fs-writeback.c 51.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 * fs/fs-writeback.c
 *
 * Copyright (C) 2002, Linus Torvalds.
 *
 * Contains all the functions related to writing back and waiting
 * upon dirty inodes against superblocks, and writing back dirty
 * pages against inodes.  ie: data writeback.  Writeout of the
 * inode itself is not handled here.
 *
11
 * 10Apr2002	Andrew Morton
L
Linus Torvalds 已提交
12 13 14 15 16
 *		Split out of fs/inode.c
 *		Additions for address_space-based writeback
 */

#include <linux/kernel.h>
17
#include <linux/export.h>
L
Linus Torvalds 已提交
18
#include <linux/spinlock.h>
19
#include <linux/slab.h>
L
Linus Torvalds 已提交
20 21 22
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/mm.h>
23
#include <linux/pagemap.h>
24
#include <linux/kthread.h>
L
Linus Torvalds 已提交
25 26 27
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
28
#include <linux/tracepoint.h>
29
#include <linux/device.h>
30
#include "internal.h"
L
Linus Torvalds 已提交
31

32 33 34 35 36
/*
 * 4MB minimal write chunk size
 */
#define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_CACHE_SHIFT - 10))

37 38 39 40
struct wb_completion {
	atomic_t		cnt;
};

41 42 43
/*
 * Passed into wb_writeback(), essentially a subset of writeback_control
 */
44
struct wb_writeback_work {
45 46
	long nr_pages;
	struct super_block *sb;
47
	unsigned long *older_than_this;
48
	enum writeback_sync_modes sync_mode;
49
	unsigned int tagged_writepages:1;
50 51 52
	unsigned int for_kupdate:1;
	unsigned int range_cyclic:1;
	unsigned int for_background:1;
53
	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
54
	unsigned int auto_free:1;	/* free on completion */
55 56
	unsigned int single_wait:1;
	unsigned int single_done:1;
57
	enum wb_reason reason;		/* why was writeback initiated? */
58

59
	struct list_head list;		/* pending work list */
60
	struct wb_completion *done;	/* set if the caller waits */
61 62
};

63 64 65 66 67 68 69 70 71 72 73 74 75
/*
 * If one wants to wait for one or more wb_writeback_works, each work's
 * ->done should be set to a wb_completion defined using the following
 * macro.  Once all work items are issued with wb_queue_work(), the caller
 * can wait for the completion of all using wb_wait_for_completion().  Work
 * items which are waited upon aren't freed automatically on completion.
 */
#define DEFINE_WB_COMPLETION_ONSTACK(cmpl)				\
	struct wb_completion cmpl = {					\
		.cnt		= ATOMIC_INIT(1),			\
	}


76 77 78 79 80 81 82 83 84 85 86 87
/*
 * If an inode is constantly having its pages dirtied, but then the
 * updates stop dirtytime_expire_interval seconds in the past, it's
 * possible for the worst case time between when an inode has its
 * timestamps updated and when they finally get written out to be two
 * dirtytime_expire_intervals.  We set the default to 12 hours (in
 * seconds), which means most of the time inodes will have their
 * timestamps written to disk after 12 hours, but in the worst case a
 * few inodes might not their timestamps updated for 24 hours.
 */
unsigned int dirtytime_expire_interval = 12 * 60 * 60;

N
Nick Piggin 已提交
88 89 90 91 92
static inline struct inode *wb_inode(struct list_head *head)
{
	return list_entry(head, struct inode, i_wb_list);
}

93 94 95 96 97 98 99 100
/*
 * Include the creation of the trace points after defining the
 * wb_writeback_work structure and inline functions so that the definition
 * remains local to this file.
 */
#define CREATE_TRACE_POINTS
#include <trace/events/writeback.h>

101 102
EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);

103 104 105 106 107 108
static bool wb_io_lists_populated(struct bdi_writeback *wb)
{
	if (wb_has_dirty_io(wb)) {
		return false;
	} else {
		set_bit(WB_has_dirty_io, &wb->state);
109
		WARN_ON_ONCE(!wb->avg_write_bandwidth);
110 111
		atomic_long_add(wb->avg_write_bandwidth,
				&wb->bdi->tot_write_bandwidth);
112 113 114 115 116 117 118
		return true;
	}
}

static void wb_io_lists_depopulated(struct bdi_writeback *wb)
{
	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
119
	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
120
		clear_bit(WB_has_dirty_io, &wb->state);
121 122
		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
					&wb->bdi->tot_write_bandwidth) < 0);
123
	}
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
}

/**
 * inode_wb_list_move_locked - move an inode onto a bdi_writeback IO list
 * @inode: inode to be moved
 * @wb: target bdi_writeback
 * @head: one of @wb->b_{dirty|io|more_io}
 *
 * Move @inode->i_wb_list to @list of @wb and set %WB_has_dirty_io.
 * Returns %true if @inode is the first occupant of the !dirty_time IO
 * lists; otherwise, %false.
 */
static bool inode_wb_list_move_locked(struct inode *inode,
				      struct bdi_writeback *wb,
				      struct list_head *head)
{
	assert_spin_locked(&wb->list_lock);

	list_move(&inode->i_wb_list, head);

	/* dirty_time doesn't count as dirty_io until expiration */
	if (head != &wb->b_dirty_time)
		return wb_io_lists_populated(wb);

	wb_io_lists_depopulated(wb);
	return false;
}

/**
 * inode_wb_list_del_locked - remove an inode from its bdi_writeback IO list
 * @inode: inode to be removed
 * @wb: bdi_writeback @inode is being removed from
 *
 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
 * clear %WB_has_dirty_io if all are empty afterwards.
 */
static void inode_wb_list_del_locked(struct inode *inode,
				     struct bdi_writeback *wb)
{
	assert_spin_locked(&wb->list_lock);

	list_del_init(&inode->i_wb_list);
	wb_io_lists_depopulated(wb);
}

169
static void wb_wakeup(struct bdi_writeback *wb)
J
Jan Kara 已提交
170
{
171 172 173 174
	spin_lock_bh(&wb->work_lock);
	if (test_bit(WB_registered, &wb->state))
		mod_delayed_work(bdi_wq, &wb->dwork, 0);
	spin_unlock_bh(&wb->work_lock);
J
Jan Kara 已提交
175 176
}

177 178
static void wb_queue_work(struct bdi_writeback *wb,
			  struct wb_writeback_work *work)
179
{
180
	trace_writeback_queue(wb->bdi, work);
181

182
	spin_lock_bh(&wb->work_lock);
183 184 185
	if (!test_bit(WB_registered, &wb->state)) {
		if (work->single_wait)
			work->single_done = 1;
J
Jan Kara 已提交
186
		goto out_unlock;
187
	}
188 189
	if (work->done)
		atomic_inc(&work->done->cnt);
190 191
	list_add_tail(&work->list, &wb->work_list);
	mod_delayed_work(bdi_wq, &wb->dwork, 0);
J
Jan Kara 已提交
192
out_unlock:
193
	spin_unlock_bh(&wb->work_lock);
L
Linus Torvalds 已提交
194 195
}

