status;

367
	/* Reset the hardware */
368
	status = hw->mac.ops.reset_hw(hw);
369

370 371 372 373
	if (status == 0) {
		/* Start the HW */
		status = hw->mac.ops.start_hw(hw);
	}
374

375
	return status;
376 377 378
}

/**
379
 *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
380 381 382 383 384
 *  @hw: pointer to hardware structure
 *
 *  Clears all hardware statistics counters by reading them from the hardware
 *  Statistics counters are clear on read.
 **/
385
s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
{
	u16 i = 0;

	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
	IXGBE_READ_REG(hw, IXGBE_ERRBC);
	IXGBE_READ_REG(hw, IXGBE_MSPDC);
	for (i = 0; i < 8; i++)
		IXGBE_READ_REG(hw, IXGBE_MPC(i));

	IXGBE_READ_REG(hw, IXGBE_MLFC);
	IXGBE_READ_REG(hw, IXGBE_MRFC);
	IXGBE_READ_REG(hw, IXGBE_RLEC);
	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
401 402 403 404 405 406 407
	if (hw->mac.type >= ixgbe_mac_82599EB) {
		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
	} else {
		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
	}
408 409 410 411

	for (i = 0; i < 8; i++) {
		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
412 413 414 415 416 417 418
		if (hw->mac.type >= ixgbe_mac_82599EB) {
			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
		} else {
			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
		}
419
	}
420 421 422
	if (hw->mac.type >= ixgbe_mac_82599EB)
		for (i = 0; i < 8; i++)
			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
423 424 425 426 427 428 429 430 431 432 433 434 435 436
	IXGBE_READ_REG(hw, IXGBE_PRC64);
	IXGBE_READ_REG(hw, IXGBE_PRC127);
	IXGBE_READ_REG(hw, IXGBE_PRC255);
	IXGBE_READ_REG(hw, IXGBE_PRC511);
	IXGBE_READ_REG(hw, IXGBE_PRC1023);
	IXGBE_READ_REG(hw, IXGBE_PRC1522);
	IXGBE_READ_REG(hw, IXGBE_GPRC);
	IXGBE_READ_REG(hw, IXGBE_BPRC);
	IXGBE_READ_REG(hw, IXGBE_MPRC);
	IXGBE_READ_REG(hw, IXGBE_GPTC);
	IXGBE_READ_REG(hw, IXGBE_GORCL);
	IXGBE_READ_REG(hw, IXGBE_GORCH);
	IXGBE_READ_REG(hw, IXGBE_GOTCL);
	IXGBE_READ_REG(hw, IXGBE_GOTCH);
E
Emil Tantilov 已提交
437 438 439
	if (hw->mac.type == ixgbe_mac_82598EB)
		for (i = 0; i < 8; i++)
			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
	IXGBE_READ_REG(hw, IXGBE_RUC);
	IXGBE_READ_REG(hw, IXGBE_RFC);
	IXGBE_READ_REG(hw, IXGBE_ROC);
	IXGBE_READ_REG(hw, IXGBE_RJC);
	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
	IXGBE_READ_REG(hw, IXGBE_TORL);
	IXGBE_READ_REG(hw, IXGBE_TORH);
	IXGBE_READ_REG(hw, IXGBE_TPR);
	IXGBE_READ_REG(hw, IXGBE_TPT);
	IXGBE_READ_REG(hw, IXGBE_PTC64);
	IXGBE_READ_REG(hw, IXGBE_PTC127);
	IXGBE_READ_REG(hw, IXGBE_PTC255);
	IXGBE_READ_REG(hw, IXGBE_PTC511);
	IXGBE_READ_REG(hw, IXGBE_PTC1023);
	IXGBE_READ_REG(hw, IXGBE_PTC1522);
	IXGBE_READ_REG(hw, IXGBE_MPTC);
	IXGBE_READ_REG(hw, IXGBE_BPTC);
	for (i = 0; i < 16; i++) {
		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
462 463 464 465 466 467 468 469 470 471
		if (hw->mac.type >= ixgbe_mac_82599EB) {
			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
		} else {
			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
		}
472 473
	}

474
	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
475 476
		if (hw->phy.id == 0)
			hw->phy.ops.identify(hw);
477 478 479 480
		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
481 482
	}

483 484 485 486
	return 0;
}

/**
487
 *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
488
 *  @hw: pointer to hardware structure
489 490
 *  @pba_num: stores the part number string from the EEPROM
 *  @pba_num_size: part number string buffer length
491
 *
492
 *  Reads the part number string from the EEPROM.
493
 **/
494
s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
495
				  u32 pba_num_size)
496 497 498
{
	s32 ret_val;
	u16 data;
499 500 501 502 503 504 505 506
	u16 pba_ptr;
	u16 offset;
	u16 length;

	if (pba_num == NULL) {
		hw_dbg(hw, "PBA string buffer was null\n");
		return IXGBE_ERR_INVALID_ARGUMENT;
	}
507 508 509 510 511 512 513

	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
	if (ret_val) {
		hw_dbg(hw, "NVM Read Error\n");
		return ret_val;
	}

514
	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
515 516 517 518
	if (ret_val) {
		hw_dbg(hw, "NVM Read Error\n");
		return ret_val;
	}
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590

	/*
	 * if data is not ptr guard the PBA must be in legacy format which
	 * means pba_ptr is actually our second data word for the PBA number
	 * and we can decode it into an ascii string
	 */
	if (data != IXGBE_PBANUM_PTR_GUARD) {
		hw_dbg(hw, "NVM PBA number is not stored as string\n");

		/* we will need 11 characters to store the PBA */
		if (pba_num_size < 11) {
			hw_dbg(hw, "PBA string buffer too small\n");
			return IXGBE_ERR_NO_SPACE;
		}

		/* extract hex string from data and pba_ptr */
		pba_num[0] = (data >> 12) & 0xF;
		pba_num[1] = (data >> 8) & 0xF;
		pba_num[2] = (data >> 4) & 0xF;
		pba_num[3] = data & 0xF;
		pba_num[4] = (pba_ptr >> 12) & 0xF;
		pba_num[5] = (pba_ptr >> 8) & 0xF;
		pba_num[6] = '-';
		pba_num[7] = 0;
		pba_num[8] = (pba_ptr >> 4) & 0xF;
		pba_num[9] = pba_ptr & 0xF;

		/* put a null character on the end of our string */
		pba_num[10] = '\0';

		/* switch all the data but the '-' to hex char */
		for (offset = 0; offset < 10; offset++) {
			if (pba_num[offset] < 0xA)
				pba_num[offset] += '0';
			else if (pba_num[offset] < 0x10)
				pba_num[offset] += 'A' - 0xA;
		}

		return 0;
	}

	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
	if (ret_val) {
		hw_dbg(hw, "NVM Read Error\n");
		return ret_val;
	}

	if (length == 0xFFFF || length == 0) {
		hw_dbg(hw, "NVM PBA number section invalid length\n");
		return IXGBE_ERR_PBA_SECTION;
	}

	/* check if pba_num buffer is big enough */
	if (pba_num_size  < (((u32)length * 2) - 1)) {
		hw_dbg(hw, "PBA string buffer too small\n");
		return IXGBE_ERR_NO_SPACE;
	}

	/* trim pba length from start of string */
	pba_ptr++;
	length--;

	for (offset = 0; offset < length; offset++) {
		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
		if (ret_val) {
			hw_dbg(hw, "NVM Read Error\n");
			return ret_val;
		}
		pba_num[offset * 2] = (u8)(data >> 8);
		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
	}
	pba_num[offset * 2] = '\0';
591 592 593 594 595 596

	return 0;
}

/**
 *  ixgbe_get_mac_addr_generic - Generic get MAC address
597 598 599 600 601 602 603
 *  @hw: pointer to hardware structure
 *  @mac_addr: Adapter MAC address
 *
 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
 *  A reset of the adapter must be performed prior to calling this function
 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
 **/
604
s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
{
	u32 rar_high;
	u32 rar_low;
	u16 i;

	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));

	for (i = 0; i < 4; i++)
		mac_addr[i] = (u8)(rar_low >> (i*8));

	for (i = 0; i < 2; i++)
		mac_addr[i+4] = (u8)(rar_high >> (i*8));

	return 0;
}

622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
{
	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
	case IXGBE_PCI_LINK_WIDTH_1:
		return ixgbe_bus_width_pcie_x1;
	case IXGBE_PCI_LINK_WIDTH_2:
		return ixgbe_bus_width_pcie_x2;
	case IXGBE_PCI_LINK_WIDTH_4:
		return ixgbe_bus_width_pcie_x4;
	case IXGBE_PCI_LINK_WIDTH_8:
		return ixgbe_bus_width_pcie_x8;
	default:
		return ixgbe_bus_width_unknown;
	}
}

enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
{
	switch (link_status & IXGBE_PCI_LINK_SPEED) {
	case IXGBE_PCI_LINK_SPEED_2500:
		return ixgbe_bus_speed_2500;
	case IXGBE_PCI_LINK_SPEED_5000:
		return ixgbe_bus_speed_5000;
	case IXGBE_PCI_LINK_SPEED_8000:
		return ixgbe_bus_speed_8000;
	default:
		return ixgbe_bus_speed_unknown;
	}
}

652 653 654 655 656 657 658 659 660 661 662 663 664
/**
 *  ixgbe_get_bus_info_generic - Generic set PCI bus info
 *  @hw: pointer to hardware structure
 *
 *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
 **/
s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
{
	u16 link_status;

	hw->bus.type = ixgbe_bus_type_pci_express;

	/* Get the negotiated link width and speed from PCI config space */
665
	link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
666

667 668
	hw->bus.width = ixgbe_convert_bus_width(link_status);
	hw->bus.speed = ixgbe_convert_bus_speed(link_status);
669

670
	hw->mac.ops.set_lan_id(hw);
671 672 673 674 675 676 677 678 679 680 681 682 683 684

	return 0;
}

/**
 *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
 *  @hw: pointer to the HW structure
 *
 *  Determines the LAN function id by reading memory-mapped registers
 *  and swaps the port value if requested.
 **/
void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
{
	struct ixgbe_bus_info *bus = &hw->bus;
M
Mark Rustad 已提交
685
	u16 ee_ctrl_4;
686 687 688 689 690 691 692
	u32 reg;

	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
	bus->lan_id = bus->func;

	/* check for a port swap */
693
	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
694 695
	if (reg & IXGBE_FACTPS_LFS)
		bus->func ^= 0x1;
M
Mark Rustad 已提交
696 697 698 699 700 701 702

	/* Get MAC instance from EEPROM for configuring CS4227 */
	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
		bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
				   IXGBE_EE_CTRL_4_INST_ID_SHIFT;
	}
703 704
}

705
/**
706
 *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
707 708 709 710 711 712 713
 *  @hw: pointer to hardware structure
 *
 *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
 *  disables transmit and receive units. The adapter_stopped flag is used by
 *  the shared code and drivers to determine if the adapter is in a stopped
 *  state and should not touch the hardware.
 **/
714
s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
715 716 717 718 719 720 721 722 723 724 725
{
	u32 reg_val;
	u16 i;

	/*
	 * Set the adapter_stopped flag so other driver functions stop touching
	 * the hardware
	 */
	hw->adapter_stopped = true;

	/* Disable the receive unit */
726
	hw->mac.ops.disable_rx(hw);
727

728
	/* Clear interrupt mask to stop interrupts from being generated */
729 730
	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);

731
	/* Clear any pending interrupts, flush previous writes */
732 733 734
	IXGBE_READ_REG(hw, IXGBE_EICR);

	/* Disable the transmit unit.  Each queue must be disabled. */
735 736 737 738 739 740 741 742 743
	for (i = 0; i < hw->mac.max_tx_queues; i++)
		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);

	/* Disable the receive unit by stopping each queue */
	for (i = 0; i < hw->mac.max_rx_queues; i++) {
		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
		reg_val &= ~IXGBE_RXDCTL_ENABLE;
		reg_val |= IXGBE_RXDCTL_SWFLSH;
		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
744 745
	}

746 747 748 749
	/* flush all queues disables */
	IXGBE_WRITE_FLUSH(hw);
	usleep_range(1000, 2000);

750 751 752 753
	/*
	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
	 * access and verify no pending requests
	 */
754
	return ixgbe_disable_pcie_master(hw);
755 756 757
}

/**
758
 *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
759 760 761
 *  @hw: pointer to hardware structure
 *  @index: led number to turn on
 **/
762
s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
763 764 765 766 767 768 769
{
	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);

	/* To turn on the LED, set mode to ON. */
	led_reg &= ~IXGBE_LED_MODE_MASK(index);
	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
770
	IXGBE_WRITE_FLUSH(hw);
771 772 773 774 775

	return 0;
}

/**
776
 *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
777 778 779
 *  @hw: pointer to hardware structure
 *  @index: led number to turn off
 **/
780
s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
781 782 783 784 785 786 787
{
	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);