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
/**
 * wb_wait_for_completion - wait for completion of bdi_writeback_works
 * @bdi: bdi work items were issued to
 * @done: target wb_completion
 *
 * Wait for one or more work items issued to @bdi with their ->done field
 * set to @done, which should have been defined with
 * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
 * work items are completed.  Work items which are waited upon aren't freed
 * automatically on completion.
 */
static void wb_wait_for_completion(struct backing_dev_info *bdi,
				   struct wb_completion *done)
{
	atomic_dec(&done->cnt);		/* put down the initial count */
	wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
}

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
#ifdef CONFIG_CGROUP_WRITEBACK

/**
 * inode_congested - test whether an inode is congested
 * @inode: inode to test for congestion
 * @cong_bits: mask of WB_[a]sync_congested bits to test
 *
 * Tests whether @inode is congested.  @cong_bits is the mask of congestion
 * bits to test and the return value is the mask of set bits.
 *
 * If cgroup writeback is enabled for @inode, the congestion state is
 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
 * associated with @inode is congested; otherwise, the root wb's congestion
 * state is used.
 */
int inode_congested(struct inode *inode, int cong_bits)
{
	if (inode) {
		struct bdi_writeback *wb = inode_to_wb(inode);
		if (wb)
			return wb_congested(wb, cong_bits);
	}

	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
}
EXPORT_SYMBOL_GPL(inode_congested);

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
/**
 * wb_wait_for_single_work - wait for completion of a single bdi_writeback_work
 * @bdi: bdi the work item was issued to
 * @work: work item to wait for
 *
 * Wait for the completion of @work which was issued to one of @bdi's
 * bdi_writeback's.  The caller must have set @work->single_wait before
 * issuing it.  This wait operates independently fo
 * wb_wait_for_completion() and also disables automatic freeing of @work.
 */
static void wb_wait_for_single_work(struct backing_dev_info *bdi,
				    struct wb_writeback_work *work)
{
	if (WARN_ON_ONCE(!work->single_wait))
		return;

	wait_event(bdi->wb_waitq, work->single_done);

	/*
	 * Paired with smp_wmb() in wb_do_writeback() and ensures that all
	 * modifications to @work prior to assertion of ->single_done is
	 * visible to the caller once this function returns.
	 */
	smp_rmb();
}

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
/**
 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
 * @wb: target bdi_writeback to split @nr_pages to
 * @nr_pages: number of pages to write for the whole bdi
 *
 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
 * relation to the total write bandwidth of all wb's w/ dirty inodes on
 * @wb->bdi.
 */
static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
{
	unsigned long this_bw = wb->avg_write_bandwidth;
	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);

	if (nr_pages == LONG_MAX)
		return LONG_MAX;

	/*
	 * This may be called on clean wb's and proportional distribution
	 * may not make sense, just use the original @nr_pages in those
	 * cases.  In general, we wanna err on the side of writing more.
	 */
	if (!tot_bw || this_bw >= tot_bw)
		return nr_pages;
	else
		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
}

295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
/**
 * wb_clone_and_queue_work - clone a wb_writeback_work and issue it to a wb
 * @wb: target bdi_writeback
 * @base_work: source wb_writeback_work
 *
 * Try to make a clone of @base_work and issue it to @wb.  If cloning
 * succeeds, %true is returned; otherwise, @base_work is issued directly
 * and %false is returned.  In the latter case, the caller is required to
 * wait for @base_work's completion using wb_wait_for_single_work().
 *
 * A clone is auto-freed on completion.  @base_work never is.
 */
static bool wb_clone_and_queue_work(struct bdi_writeback *wb,
				    struct wb_writeback_work *base_work)
{
	struct wb_writeback_work *work;

	work = kmalloc(sizeof(*work), GFP_ATOMIC);
	if (work) {
		*work = *base_work;
		work->auto_free = 1;
		work->single_wait = 0;
	} else {
		work = base_work;
		work->auto_free = 0;
		work->single_wait = 1;
	}
	work->single_done = 0;
	wb_queue_work(wb, work);
	return work != base_work;
}

/**
 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
 * @bdi: target backing_dev_info
 * @base_work: wb_writeback_work to issue
 * @skip_if_busy: skip wb's which already have writeback in progress
 *
 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
 * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
 * distributed to the busy wbs according to each wb's proportion in the
 * total active write bandwidth of @bdi.
 */
static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
				  struct wb_writeback_work *base_work,
				  bool skip_if_busy)
{
	long nr_pages = base_work->nr_pages;
	int next_blkcg_id = 0;
	struct bdi_writeback *wb;
	struct wb_iter iter;

	might_sleep();

	if (!bdi_has_dirty_io(bdi))
		return;
restart:
	rcu_read_lock();
	bdi_for_each_wb(wb, bdi, &iter, next_blkcg_id) {
		if (!wb_has_dirty_io(wb) ||
		    (skip_if_busy && writeback_in_progress(wb)))
			continue;

		base_work->nr_pages = wb_split_bdi_pages(wb, nr_pages);
		if (!wb_clone_and_queue_work(wb, base_work)) {
			next_blkcg_id = wb->blkcg_css->id + 1;
			rcu_read_unlock();
			wb_wait_for_single_work(bdi, base_work);
			goto restart;
		}
	}
	rcu_read_unlock();
}

369 370 371 372 373 374 375
#else	/* CONFIG_CGROUP_WRITEBACK */

static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
{
	return nr_pages;
}

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
				  struct wb_writeback_work *base_work,
				  bool skip_if_busy)
{
	might_sleep();

	if (bdi_has_dirty_io(bdi) &&
	    (!skip_if_busy || !writeback_in_progress(&bdi->wb))) {
		base_work->auto_free = 0;
		base_work->single_wait = 0;
		base_work->single_done = 0;
		wb_queue_work(&bdi->wb, base_work);
	}
}

391 392
#endif	/* CONFIG_CGROUP_WRITEBACK */

393 394
void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
			bool range_cyclic, enum wb_reason reason)
395
{
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
	struct wb_writeback_work *work;

	if (!wb_has_dirty_io(wb))
		return;

	/*
	 * This is WB_SYNC_NONE writeback, so if allocation fails just
	 * wakeup the thread for old dirty data writeback
	 */
	work = kzalloc(sizeof(*work), GFP_ATOMIC);
	if (!work) {
		trace_writeback_nowork(wb->bdi);
		wb_wakeup(wb);
		return;
	}

	work->sync_mode	= WB_SYNC_NONE;
	work->nr_pages	= nr_pages;
	work->range_cyclic = range_cyclic;
	work->reason	= reason;
416
	work->auto_free	= 1;
417 418

	wb_queue_work(wb, work);
419
}
420

421
/**
422 423
 * wb_start_background_writeback - start background writeback
 * @wb: bdi_writback to write from
424 425
 *
 * Description:
426
 *   This makes sure WB_SYNC_NONE background writeback happens. When
427
 *   this function returns, it is only guaranteed that for given wb
428 429
 *   some IO is happening if we are over background dirty threshold.
 *   Caller need not hold sb s_umount semaphore.
430
 */
431
void wb_start_background_writeback(struct bdi_writeback *wb)
432
{
433 434 435 436
	/*
	 * We just wake up the flusher thread. It will perform background
	 * writeback as soon as there is no other work to do.
	 */
437 438
	trace_writeback_wake_background(wb->bdi);
	wb_wakeup(wb);
L
Linus Torvalds 已提交
439 440
}

441 442 443 444 445
/*
 * Remove the inode from the writeback list it is on.
 */
void inode_wb_list_del(struct inode *inode)
{
446
	struct bdi_writeback *wb = inode_to_wb(inode);
447

448
	spin_lock(&wb->list_lock);
449
	inode_wb_list_del_locked(inode, wb);
450
	spin_unlock(&wb->list_lock);
451 452
}

453 454 455 456 457
/*
 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
 * furthest end of its superblock's dirty-inode list.
 *
 * Before stamping the inode's ->dirtied_when, we check to see whether it is
458
 * already the most-recently-dirtied inode on the b_dirty list.  If that is
459 460 461
 * the case then the inode must have been redirtied while it was being written
 * out and we don't reset its dirtied_when.
 */
462
static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
463
{
464
	if (!list_empty(&wb->b_dirty)) {
465
		struct inode *tail;
466

N
Nick Piggin 已提交
467
		tail = wb_inode(wb->b_dirty.next);
468
		if (time_before(inode->dirtied_when, tail->dirtied_when))
469 470
			inode->dirtied_when = jiffies;
	}
471
	inode_wb_list_move_locked(inode, wb, &wb->b_dirty);
472 473
}

474
/*
475
 * requeue inode for re-scanning after bdi->b_io list is exhausted.
476
 */
477
static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
478
{
479
	inode_wb_list_move_locked(inode, wb, &wb->b_more_io);
480 481
}

J
Joern Engel 已提交
482 483
static void inode_sync_complete(struct inode *inode)
{
484
	inode->i_state &= ~I_SYNC;
485 486
	/* If inode is clean an unused, put it into LRU now... */
	inode_add_lru(inode);
487
	/* Waiters must see I_SYNC cleared before being woken up */
J
Joern Engel 已提交
488 489 490 491
	smp_mb();
	wake_up_bit(&inode->i_state, __I_SYNC);
}

492 493 494 495 496 497 498 499
static bool inode_dirtied_after(struct inode *inode, unsigned long t)
{
	bool ret = time_after(inode->dirtied_when, t);
#ifndef CONFIG_64BIT
	/*
	 * For inodes being constantly redirtied, dirtied_when can get stuck.
	 * It _appears_ to be in the future, but is actually in distant past.
	 * This test is necessary to prevent such wrapped-around relative times
500
	 * from permanently stopping the whole bdi writeback.
501 502 503 504 505 506
	 */
	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
#endif
	return ret;
}

507 508
#define EXPIRE_DIRTY_ATIME 0x0001

509
/*
510
 * Move expired (dirtied before work->older_than_this) dirty inodes from
J
Jan Kara 已提交
511
 * @delaying_queue to @dispatch_queue.
512
 */
513
static int move_expired_inodes(struct list_head *delaying_queue,
514
			       struct list_head *dispatch_queue,
515
			       int flags,
516
			       struct wb_writeback_work *work)
517
{
518 519
	unsigned long *older_than_this = NULL;
	unsigned long expire_time;
520 521
	LIST_HEAD(tmp);
	struct list_head *pos, *node;
522
	struct super_block *sb = NULL;
523
	struct inode *inode;
524
	int do_sb_sort = 0;
525
	int moved = 0;
526

527 528
	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
		older_than_this = work->older_than_this;
529 530
	else if (!work->for_sync) {
		expire_time = jiffies - (dirtytime_expire_interval * HZ);
531 532
		older_than_this = &expire_time;
	}
533
	while (!list_empty(delaying_queue)) {
N
Nick Piggin 已提交
534
		inode = wb_inode(delaying_queue->prev);
535 536
		if (older_than_this &&
		    inode_dirtied_after(inode, *older_than_this))
537
			break;
538 539
		list_move(&inode->i_wb_list, &tmp);
		moved++;
540 541
		if (flags & EXPIRE_DIRTY_ATIME)
			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
542 543
		if (sb_is_blkdev_sb(inode->i_sb))
			continue;
544 545 546
		if (sb && sb != inode->i_sb)
			do_sb_sort = 1;
		sb = inode->i_sb;
547 548
	}

549 550 551
	/* just one sb in list, splice to dispatch_queue and we're done */
	if (!do_sb_sort) {
		list_splice(&tmp, dispatch_queue);
552
		goto out;
553 554
	}

555 556
	/* Move inodes from one superblock together */
	while (!list_empty(&tmp)) {
N
Nick Piggin 已提交
557
		sb = wb_inode(tmp.prev)->i_sb;
558
		list_for_each_prev_safe(pos, node, &tmp) {
N
Nick Piggin 已提交
559
			inode = wb_inode(pos);
560
			if (inode->i_sb == sb)
N
Nick Piggin 已提交
561
				list_move(&inode->i_wb_list, dispatch_queue);
562
		}
563
	}
564 565
out:
	return moved;
566 567 568 569
}

/*
 * Queue all expired dirty inodes for io, eldest first.
570 571 572 573 574 575 576 577
 * Before
 *         newly dirtied     b_dirty    b_io    b_more_io
 *         =============>    gf         edc     BA
 * After
 *         newly dirtied     b_dirty    b_io    b_more_io
 *         =============>    g          fBAedc
 *                                           |
 *                                           +--> dequeue for IO
578
 */
579
static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
580
{
581
	int moved;
582

583
	assert_spin_locked(&wb->list_lock);
584
	list_splice_init(&wb->b_more_io, &wb->b_io);
585 586 587
	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
				     EXPIRE_DIRTY_ATIME, work);
588 589
	if (moved)
		wb_io_lists_populated(wb);
590
	trace_writeback_queue_io(wb, work, moved);
591 592
}

593
static int write_inode(struct inode *inode, struct writeback_control *wbc)
594
{
T
Tejun Heo 已提交
595 596 597 598 599 600 601 602
	int ret;

	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
		trace_writeback_write_inode_start(inode, wbc);
		ret = inode->i_sb->s_op->write_inode(inode, wbc);
		trace_writeback_write_inode(inode, wbc);
		return ret;
	}
603
	return 0;
604 605
}

L
Linus Torvalds 已提交
606
/*
607 608
 * Wait for writeback on an inode to complete. Called with i_lock held.
 * Caller must make sure inode cannot go away when we drop i_lock.
609
 */
610 611 612
static void __inode_wait_for_writeback(struct inode *inode)
	__releases(inode->i_lock)
	__acquires(inode->i_lock)
613 614 615 616 617
{
	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
	wait_queue_head_t *wqh;

	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
618 619
	while (inode->i_state & I_SYNC) {
		spin_unlock(&inode->i_lock);
620 621
		__wait_on_bit(wqh, &wq, bit_wait,
			      TASK_UNINTERRUPTIBLE);
622
		spin_lock(&inode->i_lock);
623
	}
624 625
}

626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
/*
 * Wait for writeback on an inode to complete. Caller must have inode pinned.
 */
void inode_wait_for_writeback(struct inode *inode)
{
	spin_lock(&inode->i_lock);
	__inode_wait_for_writeback(inode);
	spin_unlock(&inode->i_lock);
}