	/* To turn off the LED, set mode to OFF. */
	led_reg &= ~IXGBE_LED_MODE_MASK(index);
	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
788
	IXGBE_WRITE_FLUSH(hw);
789 790 791 792 793

	return 0;
}

/**
794
 *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
795 796 797 798 799
 *  @hw: pointer to hardware structure
 *
 *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
 *  ixgbe_hw struct in order to set up EEPROM access.
 **/
800
s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
801 802 803 804 805 806 807
{
	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
	u32 eec;
	u16 eeprom_size;

	if (eeprom->type == ixgbe_eeprom_uninitialized) {
		eeprom->type = ixgbe_eeprom_none;
808 809 810
		/* Set default semaphore delay to 10ms which is a well
		 * tested value */
		eeprom->semaphore_delay = 10;
811 812
		/* Clear EEPROM page size, it will be initialized as needed */
		eeprom->word_page_size = 0;
813 814 815 816 817

		/*
		 * Check for EEPROM present first.
		 * If not present leave as none
		 */
818
		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
		if (eec & IXGBE_EEC_PRES) {
			eeprom->type = ixgbe_eeprom_spi;

			/*
			 * SPI EEPROM is assumed here.  This code would need to
			 * change if a future EEPROM is not SPI.
			 */
			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
					    IXGBE_EEC_SIZE_SHIFT);
			eeprom->word_size = 1 << (eeprom_size +
						  IXGBE_EEPROM_WORD_SIZE_SHIFT);
		}

		if (eec & IXGBE_EEC_ADDR_SIZE)
			eeprom->address_bits = 16;
		else
			eeprom->address_bits = 8;
836 837
		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
		       eeprom->type, eeprom->word_size, eeprom->address_bits);
838 839 840 841 842
	}

	return 0;
}

843
/**
844
 *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
845
 *  @hw: pointer to hardware structure
846 847 848
 *  @offset: offset within the EEPROM to write
 *  @words: number of words
 *  @data: 16 bit word(s) to write to EEPROM
849
 *
850
 *  Reads 16 bit word(s) from EEPROM through bit-bang method
851
 **/
852 853
s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
					       u16 words, u16 *data)
854
{
855
	s32 status;
856
	u16 i, count;
857 858 859

	hw->eeprom.ops.init_params(hw);

860 861
	if (words == 0)
		return IXGBE_ERR_INVALID_ARGUMENT;
862

863 864
	if (offset + words > hw->eeprom.word_size)
		return IXGBE_ERR_EEPROM;
865

866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
	/*
	 * The EEPROM page size cannot be queried from the chip. We do lazy
	 * initialization. It is worth to do that when we write large buffer.
	 */
	if ((hw->eeprom.word_page_size == 0) &&
	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
		ixgbe_detect_eeprom_page_size_generic(hw, offset);

	/*
	 * We cannot hold synchronization semaphores for too long
	 * to avoid other entity starvation. However it is more efficient
	 * to read in bursts than synchronizing access for each word.
	 */
	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
							    count, &data[i]);

		if (status != 0)
			break;
	}

	return status;
}

/**
 *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be written to
 *  @words: number of word(s)
 *  @data: 16 bit word(s) to be written to the EEPROM
 *
 *  If ixgbe_eeprom_update_checksum is not called after this function, the
 *  EEPROM will most likely contain an invalid checksum.
 **/
static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
					      u16 words, u16 *data)
{
	s32 status;
	u16 word;
	u16 page_size;
	u16 i;
	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;

911 912
	/* Prepare the EEPROM for writing  */
	status = ixgbe_acquire_eeprom(hw);
913 914
	if (status)
		return status;
915

916 917 918
	if (ixgbe_ready_eeprom(hw) != 0) {
		ixgbe_release_eeprom(hw);
		return IXGBE_ERR_EEPROM;
919 920
	}

921 922 923 924 925 926 927
	for (i = 0; i < words; i++) {
		ixgbe_standby_eeprom(hw);

		/* Send the WRITE ENABLE command (8 bit opcode) */
		ixgbe_shift_out_eeprom_bits(hw,
					    IXGBE_EEPROM_WREN_OPCODE_SPI,
					    IXGBE_EEPROM_OPCODE_BITS);
928

929
		ixgbe_standby_eeprom(hw);
930

931 932 933 934 935 936
		/* Some SPI eeproms use the 8th address bit embedded
		 * in the opcode
		 */
		if ((hw->eeprom.address_bits == 8) &&
		    ((offset + i) >= 128))
			write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
937

938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
		/* Send the Write command (8-bit opcode + addr) */
		ixgbe_shift_out_eeprom_bits(hw, write_opcode,
					    IXGBE_EEPROM_OPCODE_BITS);
		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
					    hw->eeprom.address_bits);

		page_size = hw->eeprom.word_page_size;

		/* Send the data in burst via SPI */
		do {
			word = data[i];
			word = (word >> 8) | (word << 8);
			ixgbe_shift_out_eeprom_bits(hw, word, 16);

			if (page_size == 0)
				break;

			/* do not wrap around page */
			if (((offset + i) & (page_size - 1)) ==
			    (page_size - 1))
				break;
		} while (++i < words);

		ixgbe_standby_eeprom(hw);
		usleep_range(10000, 20000);
963
	}
964 965
	/* Done with writing - release the EEPROM */
	ixgbe_release_eeprom(hw);
966

967
	return 0;
968 969 970 971 972 973 974 975 976 977 978 979 980 981
}

/**
 *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be written to
 *  @data: 16 bit word to be written to the EEPROM
 *
 *  If ixgbe_eeprom_update_checksum is not called after this function, the
 *  EEPROM will most likely contain an invalid checksum.
 **/
s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
{
	hw->eeprom.ops.init_params(hw);
982

983 984
	if (offset >= hw->eeprom.word_size)
		return IXGBE_ERR_EEPROM;
985

986
	return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
987 988
}

989
/**
990
 *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
991 992
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be read
993 994
 *  @words: number of word(s)
 *  @data: read 16 bit words(s) from EEPROM
995
 *
996
 *  Reads 16 bit word(s) from EEPROM through bit-bang method
997
 **/
998 999
s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
					      u16 words, u16 *data)
1000
{
1001
	s32 status;
1002
	u16 i, count;
1003 1004 1005

	hw->eeprom.ops.init_params(hw);

1006 1007
	if (words == 0)
		return IXGBE_ERR_INVALID_ARGUMENT;
1008

1009 1010
	if (offset + words > hw->eeprom.word_size)
		return IXGBE_ERR_EEPROM;
1011

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
	/*
	 * We cannot hold synchronization semaphores for too long
	 * to avoid other entity starvation. However it is more efficient
	 * to read in bursts than synchronizing access for each word.
	 */
	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);

		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
							   count, &data[i]);

1024 1025
		if (status)
			return status;
1026 1027
	}

1028
	return 0;
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
}

/**
 *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be read
 *  @words: number of word(s)
 *  @data: read 16 bit word(s) from EEPROM
 *
 *  Reads 16 bit word(s) from EEPROM through bit-bang method
 **/
static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
					     u16 words, u16 *data)
{
	s32 status;
	u16 word_in;
	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
	u16 i;

1048 1049
	/* Prepare the EEPROM for reading  */
	status = ixgbe_acquire_eeprom(hw);
1050 1051
	if (status)
		return status;
1052

1053 1054 1055
	if (ixgbe_ready_eeprom(hw) != 0) {
		ixgbe_release_eeprom(hw);
		return IXGBE_ERR_EEPROM;
1056 1057
	}

1058 1059 1060 1061 1062 1063 1064 1065
	for (i = 0; i < words; i++) {
		ixgbe_standby_eeprom(hw);
		/* Some SPI eeproms use the 8th address bit embedded
		 * in the opcode
		 */
		if ((hw->eeprom.address_bits == 8) &&
		    ((offset + i) >= 128))
			read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1066

1067 1068 1069 1070 1071 1072 1073 1074 1075
		/* Send the READ command (opcode + addr) */
		ixgbe_shift_out_eeprom_bits(hw, read_opcode,
					    IXGBE_EEPROM_OPCODE_BITS);
		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
					    hw->eeprom.address_bits);

		/* Read the data. */
		word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
		data[i] = (word_in >> 8) | (word_in << 8);
1076
	}
1077

1078 1079 1080 1081
	/* End this read operation */
	ixgbe_release_eeprom(hw);

	return 0;
1082
}
1083

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
/**
 *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be read
 *  @data: read 16 bit value from EEPROM
 *
 *  Reads 16 bit value from EEPROM through bit-bang method
 **/
s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
				       u16 *data)
{
	hw->eeprom.ops.init_params(hw);

1097 1098
	if (offset >= hw->eeprom.word_size)
		return IXGBE_ERR_EEPROM;
1099

1100
	return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1101 1102 1103
}

/**
1104
 *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1105
 *  @hw: pointer to hardware structure
1106 1107 1108
 *  @offset: offset of word in the EEPROM to read
 *  @words: number of word(s)
 *  @data: 16 bit word(s) from the EEPROM
1109
 *
1110
 *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1111
 **/
1112 1113
s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
				   u16 words, u16 *data)
1114 1115
{
	u32 eerd;
1116
	s32 status;
1117
	u32 i;
1118

1119 1120
	hw->eeprom.ops.init_params(hw);

1121 1122
	if (words == 0)
		return IXGBE_ERR_INVALID_ARGUMENT;
1123

1124 1125
	if (offset >= hw->eeprom.word_size)
		return IXGBE_ERR_EEPROM;
1126

1127
	for (i = 0; i < words; i++) {
1128
		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1129
		       IXGBE_EEPROM_RW_REG_START;
1130

1131 1132
		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1133

1134 1135 1136 1137 1138
		if (status == 0) {
			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
				   IXGBE_EEPROM_RW_REG_DATA);
		} else {
			hw_dbg(hw, "Eeprom read timed out\n");
1139
			return status;
1140 1141
		}
	}
1142 1143

	return 0;
1144
}
1145

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
/**
 *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be used as a scratch pad
 *
 *  Discover EEPROM page size by writing marching data at given offset.
 *  This function is called only when we are writing a new large buffer
 *  at given offset so the data would be overwritten anyway.
 **/
static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
						 u16 offset)
{
	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1159
	s32 status;
1160 1161 1162 1163 1164 1165 1166 1167 1168
	u16 i;

	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
		data[i] = i;

	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
	hw->eeprom.word_page_size = 0;
1169 1170
	if (status)
		return status;
1171 1172

	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1173 1174
	if (status)
		return status;
1175 1176 1177 1178 1179 1180 1181

	/*
	 * When writing in burst more than the actual page size
	 * EEPROM address wraps around current page.
	 */
	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];

1182
	hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1183
	       hw->eeprom.word_page_size);
1184
	return 0;
1185 1186
}

1187
/**
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
 *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
 *  @hw: pointer to hardware structure
 *  @offset: offset of  word in the EEPROM to read
 *  @data: word read from the EEPROM
 *
 *  Reads a 16 bit word from the EEPROM using the EERD register.
 **/
s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
{
	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
}

/**
 *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1202 1203
 *  @hw: pointer to hardware structure
 *  @offset: offset of  word in the EEPROM to write
1204 1205
 *  @words: number of words
 *  @data: word(s) write to the EEPROM
1206
 *
1207
 *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1208
 **/
1209 1210
s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
				    u16 words, u16 *data)
1211 1212
{
	u32 eewr;
1213
	s32 status;
1214
	u16 i;
1215 1216 1217

	hw->eeprom.ops.init_params(hw);

1218 1219
	if (words == 0)
		return IXGBE_ERR_INVALID_ARGUMENT;
1220

1221 1222
	if (offset >= hw->eeprom.word_size)
		return IXGBE_ERR_EEPROM;
1223

1224 1225 1226 1227
	for (i = 0; i < words; i++) {
		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
		       IXGBE_EEPROM_RW_REG_START;
1228

1229
		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1230
		if (status) {
1231
			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1232
			return status;
1233
		}
1234

1235
		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1236

1237
		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1238
		if (status) {
1239
			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1240
			return status;
1241
		}
1242 1243
	}

1244
	return 0;
1245 1246
}

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
/**
 *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
 *  @hw: pointer to hardware structure
 *  @offset: offset of  word in the EEPROM to write
 *  @data: word write to the EEPROM
 *
 *  Write a 16 bit word to the EEPROM using the EEWR register.
 **/
s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
{
	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
}

1260
/**
1261
 *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1262
 *  @hw: pointer to hardware structure
1263
 *  @ee_reg: EEPROM flag for polling
1264
 *
1265 1266
 *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
 *  read or write is done respectively.
1267
 **/
1268
static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1269 1270 1271 1272
{
	u32 i;
	u32 reg;

1273 1274 1275 1276 1277 1278 1279
	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
		if (ee_reg == IXGBE_NVM_POLL_READ)
			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
		else
			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);

		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1280
			return 0;
1281 1282 1283
		}
		udelay(5);
	}
1284
	return IXGBE_ERR_EEPROM;
1285 1286
}