/*
 * Sleep until I_SYNC is cleared. This function must be called with i_lock
 * held and drops it. It is aimed for callers not holding any inode reference
 * so once i_lock is dropped, inode can go away.
 */
static void inode_sleep_on_writeback(struct inode *inode)
	__releases(inode->i_lock)
{
	DEFINE_WAIT(wait);
	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
	int sleep;

	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
	sleep = inode->i_state & I_SYNC;
	spin_unlock(&inode->i_lock);
	if (sleep)
		schedule();
	finish_wait(wqh, &wait);
}

656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
/*
 * Find proper writeback list for the inode depending on its current state and
 * possibly also change of its state while we were doing writeback.  Here we
 * handle things such as livelock prevention or fairness of writeback among
 * inodes. This function can be called only by flusher thread - noone else
 * processes all inodes in writeback lists and requeueing inodes behind flusher
 * thread's back can have unexpected consequences.
 */
static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
			  struct writeback_control *wbc)
{
	if (inode->i_state & I_FREEING)
		return;

	/*
	 * Sync livelock prevention. Each inode is tagged and synced in one
	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
	 * the dirty time to prevent enqueue and sync it again.
	 */
	if ((inode->i_state & I_DIRTY) &&
	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
		inode->dirtied_when = jiffies;

679 680 681 682 683 684 685 686 687
	if (wbc->pages_skipped) {
		/*
		 * writeback is not making progress due to locked
		 * buffers. Skip this inode for now.
		 */
		redirty_tail(inode, wb);
		return;
	}

688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
		/*
		 * We didn't write back all the pages.  nfs_writepages()
		 * sometimes bales out without doing anything.
		 */
		if (wbc->nr_to_write <= 0) {
			/* Slice used up. Queue for next turn. */
			requeue_io(inode, wb);
		} else {
			/*
			 * Writeback blocked by something other than
			 * congestion. Delay the inode for some time to
			 * avoid spinning on the CPU (100% iowait)
			 * retrying writeback of the dirty page/inode
			 * that cannot be performed immediately.
			 */
			redirty_tail(inode, wb);
		}
	} else if (inode->i_state & I_DIRTY) {
		/*
		 * Filesystems can dirty the inode during writeback operations,
		 * such as delayed allocation during submission or metadata
		 * updates after data IO completion.
		 */
		redirty_tail(inode, wb);
713
	} else if (inode->i_state & I_DIRTY_TIME) {
714
		inode->dirtied_when = jiffies;
715
		inode_wb_list_move_locked(inode, wb, &wb->b_dirty_time);
716 717
	} else {
		/* The inode is clean. Remove from writeback lists. */
718
		inode_wb_list_del_locked(inode, wb);
719 720 721
	}
}

722
/*
723 724 725
 * Write out an inode and its dirty pages. Do not update the writeback list
 * linkage. That is left to the caller. The caller is also responsible for
 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
L
Linus Torvalds 已提交
726 727
 */
static int
728
__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
L
Linus Torvalds 已提交
729 730
{
	struct address_space *mapping = inode->i_mapping;
731
	long nr_to_write = wbc->nr_to_write;
732
	unsigned dirty;
L
Linus Torvalds 已提交
733 734
	int ret;

735
	WARN_ON(!(inode->i_state & I_SYNC));
L
Linus Torvalds 已提交
736

T
Tejun Heo 已提交
737 738
	trace_writeback_single_inode_start(inode, wbc, nr_to_write);

L
Linus Torvalds 已提交
739 740
	ret = do_writepages(mapping, wbc);

741 742 743
	/*
	 * Make sure to wait on the data before writing out the metadata.
	 * This is important for filesystems that modify metadata on data
744 745 746
	 * I/O completion. We don't do it for sync(2) writeback because it has a
	 * separate, external IO completion path and ->sync_fs for guaranteeing
	 * inode metadata is written back correctly.
747
	 */
748
	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
749
		int err = filemap_fdatawait(mapping);
L
Linus Torvalds 已提交
750 751 752 753
		if (ret == 0)
			ret = err;
	}

754 755 756 757 758
	/*
	 * Some filesystems may redirty the inode during the writeback
	 * due to delalloc, clear dirty metadata flags right before
	 * write_inode()
	 */
759
	spin_lock(&inode->i_lock);
760

761
	dirty = inode->i_state & I_DIRTY;
762 763 764 765 766 767 768 769 770 771 772
	if (inode->i_state & I_DIRTY_TIME) {
		if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
		    unlikely(time_after(jiffies,
					(inode->dirtied_time_when +
					 dirtytime_expire_interval * HZ)))) {
			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
			trace_writeback_lazytime(inode);
		}
	} else
		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
773
	inode->i_state &= ~dirty;
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790

	/*
	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
	 * either they see the I_DIRTY bits cleared or we see the dirtied
	 * inode.
	 *
	 * I_DIRTY_PAGES is always cleared together above even if @mapping
	 * still has dirty pages.  The flag is reinstated after smp_mb() if
	 * necessary.  This guarantees that either __mark_inode_dirty()
	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
	 */
	smp_mb();

	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
		inode->i_state |= I_DIRTY_PAGES;

791
	spin_unlock(&inode->i_lock);
792

793 794
	if (dirty & I_DIRTY_TIME)
		mark_inode_dirty_sync(inode);
795
	/* Don't write the inode if only I_DIRTY_PAGES was set */
796
	if (dirty & ~I_DIRTY_PAGES) {
797
		int err = write_inode(inode, wbc);
L
Linus Torvalds 已提交
798 799 800
		if (ret == 0)
			ret = err;
	}
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
	trace_writeback_single_inode(inode, wbc, nr_to_write);
	return ret;
}

/*
 * Write out an inode's dirty pages. Either the caller has an active reference
 * on the inode or the inode has I_WILL_FREE set.
 *
 * This function is designed to be called for writing back one inode which
 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
 * and does more profound writeback list handling in writeback_sb_inodes().
 */
static int
writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
		       struct writeback_control *wbc)
{
	int ret = 0;

	spin_lock(&inode->i_lock);
	if (!atomic_read(&inode->i_count))
		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
	else
		WARN_ON(inode->i_state & I_WILL_FREE);

	if (inode->i_state & I_SYNC) {
		if (wbc->sync_mode != WB_SYNC_ALL)
			goto out;
		/*
829 830 831
		 * It's a data-integrity sync. We must wait. Since callers hold
		 * inode reference or inode has I_WILL_FREE set, it cannot go
		 * away under us.
832
		 */
833
		__inode_wait_for_writeback(inode);
834 835 836
	}
	WARN_ON(inode->i_state & I_SYNC);
	/*
J
Jan Kara 已提交
837 838 839 840 841 842
	 * Skip inode if it is clean and we have no outstanding writeback in
	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
	 * function since flusher thread may be doing for example sync in
	 * parallel and if we move the inode, it could get skipped. So here we
	 * make sure inode is on some writeback list and leave it there unless
	 * we have completely cleaned the inode.
843
	 */
844
	if (!(inode->i_state & I_DIRTY_ALL) &&
J
Jan Kara 已提交
845 846
	    (wbc->sync_mode != WB_SYNC_ALL ||
	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
847 848 849 850
		goto out;
	inode->i_state |= I_SYNC;
	spin_unlock(&inode->i_lock);

851
	ret = __writeback_single_inode(inode, wbc);
L
Linus Torvalds 已提交
852

853
	spin_lock(&wb->list_lock);
854
	spin_lock(&inode->i_lock);
855 856 857 858
	/*
	 * If inode is clean, remove it from writeback lists. Otherwise don't
	 * touch it. See comment above for explanation.
	 */
859
	if (!(inode->i_state & I_DIRTY_ALL))
860
		inode_wb_list_del_locked(inode, wb);
861
	spin_unlock(&wb->list_lock);
J
Joern Engel 已提交
862
	inode_sync_complete(inode);
863 864
out:
	spin_unlock(&inode->i_lock);
L
Linus Torvalds 已提交
865 866 867
	return ret;
}

868
static long writeback_chunk_size(struct bdi_writeback *wb,
869
				 struct wb_writeback_work *work)
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
{
	long pages;

	/*
	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
	 * here avoids calling into writeback_inodes_wb() more than once.
	 *
	 * The intended call sequence for WB_SYNC_ALL writeback is:
	 *
	 *      wb_writeback()
	 *          writeback_sb_inodes()       <== called only once
	 *              write_cache_pages()     <== called once for each inode
	 *                   (quickly) tag currently dirty pages
	 *                   (maybe slowly) sync all tagged pages
	 */
	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
		pages = LONG_MAX;
888
	else {
889
		pages = min(wb->avg_write_bandwidth / 2,
890 891 892 893 894
			    global_dirty_limit / DIRTY_SCOPE);
		pages = min(pages, work->nr_pages);
		pages = round_down(pages + MIN_WRITEBACK_PAGES,
				   MIN_WRITEBACK_PAGES);
	}
895 896 897 898

	return pages;
}

899 900
/*
 * Write a portion of b_io inodes which belong to @sb.
901
 *
902
 * Return the number of pages and/or inodes written.
903
 */
904 905 906
static long writeback_sb_inodes(struct super_block *sb,
				struct bdi_writeback *wb,
				struct wb_writeback_work *work)
L
Linus Torvalds 已提交
907
{
908 909 910 911 912
	struct writeback_control wbc = {
		.sync_mode		= work->sync_mode,
		.tagged_writepages	= work->tagged_writepages,
		.for_kupdate		= work->for_kupdate,
		.for_background		= work->for_background,
913
		.for_sync		= work->for_sync,
914 915 916 917 918 919 920 921
		.range_cyclic		= work->range_cyclic,
		.range_start		= 0,
		.range_end		= LLONG_MAX,
	};
	unsigned long start_time = jiffies;
	long write_chunk;
	long wrote = 0;  /* count both pages and inodes */

922
	while (!list_empty(&wb->b_io)) {
N
Nick Piggin 已提交
923
		struct inode *inode = wb_inode(wb->b_io.prev);
924 925

		if (inode->i_sb != sb) {
926
			if (work->sb) {
927 928 929 930 931
				/*
				 * We only want to write back data for this
				 * superblock, move all inodes not belonging
				 * to it back onto the dirty list.
				 */
932
				redirty_tail(inode, wb);
933 934 935 936 937 938 939 940
				continue;
			}

			/*
			 * The inode belongs to a different superblock.
			 * Bounce back to the caller to unpin this and
			 * pin the next superblock.
			 */
941
			break;
942 943
		}

944
		/*
W
Wanpeng Li 已提交
945 946
		 * Don't bother with new inodes or inodes being freed, first
		 * kind does not need periodic writeout yet, and for the latter
947 948
		 * kind writeout is handled by the freer.
		 */
949
		spin_lock(&inode->i_lock);
950
		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
951
			spin_unlock(&inode->i_lock);
952
			redirty_tail(inode, wb);
953 954
			continue;
		}
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
			/*
			 * If this inode is locked for writeback and we are not
			 * doing writeback-for-data-integrity, move it to
			 * b_more_io so that writeback can proceed with the
			 * other inodes on s_io.
			 *
			 * We'll have another go at writing back this inode
			 * when we completed a full scan of b_io.
			 */
			spin_unlock(&inode->i_lock);
			requeue_io(inode, wb);
			trace_writeback_sb_inodes_requeue(inode);
			continue;
		}
970 971
		spin_unlock(&wb->list_lock);

972 973 974 975 976
		/*
		 * We already requeued the inode if it had I_SYNC set and we
		 * are doing WB_SYNC_NONE writeback. So this catches only the
		 * WB_SYNC_ALL case.
		 */
977 978 979 980
		if (inode->i_state & I_SYNC) {
			/* Wait for I_SYNC. This function drops i_lock... */
			inode_sleep_on_writeback(inode);
			/* Inode may be gone, start again */
981
			spin_lock(&wb->list_lock);
982 983
			continue;
		}
984 985
		inode->i_state |= I_SYNC;
		spin_unlock(&inode->i_lock);
986

987
		write_chunk = writeback_chunk_size(wb, work);
988 989
		wbc.nr_to_write = write_chunk;
		wbc.pages_skipped = 0;
990

991 992 993 994
		/*
		 * We use I_SYNC to pin the inode in memory. While it is set
		 * evict_inode() will wait so the inode cannot be freed.
		 */
995
		__writeback_single_inode(inode, &wbc);
996

997 998
		work->nr_pages -= write_chunk - wbc.nr_to_write;
		wrote += write_chunk - wbc.nr_to_write;
999 1000
		spin_lock(&wb->list_lock);
		spin_lock(&inode->i_lock);
1001
		if (!(inode->i_state & I_DIRTY_ALL))
1002
			wrote++;
1003 1004
		requeue_inode(inode, wb, &wbc);
		inode_sync_complete(inode);
1005
		spin_unlock(&inode->i_lock);
1006
		cond_resched_lock(&wb->list_lock);
1007 1008 1009 1010 1011 1012 1013 1014 1015
		/*
		 * bail out to wb_writeback() often enough to check
		 * background threshold and other termination conditions.
		 */
		if (wrote) {
			if (time_is_before_jiffies(start_time + HZ / 10UL))
				break;
			if (work->nr_pages <= 0)
				break;
1016
		}
L
Linus Torvalds 已提交
1017
	}
1018
	return wrote;
1019 1020
}

1021 1022
static long __writeback_inodes_wb(struct bdi_writeback *wb,
				  struct wb_writeback_work *work)
1023
{
1024 1025
	unsigned long start_time = jiffies;
	long wrote = 0;
N
Nick Piggin 已提交
1026

1027
	while (!list_empty(&wb->b_io)) {
N
Nick Piggin 已提交
1028
		struct inode *inode = wb_inode(wb->b_io.prev);
1029
		struct super_block *sb = inode->i_sb;
1030

1031
		if (!trylock_super(sb)) {
1032
			/*
1033
			 * trylock_super() may fail consistently due to
1034 1035 1036 1037
			 * s_umount being grabbed by someone else. Don't use
			 * requeue_io() to avoid busy retrying the inode/sb.
			 */
			redirty_tail(inode, wb);
1038
			continue;
1039
		}
1040
		wrote += writeback_sb_inodes(sb, wb, work);
1041
		up_read(&sb->s_umount);
1042