1287 1288 1289 1290 1291 1292 1293 1294 1295
/**
 *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
 *  @hw: pointer to hardware structure
 *
 *  Prepares EEPROM for access using bit-bang method. This function should
 *  be called before issuing a command to the EEPROM.
 **/
static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
{
1296
	u32 eec;
1297 1298
	u32 i;

1299
	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1300
		return IXGBE_ERR_SWFW_SYNC;
1301

1302
	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1303

1304 1305
	/* Request EEPROM Access */
	eec |= IXGBE_EEC_REQ;
1306
	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1307

1308
	for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1309
		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1310 1311 1312 1313
		if (eec & IXGBE_EEC_GNT)
			break;
		udelay(5);
	}
1314

1315 1316 1317
	/* Release if grant not acquired */
	if (!(eec & IXGBE_EEC_GNT)) {
		eec &= ~IXGBE_EEC_REQ;
1318
		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1319
		hw_dbg(hw, "Could not acquire EEPROM grant\n");
1320

1321 1322
		hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
		return IXGBE_ERR_EEPROM;
1323
	}
1324 1325 1326 1327

	/* Setup EEPROM for Read/Write */
	/* Clear CS and SK */
	eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1328
	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1329 1330 1331
	IXGBE_WRITE_FLUSH(hw);
	udelay(1);
	return 0;
1332 1333
}

1334 1335 1336 1337 1338 1339 1340 1341
/**
 *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
 *  @hw: pointer to hardware structure
 *
 *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
 **/
static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
{
1342
	u32 timeout = 2000;
1343 1344 1345 1346 1347 1348 1349 1350 1351
	u32 i;
	u32 swsm;

	/* Get SMBI software semaphore between device drivers first */
	for (i = 0; i < timeout; i++) {
		/*
		 * If the SMBI bit is 0 when we read it, then the bit will be
		 * set and we have the semaphore
		 */
1352
		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1353
		if (!(swsm & IXGBE_SWSM_SMBI))
1354
			break;
1355
		usleep_range(50, 100);
1356 1357
	}

E
Emil Tantilov 已提交
1358
	if (i == timeout) {
1359
		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1360
		/* this release is particularly important because our attempts
E
Emil Tantilov 已提交
1361 1362 1363 1364 1365 1366
		 * above to get the semaphore may have succeeded, and if there
		 * was a timeout, we should unconditionally clear the semaphore
		 * bits to free the driver to make progress
		 */
		ixgbe_release_eeprom_semaphore(hw);

1367
		usleep_range(50, 100);
1368
		/* one last try
E
Emil Tantilov 已提交
1369 1370 1371
		 * If the SMBI bit is 0 when we read it, then the bit will be
		 * set and we have the semaphore
		 */
1372
		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1373 1374 1375 1376
		if (swsm & IXGBE_SWSM_SMBI) {
			hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
			return IXGBE_ERR_EEPROM;
		}
E
Emil Tantilov 已提交
1377 1378
	}

1379
	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1380
	for (i = 0; i < timeout; i++) {
1381
		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1382

1383 1384
		/* Set the SW EEPROM semaphore bit to request access */
		swsm |= IXGBE_SWSM_SWESMBI;
1385
		IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1386

1387 1388 1389
		/* If we set the bit successfully then we got the
		 * semaphore.
		 */
1390
		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1391 1392
		if (swsm & IXGBE_SWSM_SWESMBI)
			break;
1393

1394 1395
		usleep_range(50, 100);
	}
1396

1397 1398 1399 1400 1401 1402 1403
	/* Release semaphores and return error if SW EEPROM semaphore
	 * was not granted because we don't have access to the EEPROM
	 */
	if (i >= timeout) {
		hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
		ixgbe_release_eeprom_semaphore(hw);
		return IXGBE_ERR_EEPROM;
1404 1405
	}

1406
	return 0;
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
}

/**
 *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
 *  @hw: pointer to hardware structure
 *
 *  This function clears hardware semaphore bits.
 **/
static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
{
	u32 swsm;

1419
	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1420 1421 1422

	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1423
	IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1424
	IXGBE_WRITE_FLUSH(hw);
1425 1426
}

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
/**
 *  ixgbe_ready_eeprom - Polls for EEPROM ready
 *  @hw: pointer to hardware structure
 **/
static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
{
	u16 i;
	u8 spi_stat_reg;

	/*
	 * Read "Status Register" repeatedly until the LSB is cleared.  The
	 * EEPROM will signal that the command has been completed by clearing
	 * bit 0 of the internal status register.  If it's not cleared within
	 * 5 milliseconds, then error out.
	 */
	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1444
					    IXGBE_EEPROM_OPCODE_BITS);
1445 1446 1447 1448 1449 1450
		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
			break;

		udelay(5);
		ixgbe_standby_eeprom(hw);
1451
	}
1452 1453 1454 1455 1456 1457 1458

	/*
	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
	 * devices (and only 0-5mSec on 5V devices)
	 */
	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
		hw_dbg(hw, "SPI EEPROM Status error\n");
1459
		return IXGBE_ERR_EEPROM;
1460 1461
	}

1462
	return 0;
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
}

/**
 *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
 *  @hw: pointer to hardware structure
 **/
static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
{
	u32 eec;

1473
	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1474 1475 1476

	/* Toggle CS to flush commands */
	eec |= IXGBE_EEC_CS;
1477
	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1478 1479 1480
	IXGBE_WRITE_FLUSH(hw);
	udelay(1);
	eec &= ~IXGBE_EEC_CS;
1481
	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
	IXGBE_WRITE_FLUSH(hw);
	udelay(1);
}

/**
 *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
 *  @hw: pointer to hardware structure
 *  @data: data to send to the EEPROM
 *  @count: number of bits to shift out
 **/
static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1493
					u16 count)
1494 1495 1496 1497 1498
{
	u32 eec;
	u32 mask;
	u32 i;

1499
	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519

	/*
	 * Mask is used to shift "count" bits of "data" out to the EEPROM
	 * one bit at a time.  Determine the starting bit based on count
	 */
	mask = 0x01 << (count - 1);

	for (i = 0; i < count; i++) {
		/*
		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
		 * "1", and then raising and then lowering the clock (the SK
		 * bit controls the clock input to the EEPROM).  A "0" is
		 * shifted out to the EEPROM by setting "DI" to "0" and then
		 * raising and then lowering the clock.
		 */
		if (data & mask)
			eec |= IXGBE_EEC_DI;
		else
			eec &= ~IXGBE_EEC_DI;

1520
		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
		IXGBE_WRITE_FLUSH(hw);

		udelay(1);

		ixgbe_raise_eeprom_clk(hw, &eec);
		ixgbe_lower_eeprom_clk(hw, &eec);

		/*
		 * Shift mask to signify next bit of data to shift in to the
		 * EEPROM
		 */
		mask = mask >> 1;
1533
	}
1534 1535 1536

	/* We leave the "DI" bit set to "0" when we leave this routine. */
	eec &= ~IXGBE_EEC_DI;
1537
	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
	IXGBE_WRITE_FLUSH(hw);
}

/**
 *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
 *  @hw: pointer to hardware structure
 **/
static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
{
	u32 eec;
	u32 i;
	u16 data = 0;

	/*
	 * In order to read a register from the EEPROM, we need to shift
	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
	 * the clock input to the EEPROM (setting the SK bit), and then reading
	 * the value of the "DO" bit.  During this "shifting in" process the
	 * "DI" bit should always be clear.
	 */
1558
	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1559 1560 1561 1562 1563 1564 1565

	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);

	for (i = 0; i < count; i++) {
		data = data << 1;
		ixgbe_raise_eeprom_clk(hw, &eec);

1566
		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589

		eec &= ~(IXGBE_EEC_DI);
		if (eec & IXGBE_EEC_DO)
			data |= 1;

		ixgbe_lower_eeprom_clk(hw, &eec);
	}

	return data;
}

/**
 *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
 *  @hw: pointer to hardware structure
 *  @eec: EEC register's current value
 **/
static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
{
	/*
	 * Raise the clock input to the EEPROM
	 * (setting the SK bit), then delay
	 */
	*eec = *eec | IXGBE_EEC_SK;
1590
	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
	IXGBE_WRITE_FLUSH(hw);
	udelay(1);
}

/**
 *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
 *  @hw: pointer to hardware structure
 *  @eecd: EECD's current value
 **/
static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
{
	/*
	 * Lower the clock input to the EEPROM (clearing the SK bit), then
	 * delay
	 */
	*eec = *eec & ~IXGBE_EEC_SK;
1607
	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
	IXGBE_WRITE_FLUSH(hw);
	udelay(1);
}

/**
 *  ixgbe_release_eeprom - Release EEPROM, release semaphores
 *  @hw: pointer to hardware structure
 **/
static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
{
	u32 eec;

1620
	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1621 1622 1623 1624

	eec |= IXGBE_EEC_CS;  /* Pull CS high */
	eec &= ~IXGBE_EEC_SK; /* Lower SCK */

1625
	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1626 1627 1628 1629 1630 1631
	IXGBE_WRITE_FLUSH(hw);

	udelay(1);

	/* Stop requesting EEPROM access */
	eec &= ~IXGBE_EEC_REQ;
1632
	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1633

1634
	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1635

1636 1637 1638 1639 1640 1641
	/*
	 * Delay before attempt to obtain semaphore again to allow FW
	 * access. semaphore_delay is in ms we need us for usleep_range
	 */
	usleep_range(hw->eeprom.semaphore_delay * 1000,
		     hw->eeprom.semaphore_delay * 2000);
1642 1643
}

1644
/**
1645
 *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1646 1647
 *  @hw: pointer to hardware structure
 **/
1648
s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
{
	u16 i;
	u16 j;
	u16 checksum = 0;
	u16 length = 0;
	u16 pointer = 0;
	u16 word = 0;

	/* Include 0x0-0x3F in the checksum */
	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1659
		if (hw->eeprom.ops.read(hw, i, &word)) {
1660 1661 1662 1663 1664 1665 1666 1667
			hw_dbg(hw, "EEPROM read failed\n");
			break;
		}
		checksum += word;
	}

	/* Include all data from pointers except for the fw pointer */
	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
		if (hw->eeprom.ops.read(hw, i, &pointer)) {
			hw_dbg(hw, "EEPROM read failed\n");
			return IXGBE_ERR_EEPROM;
		}

		/* If the pointer seems invalid */
		if (pointer == 0xFFFF || pointer == 0)
			continue;

		if (hw->eeprom.ops.read(hw, pointer, &length)) {
			hw_dbg(hw, "EEPROM read failed\n");
			return IXGBE_ERR_EEPROM;
		}
1681

1682 1683
		if (length == 0xFFFF || length == 0)
			continue;
1684

1685 1686 1687 1688
		for (j = pointer + 1; j <= pointer + length; j++) {
			if (hw->eeprom.ops.read(hw, j, &word)) {
				hw_dbg(hw, "EEPROM read failed\n");
				return IXGBE_ERR_EEPROM;
1689
			}
1690
			checksum += word;
1691 1692 1693 1694 1695
		}
	}

	checksum = (u16)IXGBE_EEPROM_SUM - checksum;

1696
	return (s32)checksum;
1697 1698 1699
}

/**
1700
 *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1701 1702 1703 1704 1705 1706
 *  @hw: pointer to hardware structure
 *  @checksum_val: calculated checksum
 *
 *  Performs checksum calculation and validates the EEPROM checksum.  If the
 *  caller does not need checksum_val, the value can be NULL.
 **/
1707
s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1708
					   u16 *checksum_val)
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
{
	s32 status;
	u16 checksum;
	u16 read_checksum = 0;

	/*
	 * Read the first word from the EEPROM. If this times out or fails, do
	 * not continue or we could be in for a very long wait while every
	 * EEPROM read fails
	 */
1719
	status = hw->eeprom.ops.read(hw, 0, &checksum);
1720 1721 1722 1723
	if (status) {
		hw_dbg(hw, "EEPROM read failed\n");
		return status;
	}
1724

1725 1726 1727
	status = hw->eeprom.ops.calc_checksum(hw);
	if (status < 0)
		return status;
1728

1729
	checksum = (u16)(status & 0xffff);
1730

1731 1732
	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
	if (status) {
1733
		hw_dbg(hw, "EEPROM read failed\n");
1734
		return status;
1735 1736
	}

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
	/* Verify read checksum from EEPROM is the same as
	 * calculated checksum
	 */
	if (read_checksum != checksum)
		status = IXGBE_ERR_EEPROM_CHECKSUM;

	/* If the user cares, return the calculated checksum */
	if (checksum_val)
		*checksum_val = checksum;

1747 1748 1749
	return status;
}

1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
/**
 *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
 *  @hw: pointer to hardware structure
 **/
s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
{
	s32 status;
	u16 checksum;

	/*
	 * Read the first word from the EEPROM. If this times out or fails, do
	 * not continue or we could be in for a very long wait while every
	 * EEPROM read fails
	 */
	status = hw->eeprom.ops.read(hw, 0, &checksum);
1765
	if (status) {
1766
		hw_dbg(hw, "EEPROM read failed\n");
1767
		return status;
1768 1769
	}