1043 1044 1045 1046 1047 1048 1049
		/* refer to the same tests at the end of writeback_sb_inodes */
		if (wrote) {
			if (time_is_before_jiffies(start_time + HZ / 10UL))
				break;
			if (work->nr_pages <= 0)
				break;
		}
1050
	}
1051
	/* Leave any unwritten inodes on b_io */
1052
	return wrote;
1053 1054
}

1055
static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1056
				enum wb_reason reason)
1057
{
1058 1059 1060 1061
	struct wb_writeback_work work = {
		.nr_pages	= nr_pages,
		.sync_mode	= WB_SYNC_NONE,
		.range_cyclic	= 1,
1062
		.reason		= reason,
1063
	};
1064

1065
	spin_lock(&wb->list_lock);
W
Wu Fengguang 已提交
1066
	if (list_empty(&wb->b_io))
1067
		queue_io(wb, &work);
1068
	__writeback_inodes_wb(wb, &work);
1069
	spin_unlock(&wb->list_lock);
1070

1071 1072
	return nr_pages - work.nr_pages;
}
1073

1074
static bool over_bground_thresh(struct bdi_writeback *wb)
1075 1076 1077
{
	unsigned long background_thresh, dirty_thresh;

1078
	global_dirty_limits(&background_thresh, &dirty_thresh);
1079

1080 1081 1082 1083
	if (global_page_state(NR_FILE_DIRTY) +
	    global_page_state(NR_UNSTABLE_NFS) > background_thresh)
		return true;

1084
	if (wb_stat(wb, WB_RECLAIMABLE) > wb_dirty_limit(wb, background_thresh))
1085 1086 1087
		return true;

	return false;
1088 1089
}

1090 1091 1092 1093 1094 1095 1096
/*
 * Called under wb->list_lock. If there are multiple wb per bdi,
 * only the flusher working on the first wb should do it.
 */
static void wb_update_bandwidth(struct bdi_writeback *wb,
				unsigned long start_time)
{
1097
	__wb_update_bandwidth(wb, 0, 0, 0, 0, 0, start_time);
1098 1099
}

1100 1101
/*
 * Explicit flushing or periodic writeback of "old" data.
1102
 *
1103 1104 1105 1106
 * Define "old": the first time one of an inode's pages is dirtied, we mark the
 * dirtying-time in the inode's address_space.  So this periodic writeback code
 * just walks the superblock inode list, writing back any inodes which are
 * older than a specific point in time.
1107
 *
1108 1109 1110
 * Try to run once per dirty_writeback_interval.  But if a writeback event
 * takes longer than a dirty_writeback_interval interval, then leave a
 * one-second gap.
1111
 *
1112 1113
 * older_than_this takes precedence over nr_to_write.  So we'll only write back
 * all dirty pages if they are all attached to "old" mappings.
1114
 */
1115
static long wb_writeback(struct bdi_writeback *wb,
1116
			 struct wb_writeback_work *work)
1117
{
1118
	unsigned long wb_start = jiffies;
1119
	long nr_pages = work->nr_pages;
1120
	unsigned long oldest_jif;
J
Jan Kara 已提交
1121
	struct inode *inode;
1122
	long progress;
1123

1124 1125
	oldest_jif = jiffies;
	work->older_than_this = &oldest_jif;
N
Nick Piggin 已提交
1126

1127
	spin_lock(&wb->list_lock);
1128 1129
	for (;;) {
		/*
1130
		 * Stop writeback when nr_pages has been consumed
1131
		 */
1132
		if (work->nr_pages <= 0)
1133
			break;
1134

1135 1136 1137 1138 1139 1140 1141
		/*
		 * Background writeout and kupdate-style writeback may
		 * run forever. Stop them if there is other work to do
		 * so that e.g. sync can proceed. They'll be restarted
		 * after the other works are all done.
		 */
		if ((work->for_background || work->for_kupdate) &&
1142
		    !list_empty(&wb->work_list))
1143 1144
			break;

N
Nick Piggin 已提交
1145
		/*
1146 1147
		 * For background writeout, stop when we are below the
		 * background dirty threshold
N
Nick Piggin 已提交
1148
		 */
1149
		if (work->for_background && !over_bground_thresh(wb))
1150
			break;
N
Nick Piggin 已提交
1151

1152 1153 1154 1155 1156 1157
		/*
		 * Kupdate and background works are special and we want to
		 * include all inodes that need writing. Livelock avoidance is
		 * handled by these works yielding to any other work so we are
		 * safe.
		 */
1158
		if (work->for_kupdate) {
1159
			oldest_jif = jiffies -
1160
				msecs_to_jiffies(dirty_expire_interval * 10);
1161
		} else if (work->for_background)
1162
			oldest_jif = jiffies;
1163

1164
		trace_writeback_start(wb->bdi, work);
1165
		if (list_empty(&wb->b_io))
1166
			queue_io(wb, work);
1167
		if (work->sb)
1168
			progress = writeback_sb_inodes(work->sb, wb, work);
1169
		else
1170 1171
			progress = __writeback_inodes_wb(wb, work);
		trace_writeback_written(wb->bdi, work);
1172

1173
		wb_update_bandwidth(wb, wb_start);
1174 1175

		/*
1176 1177 1178 1179 1180 1181
		 * Did we write something? Try for more
		 *
		 * Dirty inodes are moved to b_io for writeback in batches.
		 * The completion of the current batch does not necessarily
		 * mean the overall work is done. So we keep looping as long
		 * as made some progress on cleaning pages or inodes.
1182
		 */
1183
		if (progress)
1184 1185
			continue;
		/*
1186
		 * No more inodes for IO, bail
1187
		 */
1188
		if (list_empty(&wb->b_more_io))
1189
			break;
1190 1191 1192 1193 1194 1195
		/*
		 * Nothing written. Wait for some inode to
		 * become available for writeback. Otherwise
		 * we'll just busyloop.
		 */
		if (!list_empty(&wb->b_more_io))  {
1196
			trace_writeback_wait(wb->bdi, work);
N
Nick Piggin 已提交
1197
			inode = wb_inode(wb->b_more_io.prev);
1198
			spin_lock(&inode->i_lock);
1199
			spin_unlock(&wb->list_lock);
1200 1201
			/* This function drops i_lock... */
			inode_sleep_on_writeback(inode);
1202
			spin_lock(&wb->list_lock);
1203 1204
		}
	}
1205
	spin_unlock(&wb->list_lock);
1206

1207
	return nr_pages - work->nr_pages;
1208 1209 1210
}

/*
1211
 * Return the next wb_writeback_work struct that hasn't been processed yet.
1212
 */
1213
static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1214
{
1215
	struct wb_writeback_work *work = NULL;
1216

1217 1218 1219
	spin_lock_bh(&wb->work_lock);
	if (!list_empty(&wb->work_list)) {
		work = list_entry(wb->work_list.next,
1220 1221
				  struct wb_writeback_work, list);
		list_del_init(&work->list);
1222
	}
1223
	spin_unlock_bh(&wb->work_lock);
1224
	return work;
1225 1226
}