1770 1771 1772 1773 1774 1775 1776 1777
	status = hw->eeprom.ops.calc_checksum(hw);
	if (status < 0)
		return status;

	checksum = (u16)(status & 0xffff);

	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);

1778 1779 1780
	return status;
}

1781
/**
1782
 *  ixgbe_set_rar_generic - Set Rx address register
1783 1784
 *  @hw: pointer to hardware structure
 *  @index: Receive address register to write
1785 1786
 *  @addr: Address to put into receive address register
 *  @vmdq: VMDq "set" or "pool" index
1787 1788 1789 1790
 *  @enable_addr: set flag that address is active
 *
 *  Puts an ethernet address into a receive address register.
 **/
1791
s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1792
			  u32 enable_addr)
1793 1794
{
	u32 rar_low, rar_high;
1795 1796
	u32 rar_entries = hw->mac.num_rar_entries;

1797 1798 1799 1800 1801 1802
	/* Make sure we are using a valid rar index range */
	if (index >= rar_entries) {
		hw_dbg(hw, "RAR index %d is out of range.\n", index);
		return IXGBE_ERR_INVALID_ARGUMENT;
	}

1803 1804
	/* setup VMDq pool selection before this RAR gets enabled */
	hw->mac.ops.set_vmdq(hw, index, vmdq);
1805

1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
	/*
	 * HW expects these in little endian so we reverse the byte
	 * order from network order (big endian) to little endian
	 */
	rar_low = ((u32)addr[0] |
		   ((u32)addr[1] << 8) |
		   ((u32)addr[2] << 16) |
		   ((u32)addr[3] << 24));
	/*
	 * Some parts put the VMDq setting in the extra RAH bits,
	 * so save everything except the lower 16 bits that hold part
	 * of the address and the address valid bit.
	 */
	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1822

1823 1824
	if (enable_addr != 0)
		rar_high |= IXGBE_RAH_AV;
1825

1826 1827
	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844

	return 0;
}

/**
 *  ixgbe_clear_rar_generic - Remove Rx address register
 *  @hw: pointer to hardware structure
 *  @index: Receive address register to write
 *
 *  Clears an ethernet address from a receive address register.
 **/
s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
{
	u32 rar_high;
	u32 rar_entries = hw->mac.num_rar_entries;

	/* Make sure we are using a valid rar index range */
1845
	if (index >= rar_entries) {
1846
		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1847
		return IXGBE_ERR_INVALID_ARGUMENT;
1848 1849
	}

1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
	/*
	 * Some parts put the VMDq setting in the extra RAH bits,
	 * so save everything except the lower 16 bits that hold part
	 * of the address and the address valid bit.
	 */
	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);

	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);

1861 1862
	/* clear VMDq pool/queue selection for this RAR */
	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1863 1864 1865 1866

	return 0;
}

1867 1868
/**
 *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1869 1870 1871
 *  @hw: pointer to hardware structure
 *
 *  Places the MAC address in receive address register 0 and clears the rest
1872
 *  of the receive address registers. Clears the multicast table. Assumes
1873 1874
 *  the receiver is in reset when the routine is called.
 **/
1875
s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1876 1877
{
	u32 i;
1878
	u32 rar_entries = hw->mac.num_rar_entries;
1879 1880 1881 1882 1883 1884

	/*
	 * If the current mac address is valid, assume it is a software override
	 * to the permanent address.
	 * Otherwise, use the permanent address from the eeprom.
	 */
J
Joe Perches 已提交
1885
	if (!is_valid_ether_addr(hw->mac.addr)) {
1886
		/* Get the MAC address from the RAR0 for later reference */
1887
		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1888

1889
		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1890 1891 1892
	} else {
		/* Setup the receive address. */
		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1893
		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1894

1895
		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1896
	}
A
Alexander Duyck 已提交
1897 1898 1899 1900

	/*  clear VMDq pool/queue selection for RAR 0 */
	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);

1901
	hw->addr_ctrl.overflow_promisc = 0;
1902 1903 1904 1905

	hw->addr_ctrl.rar_used_count = 1;

	/* Zero out the other receive addresses. */
1906
	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
	for (i = 1; i < rar_entries; i++) {
		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
	}

	/* Clear the MTA */
	hw->addr_ctrl.mta_in_use = 0;
	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);

	hw_dbg(hw, " Clearing MTA\n");
1917
	for (i = 0; i < hw->mac.mcft_size; i++)
1918 1919
		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);

1920 1921 1922
	if (hw->mac.ops.init_uta_tables)
		hw->mac.ops.init_uta_tables(hw);

1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
	return 0;
}

/**
 *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
 *  @hw: pointer to hardware structure
 *  @mc_addr: the multicast address
 *
 *  Extracts the 12 bits, from a multicast address, to determine which
 *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
 *  incoming rx multicast addresses, to determine the bit-vector to check in
 *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1935
 *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1936 1937 1938 1939 1940 1941 1942
 *  to mc_filter_type.
 **/
static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
{
	u32 vector = 0;

	switch (hw->mac.mc_filter_type) {
1943
	case 0:   /* use bits [47:36] of the address */
1944 1945
		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
		break;
1946
	case 1:   /* use bits [46:35] of the address */
1947 1948
		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
		break;
1949
	case 2:   /* use bits [45:34] of the address */
1950 1951
		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
		break;
1952
	case 3:   /* use bits [43:32] of the address */
1953 1954
		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
		break;
1955
	default:  /* Invalid mc_filter_type */
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
		hw_dbg(hw, "MC filter type param set incorrectly\n");
		break;
	}

	/* vector can only be 12-bits or boundary will be exceeded */
	vector &= 0xFFF;
	return vector;
}

/**
 *  ixgbe_set_mta - Set bit-vector in multicast table
 *  @hw: pointer to hardware structure
 *  @hash_value: Multicast address hash value
 *
 *  Sets the bit-vector in the multicast table.
 **/
static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
{
	u32 vector;
	u32 vector_bit;
	u32 vector_reg;

	hw->addr_ctrl.mta_in_use++;

	vector = ixgbe_mta_vector(hw, mc_addr);
	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);

	/*
	 * The MTA is a register array of 128 32-bit registers. It is treated
	 * like an array of 4096 bits.  We want to set bit
	 * BitArray[vector_value]. So we figure out what register the bit is
	 * in, read it, OR in the new bit, then write back the new value.  The
	 * register is determined by the upper 7 bits of the vector value and
	 * the bit within that register are determined by the lower 5 bits of
	 * the value.
	 */
	vector_reg = (vector >> 5) & 0x7F;
	vector_bit = vector & 0x1F;
1994
	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
1995 1996 1997
}

/**
1998
 *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
1999
 *  @hw: pointer to hardware structure
2000
 *  @netdev: pointer to net device structure
2001 2002
 *
 *  The given list replaces any existing list. Clears the MC addrs from receive
2003
 *  address registers and the multicast table. Uses unused receive address
2004 2005 2006
 *  registers for the first multicast addresses, and hashes the rest into the
 *  multicast table.
 **/
2007 2008
s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
				      struct net_device *netdev)
2009
{
2010
	struct netdev_hw_addr *ha;
2011 2012 2013 2014 2015 2016
	u32 i;

	/*
	 * Set the new number of MC addresses that we are being requested to
	 * use.
	 */
2017
	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2018 2019
	hw->addr_ctrl.mta_in_use = 0;

2020
	/* Clear mta_shadow */
2021
	hw_dbg(hw, " Clearing MTA\n");
2022
	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2023

2024
	/* Update mta shadow */
2025
	netdev_for_each_mc_addr(ha, netdev) {
2026
		hw_dbg(hw, " Adding the multicast addresses:\n");
2027
		ixgbe_set_mta(hw, ha->addr);
2028 2029 2030
	}

	/* Enable mta */
2031 2032 2033 2034
	for (i = 0; i < hw->mac.mcft_size; i++)
		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
				      hw->mac.mta_shadow[i]);

2035 2036
	if (hw->addr_ctrl.mta_in_use > 0)
		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2037
				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2038

2039
	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2040 2041 2042 2043
	return 0;
}

/**
2044
 *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2045 2046
 *  @hw: pointer to hardware structure
 *
2047
 *  Enables multicast address in RAR and the use of the multicast hash table.
2048
 **/
2049
s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2050
{
2051
	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2052

2053 2054
	if (a->mta_in_use > 0)
		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2055
				hw->mac.mc_filter_type);
2056 2057 2058 2059 2060

	return 0;
}

/**
2061
 *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2062 2063
 *  @hw: pointer to hardware structure
 *
2064
 *  Disables multicast address in RAR and the use of the multicast hash table.
2065
 **/
2066
s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2067
{
2068
	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2069

2070 2071
	if (a->mta_in_use > 0)
		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2072 2073 2074 2075

	return 0;
}

2076
/**
2077
 *  ixgbe_fc_enable_generic - Enable flow control
2078 2079 2080 2081
 *  @hw: pointer to hardware structure
 *
 *  Enable flow control according to the current settings.
 **/
2082
s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2083
{
2084
	u32 mflcn_reg, fccfg_reg;
2085
	u32 reg;
2086
	u32 fcrtl, fcrth;
2087
	int i;
2088

2089
	/* Validate the water mark configuration. */
2090 2091
	if (!hw->fc.pause_time)
		return IXGBE_ERR_INVALID_LINK_SETTINGS;
2092

2093 2094 2095 2096 2097 2098 2099
	/* Low water mark of zero causes XOFF floods */
	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
		    hw->fc.high_water[i]) {
			if (!hw->fc.low_water[i] ||
			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
				hw_dbg(hw, "Invalid water mark configuration\n");
2100
				return IXGBE_ERR_INVALID_LINK_SETTINGS;
2101 2102 2103 2104
			}
		}
	}

2105
	/* Negotiate the fc mode to use */
2106
	ixgbe_fc_autoneg(hw);
2107

2108
	/* Disable any previous flow control settings */
2109
	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2110
	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2111 2112 2113 2114 2115 2116 2117 2118 2119

	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);

	/*
	 * The possible values of fc.current_mode are:
	 * 0: Flow control is completely disabled
	 * 1: Rx flow control is enabled (we can receive pause frames,
	 *    but not send pause frames).
2120 2121
	 * 2: Tx flow control is enabled (we can send pause frames but
	 *    we do not support receiving pause frames).
2122 2123 2124 2125 2126
	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
	 * other: Invalid.
	 */
	switch (hw->fc.current_mode) {
	case ixgbe_fc_none:
2127 2128 2129 2130
		/*
		 * Flow control is disabled by software override or autoneg.
		 * The code below will actually disable it in the HW.
		 */
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
		break;
	case ixgbe_fc_rx_pause:
		/*
		 * Rx Flow control is enabled and Tx Flow control is
		 * disabled by software override. Since there really
		 * isn't a way to advertise that we are capable of RX
		 * Pause ONLY, we will advertise that we support both
		 * symmetric and asymmetric Rx PAUSE.  Later, we will
		 * disable the adapter's ability to send PAUSE frames.
		 */
		mflcn_reg |= IXGBE_MFLCN_RFCE;
		break;
	case ixgbe_fc_tx_pause:
		/*
		 * Tx Flow control is enabled, and Rx Flow control is
		 * disabled by software override.
		 */
		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
		break;
	case ixgbe_fc_full:
		/* Flow control (both Rx and Tx) is enabled by SW override. */
		mflcn_reg |= IXGBE_MFLCN_RFCE;
		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
		break;
	default:
		hw_dbg(hw, "Flow control param set incorrectly\n");
2157
		return IXGBE_ERR_CONFIG;
2158 2159
	}

2160
	/* Set 802.3x based flow control settings. */
2161
	mflcn_reg |= IXGBE_MFLCN_DPF;
2162 2163 2164
	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);

2165 2166 2167 2168
	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
		    hw->fc.high_water[i]) {
2169
			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2170 2171 2172 2173 2174 2175 2176
			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
		} else {
			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
			/*
			 * In order to prevent Tx hangs when the internal Tx
			 * switch is enabled we must set the high water mark
2177 2178 2179
			 * to the Rx packet buffer size - 24KB.  This allows
			 * the Tx switch to function even under heavy Rx
			 * workloads.
2180
			 */
2181
			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2182
		}
2183

2184 2185
		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
	}
2186

2187
	/* Configure pause time (2 TCs per register) */
2188 2189 2190 2191 2192
	reg = hw->fc.pause_time * 0x00010001;
	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);

	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2193

2194
	return 0;
2195 2196
}

2197
/**
2198
 *  ixgbe_negotiate_fc - Negotiate flow control
2199
 *  @hw: pointer to hardware structure
2200 2201 2202 2203 2204 2205
 *  @adv_reg: flow control advertised settings
 *  @lp_reg: link partner's flow control settings
 *  @adv_sym: symmetric pause bit in advertisement
 *  @adv_asm: asymmetric pause bit in advertisement
 *  @lp_sym: symmetric pause bit in link partner advertisement
 *  @lp_asm: asymmetric pause bit in link partner advertisement
2206
 *
2207 2208
 *  Find the intersection between advertised settings and link partner's
 *  advertised settings
2209
 **/
2210 2211
static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2212
{
2213 2214
	if ((!(adv_reg)) ||  (!(lp_reg)))
		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2215

2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
		/*
		 * Now we need to check if the user selected Rx ONLY
		 * of pause frames.  In this case, we had to advertise
		 * FULL flow control because we could not advertise RX
		 * ONLY. Hence, we must now check to see if we need to
		 * turn OFF the TRANSMISSION of PAUSE frames.
		 */
		if (hw->fc.requested_mode == ixgbe_fc_full) {
			hw->fc.current_mode = ixgbe_fc_full;
			hw_dbg(hw, "Flow Control = FULL.\n");
		} else {
			hw->fc.current_mode = ixgbe_fc_rx_pause;
			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
		}
	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
		hw->fc.current_mode = ixgbe_fc_tx_pause;
		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
		hw->fc.current_mode = ixgbe_fc_rx_pause;
		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2239
	} else {
2240 2241
		hw->fc.current_mode = ixgbe_fc_none;
		hw_dbg(hw, "Flow Control = NONE.\n");
2242
	}
2243
	return 0;
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
}

/**
 *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
 *  @hw: pointer to hardware structure
 *
 *  Enable flow control according on 1 gig fiber.
 **/
static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
{
	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2255
	s32 ret_val;
2256 2257 2258 2259 2260 2261

	/*
	 * On multispeed fiber at 1g, bail out if
	 * - link is up but AN did not complete, or if
	 * - link is up and AN completed but timed out
	 */
2262 2263

	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2264
	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2265
	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2266
		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2267

2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);

	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
			       IXGBE_PCS1GANA_ASM_PAUSE,
			       IXGBE_PCS1GANA_SYM_PAUSE,
			       IXGBE_PCS1GANA_ASM_PAUSE);

	return ret_val;
}

/**
 *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
 *  @hw: pointer to hardware structure
 *
 *  Enable flow control according to IEEE clause 37.
 **/
static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
{
	u32 links2, anlp1_reg, autoc_reg, links;
2289
	s32 ret_val;
2290

2291
	/*
2292 2293 2294
	 * On backplane, bail out if
	 * - backplane autoneg was not completed, or if
	 * - we are 82599 and link partner is not AN enabled
2295
	 */
2296
	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2297
	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2298
		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2299

2300 2301
	if (hw->mac.type == ixgbe_mac_82599EB) {
		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2302
		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2303
			return IXGBE_ERR_FC_NOT_NEGOTIATED;
2304
	}
2305
	/*
2306
	 * Read the 10g AN autoc and LP ability registers and resolve
2307 2308
	 * local flow control settings accordingly
	 */
2309 2310
	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2311

2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);

	return ret_val;
}

/**
 *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
 *  @hw: pointer to hardware structure
 *
 *  Enable flow control according to IEEE clause 37.
 **/
static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
{
	u16 technology_ability_reg = 0;
	u16 lp_technology_ability_reg = 0;

	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
			     MDIO_MMD_AN,
			     &technology_ability_reg);
	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
			     MDIO_MMD_AN,
			     &lp_technology_ability_reg);

	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
				  (u32)lp_technology_ability_reg,
				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
}

/**
2344
 *  ixgbe_fc_autoneg - Configure flow control
2345 2346
 *  @hw: pointer to hardware structure
 *
2347 2348
 *  Compares our advertised flow control capabilities to those advertised by
 *  our link partner, and determines the proper flow control mode to use.
2349
 **/
2350
void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2351
{
2352 2353 2354
	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
	ixgbe_link_speed speed;
	bool link_up;
2355 2356

	/*
2357 2358 2359 2360 2361 2362 2363
	 * AN should have completed when the cable was plugged in.
	 * Look for reasons to bail out.  Bail out if:
	 * - FC autoneg is disabled, or if
	 * - link is not up.
	 *
	 * Since we're being called from an LSC, link is already known to be up.
	 * So use link_up_wait_to_complete=false.
2364
	 */
2365
	if (hw->fc.disable_fc_autoneg)
2366
		goto out;
2367

2368 2369
	hw->mac.ops.check_link(hw, &speed, &link_up, false);
	if (!link_up)
2370
		goto out;
2371 2372

	switch (hw->phy.media_type) {
2373
	/* Autoneg flow control on fiber adapters */
2374
	case ixgbe_media_type_fiber:
2375 2376 2377 2378 2379
		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
			ret_val = ixgbe_fc_autoneg_fiber(hw);
		break;

	/* Autoneg flow control on backplane adapters */
2380
	case ixgbe_media_type_backplane:
2381
		ret_val = ixgbe_fc_autoneg_backplane(hw);
2382 2383
		break;

2384
	/* Autoneg flow control on copper adapters */
2385
	case ixgbe_media_type_copper:
2386
		if (ixgbe_device_supports_autoneg_fc(hw))
2387
			ret_val = ixgbe_fc_autoneg_copper(hw);
2388 2389 2390
		break;

	default:
2391
		break;
2392
	}
2393

2394
out:
2395 2396 2397 2398 2399 2400
	if (ret_val == 0) {
		hw->fc.fc_was_autonegged = true;
	} else {
		hw->fc.fc_was_autonegged = false;
		hw->fc.current_mode = hw->fc.requested_mode;
	}
2401 2402
}

2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
/**
 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
 * @hw: pointer to hardware structure
 *
 * System-wide timeout range is encoded in PCIe Device Control2 register.
 *
 *  Add 10% to specified maximum and return the number of times to poll for
 *  completion timeout, in units of 100 microsec.  Never return less than
 *  800 = 80 millisec.
 **/
static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
{
	s16 devctl2;
	u32 pollcnt;

2418
	devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;

	switch (devctl2) {
	case IXGBE_PCIDEVCTRL2_65_130ms:
		 pollcnt = 1300;         /* 130 millisec */
		break;
	case IXGBE_PCIDEVCTRL2_260_520ms:
		pollcnt = 5200;         /* 520 millisec */
		break;
	case IXGBE_PCIDEVCTRL2_1_2s:
		pollcnt = 20000;        /* 2 sec */
		break;
	case IXGBE_PCIDEVCTRL2_4_8s:
		pollcnt = 80000;        /* 8 sec */
		break;
	case IXGBE_PCIDEVCTRL2_17_34s:
		pollcnt = 34000;        /* 34 sec */
		break;
	case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
	case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
	case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
	case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
	default:
		pollcnt = 800;          /* 80 millisec minimum */
		break;
	}

	/* add 10% to spec maximum */
	return (pollcnt * 11) / 10;
}

2450 2451 2452 2453 2454 2455 2456 2457 2458
/**
 *  ixgbe_disable_pcie_master - Disable PCI-express master access
 *  @hw: pointer to hardware structure
 *
 *  Disables PCI-Express master access and verifies there are no pending
 *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
 *  bit hasn't caused the master requests to be disabled, else 0
 *  is returned signifying master requests disabled.
 **/
2459
static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2460
{
2461
	u32 i, poll;
2462 2463 2464 2465
	u16 value;

	/* Always set this bit to ensure any future transactions are blocked */
	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2466

2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
	/* Poll for bit to read as set */
	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
		if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
			break;
		usleep_range(100, 120);
	}
	if (i >= IXGBE_PCI_MASTER_DISABLE_TIMEOUT) {
		hw_dbg(hw, "GIO disable did not set - requesting resets\n");
		goto gio_disable_fail;
	}

2478
	/* Exit if master requests are blocked */
2479 2480
	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
	    ixgbe_removed(hw->hw_addr))
2481
		return 0;
2482

2483
	/* Poll for master request bit to clear */
2484
	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2485
		udelay(100);
2486
		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2487
			return 0;
2488 2489
	}

2490 2491 2492 2493 2494 2495 2496 2497
	/*
	 * Two consecutive resets are required via CTRL.RST per datasheet
	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
	 * of this need.  The first reset prevents new master requests from
	 * being issued by our device.  We then must wait 1usec or more for any
	 * remaining completions from the PCIe bus to trickle in, and then reset
	 * again to clear out any effects they may have had on our device.
	 */
2498
	hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2499
gio_disable_fail:
2500
	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2501

2502 2503 2504
	if (hw->mac.type >= ixgbe_mac_X550)
		return 0;

2505 2506 2507 2508
	/*
	 * Before proceeding, make sure that the PCIe block does not have
	 * transactions pending.
	 */
2509 2510
	poll = ixgbe_pcie_timeout_poll(hw);
	for (i = 0; i < poll; i++) {
2511
		udelay(100);
2512 2513
		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
		if (ixgbe_removed(hw->hw_addr))
2514
			return 0;
2515
		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2516
			return 0;
2517 2518
	}

2519
	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2520
	return IXGBE_ERR_MASTER_REQUESTS_PENDING;
2521 2522 2523
}

/**
2524
 *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2525
 *  @hw: pointer to hardware structure
2526
 *  @mask: Mask to specify which semaphore to acquire
2527
 *
E
Emil Tantilov 已提交
2528
 *  Acquires the SWFW semaphore through the GSSR register for the specified
2529 2530
 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
 **/
2531
s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2532
{
2533
	u32 gssr = 0;
2534 2535
	u32 swmask = mask;
	u32 fwmask = mask << 5;
2536 2537
	u32 timeout = 200;
	u32 i;
2538

2539
	for (i = 0; i < timeout; i++) {
2540
		/*
2541 2542
		 * SW NVM semaphore bit is used for access to all
		 * SW_FW_SYNC bits (not just NVM)
2543
		 */
2544
		if (ixgbe_get_eeprom_semaphore(hw))
2545
			return IXGBE_ERR_SWFW_SYNC;
2546 2547

		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
		if (!(gssr & (fwmask | swmask))) {
			gssr |= swmask;
			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
			ixgbe_release_eeprom_semaphore(hw);
			return 0;
		} else {
			/* Resource is currently in use by FW or SW */
			ixgbe_release_eeprom_semaphore(hw);
			usleep_range(5000, 10000);
		}
2558 2559
	}

2560 2561 2562
	/* If time expired clear the bits holding the lock and retry */
	if (gssr & (fwmask | swmask))
		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2563

2564 2565
	usleep_range(5000, 10000);
	return IXGBE_ERR_SWFW_SYNC;
2566 2567 2568 2569 2570
}

/**
 *  ixgbe_release_swfw_sync - Release SWFW semaphore
 *  @hw: pointer to hardware structure
2571
 *  @mask: Mask to specify which semaphore to release
2572
 *
E
Emil Tantilov 已提交
2573
 *  Releases the SWFW semaphore through the GSSR register for the specified
2574 2575
 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
 **/
2576
void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
{
	u32 gssr;
	u32 swmask = mask;

	ixgbe_get_eeprom_semaphore(hw);

	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
	gssr &= ~swmask;
	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);

	ixgbe_release_eeprom_semaphore(hw);
}

2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
/**
 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
 * @hw: pointer to hardware structure
 * @reg_val: Value we read from AUTOC
 * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
 *	    true in this the generic case.
 *
 * The default case requires no protection so just to the register read.
 **/
s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
{
	*locked = false;
	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
	return 0;
}

/**
 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
 * @hw: pointer to hardware structure
 * @reg_val: value to write to AUTOC
 * @locked: bool to indicate whether the SW/FW lock was already taken by
 *	    previous read.
 **/
s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
{
	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
	return 0;
}

2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
/**
 *  ixgbe_disable_rx_buff_generic - Stops the receive data path
 *  @hw: pointer to hardware structure
 *
 *  Stops the receive data path and waits for the HW to internally
 *  empty the Rx security block.
 **/
s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
{
#define IXGBE_MAX_SECRX_POLL 40
	int i;
	int secrxreg;

	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
			break;
		else
			/* Use interrupt-safe sleep just in case */
2641
			udelay(1000);
2642 2643 2644 2645
	}

	/* For informational purposes only */
	if (i >= IXGBE_MAX_SECRX_POLL)
2646
		hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669

	return 0;

}

/**
 *  ixgbe_enable_rx_buff - Enables the receive data path
 *  @hw: pointer to hardware structure
 *
 *  Enables the receive data path
 **/
s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
{
	int secrxreg;

	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
	IXGBE_WRITE_FLUSH(hw);

	return 0;
}

2670 2671 2672 2673 2674 2675 2676 2677 2678
/**
 *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
 *  @hw: pointer to hardware structure
 *  @regval: register value to write to RXCTRL
 *
 *  Enables the Rx DMA unit
 **/
s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
{
2679 2680 2681 2682
	if (regval & IXGBE_RXCTRL_RXEN)
		hw->mac.ops.enable_rx(hw);
	else
		hw->mac.ops.disable_rx(hw);
2683 2684 2685

	return 0;
}
2686 2687 2688 2689 2690 2691 2692 2693 2694

/**
 *  ixgbe_blink_led_start_generic - Blink LED based on index.
 *  @hw: pointer to hardware structure
 *  @index: led number to blink
 **/
s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
{
	ixgbe_link_speed speed = 0;
2695
	bool link_up = false;
2696 2697
	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2698
	bool locked = false;
2699
	s32 ret_val;
2700 2701 2702 2703 2704 2705 2706 2707