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
/*
 * Add in the number of potentially dirty inodes, because each inode
 * write can dirty pagecache in the underlying blockdev.
 */
static unsigned long get_nr_dirty_pages(void)
{
	return global_page_state(NR_FILE_DIRTY) +
		global_page_state(NR_UNSTABLE_NFS) +
		get_nr_dirty_inodes();
}

1238 1239
static long wb_check_background_flush(struct bdi_writeback *wb)
{
1240
	if (over_bground_thresh(wb)) {
1241 1242 1243 1244 1245 1246

		struct wb_writeback_work work = {
			.nr_pages	= LONG_MAX,
			.sync_mode	= WB_SYNC_NONE,
			.for_background	= 1,
			.range_cyclic	= 1,
1247
			.reason		= WB_REASON_BACKGROUND,
1248 1249 1250 1251 1252 1253 1254 1255
		};

		return wb_writeback(wb, &work);
	}

	return 0;
}

1256 1257 1258 1259 1260
static long wb_check_old_data_flush(struct bdi_writeback *wb)
{
	unsigned long expired;
	long nr_pages;

1261 1262 1263 1264 1265 1266
	/*
	 * When set to zero, disable periodic writeback
	 */
	if (!dirty_writeback_interval)
		return 0;

1267 1268 1269 1270 1271 1272
	expired = wb->last_old_flush +
			msecs_to_jiffies(dirty_writeback_interval * 10);
	if (time_before(jiffies, expired))
		return 0;

	wb->last_old_flush = jiffies;
1273
	nr_pages = get_nr_dirty_pages();
1274

1275
	if (nr_pages) {
1276
		struct wb_writeback_work work = {
1277 1278 1279 1280
			.nr_pages	= nr_pages,
			.sync_mode	= WB_SYNC_NONE,
			.for_kupdate	= 1,
			.range_cyclic	= 1,
1281
			.reason		= WB_REASON_PERIODIC,
1282 1283
		};

1284
		return wb_writeback(wb, &work);
1285
	}
1286 1287 1288 1289 1290 1291 1292

	return 0;
}

/*
 * Retrieve work items and do the writeback they describe
 */
1293
static long wb_do_writeback(struct bdi_writeback *wb)
1294
{
1295
	struct wb_writeback_work *work;
1296
	long wrote = 0;
1297

1298
	set_bit(WB_writeback_running, &wb->state);
1299
	while ((work = get_next_work_item(wb)) != NULL) {
1300
		struct wb_completion *done = work->done;
1301
		bool need_wake_up = false;
1302

1303
		trace_writeback_exec(wb->bdi, work);
1304

1305
		wrote += wb_writeback(wb, work);
1306

1307 1308 1309 1310 1311 1312 1313
		if (work->single_wait) {
			WARN_ON_ONCE(work->auto_free);
			/* paired w/ rmb in wb_wait_for_single_work() */
			smp_wmb();
			work->single_done = 1;
			need_wake_up = true;
		} else if (work->auto_free) {
1314
			kfree(work);
1315 1316
		}

1317
		if (done && atomic_dec_and_test(&done->cnt))
1318 1319 1320
			need_wake_up = true;

		if (need_wake_up)
1321
			wake_up_all(&wb->bdi->wb_waitq);
1322 1323 1324 1325 1326 1327
	}

	/*
	 * Check for periodic writeback, kupdated() style
	 */
	wrote += wb_check_old_data_flush(wb);
1328
	wrote += wb_check_background_flush(wb);
1329
	clear_bit(WB_writeback_running, &wb->state);
1330 1331 1332 1333 1334 1335

	return wrote;
}

/*
 * Handle writeback of dirty data for the device backed by this bdi. Also
1336
 * reschedules periodically and does kupdated style flushing.
1337
 */
1338
void wb_workfn(struct work_struct *work)
1339
{
1340 1341
	struct bdi_writeback *wb = container_of(to_delayed_work(work),
						struct bdi_writeback, dwork);
1342 1343
	long pages_written;

1344
	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
P
Peter Zijlstra 已提交
1345
	current->flags |= PF_SWAPWRITE;
1346

1347
	if (likely(!current_is_workqueue_rescuer() ||
1348
		   !test_bit(WB_registered, &wb->state))) {
1349
		/*
1350
		 * The normal path.  Keep writing back @wb until its
1351
		 * work_list is empty.  Note that this path is also taken
1352
		 * if @wb is shutting down even when we're running off the
1353
		 * rescuer as work_list needs to be drained.
1354
		 */
1355
		do {
1356
			pages_written = wb_do_writeback(wb);
1357
			trace_writeback_pages_written(pages_written);
1358
		} while (!list_empty(&wb->work_list));
1359 1360 1361 1362 1363 1364
	} else {
		/*
		 * bdi_wq can't get enough workers and we're running off
		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
		 * enough for efficient IO.
		 */
1365
		pages_written = writeback_inodes_wb(wb, 1024,
1366
						    WB_REASON_FORKER_THREAD);
1367
		trace_writeback_pages_written(pages_written);
1368 1369
	}

1370
	if (!list_empty(&wb->work_list))
1371 1372
		mod_delayed_work(bdi_wq, &wb->dwork, 0);
	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1373
		wb_wakeup_delayed(wb);
1374

1375
	current->flags &= ~PF_SWAPWRITE;
1376 1377 1378
}

/*
1379 1380
 * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
 * the whole world.
1381
 */
1382
void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1383
{
1384
	struct backing_dev_info *bdi;
1385

1386 1387
	if (!nr_pages)
		nr_pages = get_nr_dirty_pages();
1388

1389
	rcu_read_lock();
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
		struct bdi_writeback *wb;
		struct wb_iter iter;

		if (!bdi_has_dirty_io(bdi))
			continue;

		bdi_for_each_wb(wb, bdi, &iter, 0)
			wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
					   false, reason);
	}
1401
	rcu_read_unlock();
L
Linus Torvalds 已提交
1402 1403
}

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
/*
 * Wake up bdi's periodically to make sure dirtytime inodes gets
 * written back periodically.  We deliberately do *not* check the
 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
 * kernel to be constantly waking up once there are any dirtytime
 * inodes on the system.  So instead we define a separate delayed work
 * function which gets called much more rarely.  (By default, only
 * once every 12 hours.)
 *
 * If there is any other write activity going on in the file system,
 * this function won't be necessary.  But if the only thing that has
 * happened on the file system is a dirtytime inode caused by an atime
 * update, we need this infrastructure below to make sure that inode
 * eventually gets pushed out to disk.
 */
static void wakeup_dirtytime_writeback(struct work_struct *w);
static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);

static void wakeup_dirtytime_writeback(struct work_struct *w)
{
	struct backing_dev_info *bdi;

	rcu_read_lock();
	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1428 1429 1430 1431 1432 1433
		struct bdi_writeback *wb;
		struct wb_iter iter;

		bdi_for_each_wb(wb, bdi, &iter, 0)
			if (!list_empty(&bdi->wb.b_dirty_time))
				wb_wakeup(&bdi->wb);
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
	}
	rcu_read_unlock();
	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
}

static int __init start_dirtytime_writeback(void)
{
	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
	return 0;
}
__initcall(start_dirtytime_writeback);

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
int dirtytime_interval_handler(struct ctl_table *table, int write,
			       void __user *buffer, size_t *lenp, loff_t *ppos)
{
	int ret;