	/*
	 * Link must be up to auto-blink the LEDs;
	 * Force it if link is down.
	 */
	hw->mac.ops.check_link(hw, &speed, &link_up, false);

	if (!link_up) {
2708
		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2709
		if (ret_val)
2710
			return ret_val;
2711

2712
		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2713
		autoc_reg |= IXGBE_AUTOC_FLU;
2714 2715

		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2716
		if (ret_val)
2717
			return ret_val;
2718

2719
		IXGBE_WRITE_FLUSH(hw);
2720

2721
		usleep_range(10000, 20000);
2722 2723 2724 2725 2726 2727 2728
	}

	led_reg &= ~IXGBE_LED_MODE_MASK(index);
	led_reg |= IXGBE_LED_BLINK(index);
	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
	IXGBE_WRITE_FLUSH(hw);

2729
	return 0;
2730 2731 2732 2733 2734 2735 2736 2737 2738
}

/**
 *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
 *  @hw: pointer to hardware structure
 *  @index: led number to stop blinking
 **/
s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
{
2739
	u32 autoc_reg = 0;
2740
	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2741
	bool locked = false;
2742
	s32 ret_val;
2743

2744
	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2745
	if (ret_val)
2746
		return ret_val;
2747 2748 2749 2750

	autoc_reg &= ~IXGBE_AUTOC_FLU;
	autoc_reg |= IXGBE_AUTOC_AN_RESTART;

2751
	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2752
	if (ret_val)
2753
		return ret_val;
2754

2755 2756 2757 2758 2759 2760
	led_reg &= ~IXGBE_LED_MODE_MASK(index);
	led_reg &= ~IXGBE_LED_BLINK(index);
	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
	IXGBE_WRITE_FLUSH(hw);

2761
	return 0;
2762
}
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773

/**
 *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
 *  @hw: pointer to hardware structure
 *  @san_mac_offset: SAN MAC address offset
 *
 *  This function will read the EEPROM location for the SAN MAC address
 *  pointer, and returns the value at that location.  This is used in both
 *  get and set mac_addr routines.
 **/
static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2774
					u16 *san_mac_offset)
2775
{
2776 2777
	s32 ret_val;

2778 2779 2780 2781
	/*
	 * First read the EEPROM pointer to see if the MAC addresses are
	 * available.
	 */
2782 2783 2784 2785 2786
	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
				      san_mac_offset);
	if (ret_val)
		hw_err(hw, "eeprom read at offset %d failed\n",
		       IXGBE_SAN_MAC_ADDR_PTR);
2787

2788
	return ret_val;
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
}

/**
 *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
 *  @hw: pointer to hardware structure
 *  @san_mac_addr: SAN MAC address
 *
 *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
 *  per-port, so set_lan_id() must be called before reading the addresses.
 *  set_lan_id() is called by identify_sfp(), but this cannot be relied
 *  upon for non-SFP connections, so we must call it here.
 **/
s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
{
	u16 san_mac_data, san_mac_offset;
	u8 i;
2805
	s32 ret_val;
2806 2807 2808 2809 2810

	/*
	 * First read the EEPROM pointer to see if the MAC addresses are
	 * available.  If they're not, no point in calling set_lan_id() here.
	 */
2811 2812
	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2813

2814
		goto san_mac_addr_clr;
2815 2816 2817 2818 2819

	/* make sure we know which port we need to program */
	hw->mac.ops.set_lan_id(hw);
	/* apply the port offset to the address offset */
	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2820
			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2821
	for (i = 0; i < 3; i++) {
2822 2823 2824 2825 2826 2827 2828
		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
					      &san_mac_data);
		if (ret_val) {
			hw_err(hw, "eeprom read at offset %d failed\n",
			       san_mac_offset);
			goto san_mac_addr_clr;
		}
2829 2830 2831 2832 2833
		san_mac_addr[i * 2] = (u8)(san_mac_data);
		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
		san_mac_offset++;
	}
	return 0;
2834 2835 2836 2837 2838 2839 2840 2841

san_mac_addr_clr:
	/* No addresses available in this EEPROM.  It's not necessarily an
	 * error though, so just wipe the local address and return.
	 */
	for (i = 0; i < 6; i++)
		san_mac_addr[i] = 0xFF;
	return ret_val;
2842 2843 2844 2845 2846 2847 2848 2849 2850
}

/**
 *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
 *  @hw: pointer to hardware structure
 *
 *  Read PCIe configuration space, and get the MSI-X vector count from
 *  the capabilities table.
 **/
2851
u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2852
{
2853
	u16 msix_count;
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
	u16 max_msix_count;
	u16 pcie_offset;

	switch (hw->mac.type) {
	case ixgbe_mac_82598EB:
		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
		break;
	case ixgbe_mac_82599EB:
	case ixgbe_mac_X540:
2864 2865
	case ixgbe_mac_X550:
	case ixgbe_mac_X550EM_x:
2866
	case ixgbe_mac_x550em_a:
2867 2868 2869 2870
		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
		break;
	default:
2871
		return 1;
2872 2873
	}

2874 2875 2876
	msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
	if (ixgbe_removed(hw->hw_addr))
		msix_count = 0;
2877 2878
	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;

2879
	/* MSI-X count is zero-based in HW */
2880 2881
	msix_count++;

2882 2883 2884
	if (msix_count > max_msix_count)
		msix_count = max_msix_count;

2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
	return msix_count;
}

/**
 *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
 *  @hw: pointer to hardware struct
 *  @rar: receive address register index to disassociate
 *  @vmdq: VMDq pool index to remove from the rar
 **/
s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
{
	u32 mpsar_lo, mpsar_hi;
	u32 rar_entries = hw->mac.num_rar_entries;

2899 2900 2901 2902 2903
	/* Make sure we are using a valid rar index range */
	if (rar >= rar_entries) {
		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
		return IXGBE_ERR_INVALID_ARGUMENT;
	}
2904

2905 2906
	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2907

2908
	if (ixgbe_removed(hw->hw_addr))
2909
		return 0;
2910

2911
	if (!mpsar_lo && !mpsar_hi)
2912
		return 0;
2913

2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
		if (mpsar_lo) {
			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
			mpsar_lo = 0;
		}
		if (mpsar_hi) {
			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
			mpsar_hi = 0;
		}
	} else if (vmdq < 32) {
		mpsar_lo &= ~(1 << vmdq);
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2926
	} else {
2927 2928
		mpsar_hi &= ~(1 << (vmdq - 32));
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2929 2930
	}

2931 2932 2933
	/* was that the last pool using this rar? */
	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
		hw->mac.ops.clear_rar(hw, rar);
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
	return 0;
}

/**
 *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
 *  @hw: pointer to hardware struct
 *  @rar: receive address register index to associate with a VMDq index
 *  @vmdq: VMDq pool index
 **/
s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
{
	u32 mpsar;
	u32 rar_entries = hw->mac.num_rar_entries;

2948 2949
	/* Make sure we are using a valid rar index range */
	if (rar >= rar_entries) {
2950
		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
		return IXGBE_ERR_INVALID_ARGUMENT;
	}

	if (vmdq < 32) {
		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
		mpsar |= 1 << vmdq;
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
	} else {
		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
		mpsar |= 1 << (vmdq - 32);
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2962 2963 2964 2965
	}
	return 0;
}

2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
/**
 *  This function should only be involved in the IOV mode.
 *  In IOV mode, Default pool is next pool after the number of
 *  VFs advertized and not 0.
 *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
 *
 *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
 *  @hw: pointer to hardware struct
 *  @vmdq: VMDq pool index
 **/
s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
{
	u32 rar = hw->mac.san_mac_rar_index;

	if (vmdq < 32) {
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
	} else {
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
	}

	return 0;
}

2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
/**
 *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
 *  @hw: pointer to hardware structure
 **/
s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
{
	int i;

	for (i = 0; i < 128; i++)
		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);

	return 0;
}

/**
 *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
 *  @hw: pointer to hardware structure
 *  @vlan: VLAN id to write to VLAN filter
 *
 *  return the VLVF index where this VLAN id should be placed
 *
 **/
3013
static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3014
{
3015
	s32 regindex, first_empty_slot;
3016
	u32 bits;
3017 3018 3019 3020 3021

	/* short cut the special case */
	if (vlan == 0)
		return 0;

3022 3023 3024 3025 3026 3027
	/* if vlvf_bypass is set we don't want to use an empty slot, we
	 * will simply bypass the VLVF if there are no entries present in the
	 * VLVF that contain our VLAN
	 */
	first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;

3028 3029 3030 3031 3032 3033 3034 3035 3036
	/* add VLAN enable bit for comparison */
	vlan |= IXGBE_VLVF_VIEN;

	/* Search for the vlan id in the VLVF entries. Save off the first empty
	 * slot found along the way.
	 *
	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
	 */
	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3037
		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3038 3039 3040
		if (bits == vlan)
			return regindex;
		if (!first_empty_slot && !bits)
3041 3042 3043
			first_empty_slot = regindex;
	}

3044 3045 3046 3047 3048
	/* If we are here then we didn't find the VLAN.  Return first empty
	 * slot we found during our search, else error.
	 */
	if (!first_empty_slot)
		hw_dbg(hw, "No space in VLVF.\n");
3049

3050
	return first_empty_slot ? : IXGBE_ERR_NO_SPACE;
3051 3052 3053 3054 3055 3056 3057 3058
}

/**
 *  ixgbe_set_vfta_generic - Set VLAN filter table
 *  @hw: pointer to hardware structure
 *  @vlan: VLAN id to write to VLAN filter
 *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
 *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3059
 *  @vlvf_bypass: boolean flag indicating updating default pool is okay
3060 3061 3062 3063
 *
 *  Turn on/off specified VLAN in the VLAN filter table.
 **/
s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3064
			   bool vlan_on, bool vlvf_bypass)
3065
{
3066
	u32 regidx, vfta_delta, vfta, bits;
3067
	s32 vlvf_index;
3068

3069
	if ((vlan > 4095) || (vind > 63))
3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
		return IXGBE_ERR_PARAM;

	/*
	 * this is a 2 part operation - first the VFTA, then the
	 * VLVF and VLVFB if VT Mode is set
	 * We don't write the VFTA until we know the VLVF part succeeded.
	 */

	/* Part 1
	 * The VFTA is a bitstring made up of 128 32-bit registers
	 * that enable the particular VLAN id, much like the MTA:
	 *    bits[11-5]: which register
	 *    bits[4-0]:  which bit in the register
	 */
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
	regidx = vlan / 32;
	vfta_delta = 1 << (vlan % 32);
	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));

	/* vfta_delta represents the difference between the current value
	 * of vfta and the value we want in the register.  Since the diff
	 * is an XOR mask we can just update vfta using an XOR.
	 */
	vfta_delta &= vlan_on ? ~vfta : vfta;
	vfta ^= vfta_delta;
3094 3095 3096 3097 3098 3099 3100 3101 3102

	/* Part 2
	 * If VT Mode is set
	 *   Either vlan_on
	 *     make sure the vlan is in VLVF
	 *     set the vind bit in the matching VLVFB
	 *   Or !vlan_on
	 *     clear the pool bit and possibly the vind
	 */
3103 3104 3105
	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
		goto vfta_update;

3106 3107 3108 3109
	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
	if (vlvf_index < 0) {
		if (vlvf_bypass)
			goto vfta_update;
3110
		return vlvf_index;
3111
	}
3112

3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));

	/* set the pool bit */
	bits |= 1 << (vind % 32);
	if (vlan_on)
		goto vlvf_update;

	/* clear the pool bit */
	bits ^= 1 << (vind % 32);

	if (!bits &&
	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
		/* Clear VFTA first, then disable VLVF.  Otherwise
		 * we run the risk of stray packets leaking into
		 * the PF via the default pool
		 */
		if (vfta_delta)
			IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);

		/* disable VLVF and clear remaining bit from pool */
		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);

		return 0;
3137 3138
	}

3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
	/* If there are still bits set in the VLVFB registers
	 * for the VLAN ID indicated we need to see if the
	 * caller is requesting that we clear the VFTA entry bit.
	 * If the caller has requested that we clear the VFTA
	 * entry bit but there are still pools/VFs using this VLAN
	 * ID entry then ignore the request.  We're not worried
	 * about the case where we're turning the VFTA VLAN ID
	 * entry bit on, only when requested to turn it off as
	 * there may be multiple pools and/or VFs using the
	 * VLAN ID entry.  In that case we cannot clear the
	 * VFTA bit until all pools/VFs using that VLAN ID have also
	 * been cleared.  This will be indicated by "bits" being
	 * zero.
	 */
3153
	vfta_delta = 0;
3154

3155 3156 3157 3158
vlvf_update:
	/* record pool change and enable VLAN ID if not already enabled */
	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
3159 3160

vfta_update:
3161
	/* Update VFTA now that we are ready for traffic */
3162 3163
	if (vfta_delta)
		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182

	return 0;
}

/**
 *  ixgbe_clear_vfta_generic - Clear VLAN filter table
 *  @hw: pointer to hardware structure
 *
 *  Clears the VLAN filer table, and the VMDq index associated with the filter
 **/
s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
{
	u32 offset;

	for (offset = 0; offset < hw->mac.vft_size; offset++)
		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);

	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3183 3184
		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
	}

	return 0;
}

/**
 *  ixgbe_check_mac_link_generic - Determine link and speed status
 *  @hw: pointer to hardware structure
 *  @speed: pointer to link speed
 *  @link_up: true when link is up
 *  @link_up_wait_to_complete: bool used to wait for link up or not
 *
 *  Reads the links register to determine if link is up and the current speed
 **/
s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3200
				 bool *link_up, bool link_up_wait_to_complete)
3201
{
3202
	u32 links_reg, links_orig;
3203 3204
	u32 i;

3205 3206 3207
	/* clear the old state */
	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);

3208
	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3209 3210 3211 3212 3213 3214

	if (links_orig != links_reg) {
		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
		       links_orig, links_reg);
	}

3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
	if (link_up_wait_to_complete) {
		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
			if (links_reg & IXGBE_LINKS_UP) {
				*link_up = true;
				break;
			} else {
				*link_up = false;
			}
			msleep(100);
			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
		}
	} else {
		if (links_reg & IXGBE_LINKS_UP)
			*link_up = true;
		else
			*link_up = false;
	}

3233 3234 3235 3236 3237 3238 3239 3240 3241
	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
	case IXGBE_LINKS_SPEED_10G_82599:
		if ((hw->mac.type >= ixgbe_mac_X550) &&
		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
			*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
		else
			*speed = IXGBE_LINK_SPEED_10GB_FULL;
		break;
	case IXGBE_LINKS_SPEED_1G_82599:
3242
		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3243 3244 3245 3246 3247 3248 3249 3250 3251
		break;
	case IXGBE_LINKS_SPEED_100_82599:
		if ((hw->mac.type >= ixgbe_mac_X550) &&
		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
			*speed = IXGBE_LINK_SPEED_5GB_FULL;
		else
			*speed = IXGBE_LINK_SPEED_100_FULL;
		break;
	default:
3252
		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3253
	}
3254 3255 3256

	return 0;
}
3257 3258

/**
3259
 *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3260 3261 3262 3263 3264 3265 3266 3267 3268
 *  the EEPROM
 *  @hw: pointer to hardware structure
 *  @wwnn_prefix: the alternative WWNN prefix
 *  @wwpn_prefix: the alternative WWPN prefix
 *
 *  This function will read the EEPROM from the alternative SAN MAC address
 *  block to check the support for the alternative WWNN/WWPN prefix support.
 **/
s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3269
					u16 *wwpn_prefix)
3270 3271 3272 3273 3274 3275 3276 3277 3278
{
	u16 offset, caps;
	u16 alt_san_mac_blk_offset;

	/* clear output first */
	*wwnn_prefix = 0xFFFF;
	*wwpn_prefix = 0xFFFF;

	/* check if alternative SAN MAC is supported */
3279 3280 3281
	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
		goto wwn_prefix_err;
3282 3283 3284

	if ((alt_san_mac_blk_offset == 0) ||
	    (alt_san_mac_blk_offset == 0xFFFF))
3285
		return 0;
3286 3287 3288

	/* check capability in alternative san mac address block */
	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3289 3290
	if (hw->eeprom.ops.read(hw, offset, &caps))
		goto wwn_prefix_err;
3291
	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3292
		return 0;
3293 3294 3295

	/* get the corresponding prefix for WWNN/WWPN */
	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3296 3297
	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
		hw_err(hw, "eeprom read at offset %d failed\n", offset);
3298 3299

	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3300 3301
	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
		goto wwn_prefix_err;
3302 3303

	return 0;
3304 3305 3306 3307

wwn_prefix_err:
	hw_err(hw, "eeprom read at offset %d failed\n", offset);
	return 0;
3308
}
3309 3310 3311 3312

/**
 *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
 *  @hw: pointer to hardware structure
3313 3314
 *  @enable: enable or disable switch for MAC anti-spoofing
 *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3315 3316
 *
 **/
3317
void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3318
{
3319 3320 3321
	int vf_target_reg = vf >> 3;
	int vf_target_shift = vf % 8;
	u32 pfvfspoof;
3322 3323 3324 3325

	if (hw->mac.type == ixgbe_mac_82598EB)
		return;

3326
	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3327
	if (enable)
3328 3329 3330 3331
		pfvfspoof |= BIT(vf_target_shift);
	else
		pfvfspoof &= ~BIT(vf_target_shift);
	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
}

/**
 *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
 *  @hw: pointer to hardware structure
 *  @enable: enable or disable switch for VLAN anti-spoofing
 *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
 *
 **/
void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
{
	int vf_target_reg = vf >> 3;
	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
	u32 pfvfspoof;

	if (hw->mac.type == ixgbe_mac_82598EB)
		return;

	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
	if (enable)
		pfvfspoof |= (1 << vf_target_shift);
	else
		pfvfspoof &= ~(1 << vf_target_shift);
	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
}
3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371

/**
 *  ixgbe_get_device_caps_generic - Get additional device capabilities
 *  @hw: pointer to hardware structure
 *  @device_caps: the EEPROM word with the extra device capabilities
 *
 *  This function will read the EEPROM location for the device capabilities,
 *  and return the word through device_caps.
 **/
s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
{
	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);

	return 0;
}
3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437

/**
 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
 * @hw: pointer to hardware structure
 * @num_pb: number of packet buffers to allocate
 * @headroom: reserve n KB of headroom
 * @strategy: packet buffer allocation strategy
 **/
void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
			     int num_pb,
			     u32 headroom,
			     int strategy)
{
	u32 pbsize = hw->mac.rx_pb_size;
	int i = 0;
	u32 rxpktsize, txpktsize, txpbthresh;

	/* Reserve headroom */
	pbsize -= headroom;

	if (!num_pb)
		num_pb = 1;

	/* Divide remaining packet buffer space amongst the number
	 * of packet buffers requested using supplied strategy.
	 */
	switch (strategy) {
	case (PBA_STRATEGY_WEIGHTED):
		/* pba_80_48 strategy weight first half of packet buffer with
		 * 5/8 of the packet buffer space.
		 */
		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
		pbsize -= rxpktsize * (num_pb / 2);
		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
		for (; i < (num_pb / 2); i++)
			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
		/* Fall through to configure remaining packet buffers */
	case (PBA_STRATEGY_EQUAL):
		/* Divide the remaining Rx packet buffer evenly among the TCs */
		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
		for (; i < num_pb; i++)
			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
		break;
	default:
		break;
	}

	/*
	 * Setup Tx packet buffer and threshold equally for all TCs
	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
	 * 10 since the largest packet we support is just over 9K.
	 */
	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
	for (i = 0; i < num_pb; i++) {
		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
	}

	/* Clear unused TCs, if any, to zero buffer size*/
	for (; i < IXGBE_MAX_PB; i++) {
		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
	}
}
E
Emil Tantilov 已提交
3438 3439 3440 3441 3442

/**
 *  ixgbe_calculate_checksum - Calculate checksum for buffer
 *  @buffer: pointer to EEPROM
 *  @length: size of EEPROM to calculate a checksum for
3443
 *
E
Emil Tantilov 已提交
3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
 *  Calculates the checksum for some buffer on a specified length.  The
 *  checksum calculated is returned.
 **/
static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
{
	u32 i;
	u8 sum = 0;

	if (!buffer)
		return 0;

	for (i = 0; i < length; i++)
		sum += buffer[i];

	return (u8) (0 - sum);
}

/**
 *  ixgbe_host_interface_command - Issue command to manageability block
 *  @hw: pointer to the HW structure
 *  @buffer: contains the command to write and where the return status will
 *           be placed
D
Don Skidmore 已提交
3466
 *  @length: length of buffer, must be multiple of 4 bytes
3467 3468 3469 3470 3471 3472 3473
 *  @timeout: time in ms to wait for command completion
 *  @return_data: read and return data from the buffer (true) or not (false)
 *  Needed because FW structures are big endian and decoding of
 *  these fields can be 8 bit or 16 bit based on command. Decoding
 *  is not easily understood without making a table of commands.
 *  So we will leave this up to the caller to read back the data
 *  in these cases.
E
Emil Tantilov 已提交
3474 3475 3476 3477
 *
 *  Communicates with the manageability block.  On success return 0
 *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
 **/
3478
s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, void *buffer,
3479 3480
				 u32 length, u32 timeout,
				 bool return_data)
E
Emil Tantilov 已提交
3481 3482
{
	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3483
	u32 hicr, i, bi, fwsts;
3484
	u16 buf_len, dword_len;
3485 3486 3487 3488
	union {
		struct ixgbe_hic_hdr hdr;
		u32 u32arr[1];
	} *bp = buffer;
3489
	s32 status;
E
Emil Tantilov 已提交
3490

3491
	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3492
		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3493
		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
E
Emil Tantilov 已提交
3494
	}
3495 3496 3497 3498
	/* Take management host interface semaphore */
	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
	if (status)
		return status;
E
Emil Tantilov 已提交
3499

3500 3501 3502 3503
	/* Set bit 9 of FWSTS clearing FW reset indication */
	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);

E
Emil Tantilov 已提交
3504 3505
	/* Check that the host interface is enabled. */
	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3506
	if (!(hicr & IXGBE_HICR_EN)) {
E
Emil Tantilov 已提交
3507
		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3508 3509
		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
		goto rel_out;
E
Emil Tantilov 已提交
3510 3511
	}

3512
	/* Calculate length in DWORDs. We must be DWORD aligned */
3513
	if (length % sizeof(u32)) {
3514
		hw_dbg(hw, "Buffer length failure, not aligned to dword");
3515 3516
		status = IXGBE_ERR_INVALID_ARGUMENT;
		goto rel_out;
3517 3518
	}

E
Emil Tantilov 已提交
3519 3520
	dword_len = length >> 2;

3521
	/* The device driver writes the relevant command block
E
Emil Tantilov 已提交
3522 3523 3524 3525
	 * into the ram area.
	 */
	for (i = 0; i < dword_len; i++)
		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3526
				      i, cpu_to_le32(bp->u32arr[i]));
E
Emil Tantilov 已提交
3527 3528 3529 3530

	/* Setting this bit tells the ARC that a new command is pending. */
	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);

3531
	for (i = 0; i < timeout; i++) {
E
Emil Tantilov 已提交
3532 3533 3534 3535 3536 3537 3538
		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
		if (!(hicr & IXGBE_HICR_C))
			break;
		usleep_range(1000, 2000);
	}

	/* Check command successful completion. */
3539 3540
	if ((timeout && i == timeout) ||
	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
E
Emil Tantilov 已提交
3541
		hw_dbg(hw, "Command has failed with no status valid.\n");
3542 3543
		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
		goto rel_out;
E
Emil Tantilov 已提交
3544 3545
	}

3546
	if (!return_data)
3547
		goto rel_out;
3548

E
Emil Tantilov 已提交
3549 3550 3551 3552
	/* Calculate length in DWORDs */
	dword_len = hdr_size >> 2;

	/* first pull in the header so we know the buffer length */
3553
	for (bi = 0; bi < dword_len; bi++) {
3554 3555
		bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
		le32_to_cpus(&bp->u32arr[bi]);
3556
	}
E
Emil Tantilov 已提交
3557 3558

	/* If there is any thing in data position pull it in */
3559 3560
	buf_len = bp->hdr.buf_len;
	if (!buf_len)
3561
		goto rel_out;
E
Emil Tantilov 已提交
3562

3563
	if (length < round_up(buf_len, 4) + hdr_size) {
E
Emil Tantilov 已提交
3564
		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3565 3566
		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
		goto rel_out;
E
Emil Tantilov 已提交
3567 3568
	}

3569 3570
	/* Calculate length in DWORDs, add 3 for odd lengths */
	dword_len = (buf_len + 3) >> 2;
E
Emil Tantilov 已提交
3571

3572
	/* Pull in the rest of the buffer (bi is where we left off) */
3573
	for (; bi <= dword_len; bi++) {
3574 3575
		bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
		le32_to_cpus(&bp->u32arr[bi]);
3576
	}
E
Emil Tantilov 已提交
3577

3578 3579 3580 3581
rel_out:
	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);

	return status;
E
Emil Tantilov 已提交
3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601
}

/**
 *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
 *  @hw: pointer to the HW structure
 *  @maj: driver version major number
 *  @min: driver version minor number
 *  @build: driver version build number
 *  @sub: driver version sub build number
 *
 *  Sends driver version number to firmware through the manageability
 *  block.  On success return 0
 *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
 *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
 **/
s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
				 u8 build, u8 sub)
{
	struct ixgbe_hic_drv_info fw_cmd;
	int i;
3602
	s32 ret_val;
E
Emil Tantilov 已提交
3603 3604 3605 3606

	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3607
	fw_cmd.port_num = hw->bus.func;
E
Emil Tantilov 已提交
3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
	fw_cmd.ver_maj = maj;
	fw_cmd.ver_min = min;
	fw_cmd.ver_build = build;
	fw_cmd.ver_sub = sub;
	fw_cmd.hdr.checksum = 0;
	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
	fw_cmd.pad = 0;
	fw_cmd.pad2 = 0;

	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3619
		ret_val = ixgbe_host_interface_command(hw, &fw_cmd,
3620 3621 3622
						       sizeof(fw_cmd),
						       IXGBE_HI_COMMAND_TIMEOUT,
						       true);
E
Emil Tantilov 已提交
3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636
		if (ret_val != 0)
			continue;

		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
		    FW_CEM_RESP_STATUS_SUCCESS)
			ret_val = 0;
		else
			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;

		break;
	}

	return ret_val;
}
3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647

/**
 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
 * @hw: pointer to the hardware structure
 *
 * The 82599 and x540 MACs can experience issues if TX work is still pending
 * when a reset occurs.  This function prevents this by flushing the PCIe
 * buffers on the system.
 **/
void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
{
D
Don Skidmore 已提交
3648 3649
	u32 gcr_ext, hlreg0, i, poll;
	u16 value;
3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665

	/*
	 * If double reset is not requested then all transactions should
	 * already be clear and as such there is no work to do
	 */
	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
		return;

	/*
	 * Set loopback enable to prevent any transmits from being sent
	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
	 * has already been cleared.
	 */
	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);

D
Don Skidmore 已提交
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682
	/* wait for a last completion before clearing buffers */
	IXGBE_WRITE_FLUSH(hw);
	usleep_range(3000, 6000);

	/* Before proceeding, make sure that the PCIe block does not have
	 * transactions pending.
	 */
	poll = ixgbe_pcie_timeout_poll(hw);
	for (i = 0; i < poll; i++) {
		usleep_range(100, 200);
		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
		if (ixgbe_removed(hw->hw_addr))
			break;
		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
			break;
	}

3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
	/* initiate cleaning flow for buffers in the PCIe transaction layer */
	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);

	/* Flush all writes and allow 20usec for all transactions to clear */
	IXGBE_WRITE_FLUSH(hw);
	udelay(20);

	/* restore previous register values */
	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
}
3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720

static const u8 ixgbe_emc_temp_data[4] = {
	IXGBE_EMC_INTERNAL_DATA,
	IXGBE_EMC_DIODE1_DATA,
	IXGBE_EMC_DIODE2_DATA,
	IXGBE_EMC_DIODE3_DATA
};
static const u8 ixgbe_emc_therm_limit[4] = {
	IXGBE_EMC_INTERNAL_THERM_LIMIT,
	IXGBE_EMC_DIODE1_THERM_LIMIT,
	IXGBE_EMC_DIODE2_THERM_LIMIT,
	IXGBE_EMC_DIODE3_THERM_LIMIT
};

/**
 *  ixgbe_get_ets_data - Extracts the ETS bit data
 *  @hw: pointer to hardware structure
 *  @ets_cfg: extected ETS data
 *  @ets_offset: offset of ETS data
 *
 *  Returns error code.
 **/
static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
			      u16 *ets_offset)
{
3721
	s32 status;
3722 3723 3724

	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
	if (status)
3725
		return status;
3726

3727 3728
	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
		return IXGBE_NOT_IMPLEMENTED;
3729 3730 3731

	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
	if (status)
3732
		return status;
3733

3734 3735
	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
		return IXGBE_NOT_IMPLEMENTED;
3736

3737
	return 0;
3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
}

/**
 *  ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
 *  @hw: pointer to hardware structure
 *
 *  Returns the thermal sensor data structure
 **/
s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
{
3748
	s32 status;
3749 3750 3751 3752 3753 3754 3755
	u16 ets_offset;
	u16 ets_cfg;
	u16 ets_sensor;
	u8  num_sensors;
	u8  i;
	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;

3756
	/* Only support thermal sensors attached to physical port 0 */
3757 3758
	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
		return IXGBE_NOT_IMPLEMENTED;
3759 3760 3761

	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
	if (status)
3762
		return status;
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774

	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
	if (num_sensors > IXGBE_MAX_SENSORS)
		num_sensors = IXGBE_MAX_SENSORS;

	for (i = 0; i < num_sensors; i++) {
		u8  sensor_index;
		u8  sensor_location;

		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
					     &ets_sensor);
		if (status)
3775
			return status;
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787

		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
				IXGBE_ETS_DATA_INDEX_SHIFT);
		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
				   IXGBE_ETS_DATA_LOC_SHIFT);

		if (sensor_location != 0) {
			status = hw->phy.ops.read_i2c_byte(hw,
					ixgbe_emc_temp_data[sensor_index],
					IXGBE_I2C_THERMAL_SENSOR_ADDR,
					&data->sensor[i].temp);
			if (status)
3788
				return status;
3789 3790
		}
	}
3791 3792

	return 0;
3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
}

/**
 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
 * @hw: pointer to hardware structure
 *
 * Inits the thermal sensor thresholds according to the NVM map
 * and save off the threshold and location values into mac.thermal_sensor_data
 **/
s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
{
3804
	s32 status;
3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815
	u16 ets_offset;
	u16 ets_cfg;
	u16 ets_sensor;
	u8  low_thresh_delta;
	u8  num_sensors;
	u8  therm_limit;
	u8  i;
	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;

	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));

3816
	/* Only support thermal sensors attached to physical port 0 */
3817 3818
	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
		return IXGBE_NOT_IMPLEMENTED;
3819 3820 3821

	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
	if (status)
3822
		return status;
3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833

	low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
			     IXGBE_ETS_LTHRES_DELTA_SHIFT);
	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
	if (num_sensors > IXGBE_MAX_SENSORS)
		num_sensors = IXGBE_MAX_SENSORS;

	for (i = 0; i < num_sensors; i++) {
		u8  sensor_index;
		u8  sensor_location;

3834 3835 3836 3837 3838
		if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
			hw_err(hw, "eeprom read at offset %d failed\n",
			       ets_offset + 1 + i);
			continue;
		}
3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
				IXGBE_ETS_DATA_INDEX_SHIFT);
		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
				   IXGBE_ETS_DATA_LOC_SHIFT);
		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;

		hw->phy.ops.write_i2c_byte(hw,
			ixgbe_emc_therm_limit[sensor_index],
			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);

		if (sensor_location == 0)
			continue;

		data->sensor[i].location = sensor_location;
		data->sensor[i].caution_thresh = therm_limit;
		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
	}
3856 3857

	return 0;
3858 3859
}

3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
{
	u32 rxctrl;

	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
	if (rxctrl & IXGBE_RXCTRL_RXEN) {
		if (hw->mac.type != ixgbe_mac_82598EB) {
			u32 pfdtxgswc;

			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
				hw->mac.set_lben = true;
			} else {
				hw->mac.set_lben = false;
			}
		}
		rxctrl &= ~IXGBE_RXCTRL_RXEN;
		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
	}
}

void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
{
	u32 rxctrl;

	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));

	if (hw->mac.type != ixgbe_mac_82598EB) {
		if (hw->mac.set_lben) {
			u32 pfdtxgswc;

			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
			hw->mac.set_lben = false;
		}
	}
}
3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915

/** ixgbe_mng_present - returns true when management capability is present
 * @hw: pointer to hardware structure
 **/
bool ixgbe_mng_present(struct ixgbe_hw *hw)
{
	u32 fwsm;

	if (hw->mac.type < ixgbe_mac_82599EB)
		return false;

	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
	fwsm &= IXGBE_FWSM_MODE_MASK;
	return fwsm == IXGBE_FWSM_FW_MODE_PT;
}
3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125

/**
 *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
 *  @hw: pointer to hardware structure
 *  @speed: new link speed
 *  @autoneg_wait_to_complete: true when waiting for completion is needed
 *
 *  Set the link speed in the MAC and/or PHY register and restarts link.
 */
s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
					  ixgbe_link_speed speed,
					  bool autoneg_wait_to_complete)
{
	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
	s32 status = 0;
	u32 speedcnt = 0;
	u32 i = 0;
	bool autoneg, link_up = false;

	/* Mask off requested but non-supported speeds */
	status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
	if (status)
		return status;

	speed &= link_speed;

	/* Try each speed one by one, highest priority first.  We do this in
	 * software because 10Gb fiber doesn't support speed autonegotiation.
	 */
	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
		speedcnt++;
		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;

		/* If we already have link at this speed, just jump out */
		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
						false);
		if (status)
			return status;

		if (link_speed == IXGBE_LINK_SPEED_10GB_FULL && link_up)
			goto out;

		/* Set the module link speed */
		switch (hw->phy.media_type) {
		case ixgbe_media_type_fiber:
			hw->mac.ops.set_rate_select_speed(hw,
						    IXGBE_LINK_SPEED_10GB_FULL);
			break;
		case ixgbe_media_type_fiber_qsfp:
			/* QSFP module automatically detects MAC link speed */
			break;
		default:
			hw_dbg(hw, "Unexpected media type\n");
			break;
		}

		/* Allow module to change analog characteristics (1G->10G) */
		msleep(40);

		status = hw->mac.ops.setup_mac_link(hw,
						    IXGBE_LINK_SPEED_10GB_FULL,
						    autoneg_wait_to_complete);
		if (status)
			return status;

		/* Flap the Tx laser if it has not already been done */
		if (hw->mac.ops.flap_tx_laser)
			hw->mac.ops.flap_tx_laser(hw);

		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
		 * Section 73.10.2, we may have to wait up to 500ms if KR is
		 * attempted.  82599 uses the same timing for 10g SFI.
		 */
		for (i = 0; i < 5; i++) {
			/* Wait for the link partner to also set speed */
			msleep(100);

			/* If we have link, just jump out */
			status = hw->mac.ops.check_link(hw, &link_speed,
							&link_up, false);
			if (status)
				return status;

			if (link_up)
				goto out;
		}
	}

	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
		speedcnt++;
		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;

		/* If we already have link at this speed, just jump out */
		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
						false);
		if (status)
			return status;

		if (link_speed == IXGBE_LINK_SPEED_1GB_FULL && link_up)
			goto out;

		/* Set the module link speed */
		switch (hw->phy.media_type) {
		case ixgbe_media_type_fiber:
			hw->mac.ops.set_rate_select_speed(hw,
						     IXGBE_LINK_SPEED_1GB_FULL);
			break;
		case ixgbe_media_type_fiber_qsfp:
			/* QSFP module automatically detects link speed */
			break;
		default:
			hw_dbg(hw, "Unexpected media type\n");
			break;
		}

		/* Allow module to change analog characteristics (10G->1G) */
		msleep(40);

		status = hw->mac.ops.setup_mac_link(hw,
						    IXGBE_LINK_SPEED_1GB_FULL,
						    autoneg_wait_to_complete);
		if (status)
			return status;

		/* Flap the Tx laser if it has not already been done */
		if (hw->mac.ops.flap_tx_laser)
			hw->mac.ops.flap_tx_laser(hw);

		/* Wait for the link partner to also set speed */
		msleep(100);

		/* If we have link, just jump out */
		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
						false);
		if (status)
			return status;

		if (link_up)
			goto out;
	}

	/* We didn't get link.  Configure back to the highest speed we tried,
	 * (if there was more than one).  We call ourselves back with just the
	 * single highest speed that the user requested.
	 */
	if (speedcnt > 1)
		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
						      highest_link_speed,
						      autoneg_wait_to_complete);

out:
	/* Set autoneg_advertised value based on input link speed */
	hw->phy.autoneg_advertised = 0;

	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;

	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;

	return status;
}

/**
 *  ixgbe_set_soft_rate_select_speed - Set module link speed
 *  @hw: pointer to hardware structure
 *  @speed: link speed to set
 *
 *  Set module link speed via the soft rate select.
 */
void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
				      ixgbe_link_speed speed)
{
	s32 status;
	u8 rs, eeprom_data;

	switch (speed) {
	case IXGBE_LINK_SPEED_10GB_FULL:
		/* one bit mask same as setting on */
		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
		break;
	case IXGBE_LINK_SPEED_1GB_FULL:
		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
		break;
	default:
		hw_dbg(hw, "Invalid fixed module speed\n");
		return;
	}

	/* Set RS0 */
	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
					   IXGBE_I2C_EEPROM_DEV_ADDR2,
					   &eeprom_data);
	if (status) {
		hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
		return;
	}

	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;

	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
					    IXGBE_I2C_EEPROM_DEV_ADDR2,
					    eeprom_data);
	if (status) {
		hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
		return;
	}
}