	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
	if (ret == 0 && write)
		mod_delayed_work(system_wq, &dirtytime_work, 0);
	return ret;
}

1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
static noinline void block_dump___mark_inode_dirty(struct inode *inode)
{
	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
		struct dentry *dentry;
		const char *name = "?";

		dentry = d_find_alias(inode);
		if (dentry) {
			spin_lock(&dentry->d_lock);
			name = (const char *) dentry->d_name.name;
		}
		printk(KERN_DEBUG
		       "%s(%d): dirtied inode %lu (%s) on %s\n",
		       current->comm, task_pid_nr(current), inode->i_ino,
		       name, inode->i_sb->s_id);
		if (dentry) {
			spin_unlock(&dentry->d_lock);
			dput(dentry);
		}
	}
}

/**
 *	__mark_inode_dirty -	internal function
 *	@inode: inode to mark
 *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
 *	Mark an inode as dirty. Callers should use mark_inode_dirty or
 *  	mark_inode_dirty_sync.
L
Linus Torvalds 已提交
1485
 *
1486 1487 1488 1489 1490 1491 1492 1493 1494
 * Put the inode on the super block's dirty list.
 *
 * CAREFUL! We mark it dirty unconditionally, but move it onto the
 * dirty list only if it is hashed or if it refers to a blockdev.
 * If it was not hashed, it will never be added to the dirty list
 * even if it is later hashed, as it will have been marked dirty already.
 *
 * In short, make sure you hash any inodes _before_ you start marking
 * them dirty.
L
Linus Torvalds 已提交
1495
 *
1496 1497 1498 1499 1500 1501
 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
 * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
 * the kernel-internal blockdev inode represents the dirtying time of the
 * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
 * page->mapping->host, so the page-dirtying time is recorded in the internal
 * blockdev inode.
L
Linus Torvalds 已提交
1502
 */
1503
#define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
1504
void __mark_inode_dirty(struct inode *inode, int flags)
L
Linus Torvalds 已提交
1505
{
1506
	struct super_block *sb = inode->i_sb;
1507 1508 1509
	int dirtytime;

	trace_writeback_mark_inode_dirty(inode, flags);
L
Linus Torvalds 已提交
1510

1511 1512 1513 1514
	/*
	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
	 * dirty the inode itself
	 */
1515
	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
T
Tejun Heo 已提交
1516 1517
		trace_writeback_dirty_inode_start(inode, flags);

1518
		if (sb->s_op->dirty_inode)
1519
			sb->s_op->dirty_inode(inode, flags);
T
Tejun Heo 已提交
1520 1521

		trace_writeback_dirty_inode(inode, flags);
1522
	}
1523 1524 1525
	if (flags & I_DIRTY_INODE)
		flags &= ~I_DIRTY_TIME;
	dirtytime = flags & I_DIRTY_TIME;
1526 1527

	/*
1528 1529
	 * Paired with smp_mb() in __writeback_single_inode() for the
	 * following lockless i_state test.  See there for details.
1530 1531 1532
	 */
	smp_mb();

1533 1534
	if (((inode->i_state & flags) == flags) ||
	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
1535 1536 1537 1538 1539
		return;

	if (unlikely(block_dump))
		block_dump___mark_inode_dirty(inode);

1540
	spin_lock(&inode->i_lock);
1541 1542
	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
		goto out_unlock_inode;
1543 1544 1545
	if ((inode->i_state & flags) != flags) {
		const int was_dirty = inode->i_state & I_DIRTY;

1546 1547
		inode_attach_wb(inode, NULL);

1548 1549
		if (flags & I_DIRTY_INODE)
			inode->i_state &= ~I_DIRTY_TIME;
1550 1551 1552 1553 1554 1555 1556 1557
		inode->i_state |= flags;

		/*
		 * If the inode is being synced, just update its dirty state.
		 * The unlocker will place the inode on the appropriate
		 * superblock list, based upon its state.
		 */
		if (inode->i_state & I_SYNC)
1558
			goto out_unlock_inode;
1559 1560 1561 1562 1563 1564

		/*
		 * Only add valid (hashed) inodes to the superblock's
		 * dirty list.  Add blockdev inodes as well.
		 */
		if (!S_ISBLK(inode->i_mode)) {
A
Al Viro 已提交
1565
			if (inode_unhashed(inode))
1566
				goto out_unlock_inode;
1567
		}
A
Al Viro 已提交
1568
		if (inode->i_state & I_FREEING)
1569
			goto out_unlock_inode;
1570 1571 1572 1573 1574 1575

		/*
		 * If the inode was already on b_dirty/b_io/b_more_io, don't
		 * reposition it (that would break b_dirty time-ordering).
		 */
		if (!was_dirty) {
1576
			struct bdi_writeback *wb = inode_to_wb(inode);
1577
			struct list_head *dirty_list;
1578
			bool wakeup_bdi = false;
1579

1580
			spin_unlock(&inode->i_lock);
1581
			spin_lock(&wb->list_lock);
1582

1583 1584 1585
			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
			     !test_bit(WB_registered, &wb->state),
			     "bdi-%s not registered\n", wb->bdi->name);
1586 1587

			inode->dirtied_when = jiffies;
1588 1589
			if (dirtytime)
				inode->dirtied_time_when = jiffies;
1590

1591
			if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
1592
				dirty_list = &wb->b_dirty;
1593
			else
1594
				dirty_list = &wb->b_dirty_time;
1595

1596
			wakeup_bdi = inode_wb_list_move_locked(inode, wb,
1597 1598
							       dirty_list);

1599
			spin_unlock(&wb->list_lock);
1600
			trace_writeback_dirty_inode_enqueue(inode);
1601

1602 1603 1604 1605 1606 1607
			/*
			 * If this is the first dirty inode for this bdi,
			 * we have to wake-up the corresponding bdi thread
			 * to make sure background write-back happens
			 * later.
			 */
1608 1609
			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
				wb_wakeup_delayed(wb);
1610
			return;
L
Linus Torvalds 已提交
1611 1612
		}
	}
1613 1614
out_unlock_inode:
	spin_unlock(&inode->i_lock);
1615

1616 1617 1618
}
EXPORT_SYMBOL(__mark_inode_dirty);

1619
static void wait_sb_inodes(struct super_block *sb)
1620 1621 1622 1623 1624 1625 1626
{
	struct inode *inode, *old_inode = NULL;

	/*
	 * We need to be protected against the filesystem going from
	 * r/o to r/w or vice versa.
	 */
1627
	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1628

1629
	spin_lock(&inode_sb_list_lock);
1630 1631 1632 1633 1634 1635 1636 1637

	/*
	 * Data integrity sync. Must wait for all pages under writeback,
	 * because there may have been pages dirtied before our sync
	 * call, but which had writeout started before we write it out.
	 * In which case, the inode may not be on the dirty list, but
	 * we still have to wait for that writeout.
	 */
1638
	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1639
		struct address_space *mapping = inode->i_mapping;
1640

1641 1642 1643 1644
		spin_lock(&inode->i_lock);
		if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
		    (mapping->nrpages == 0)) {
			spin_unlock(&inode->i_lock);
1645
			continue;
1646
		}
1647
		__iget(inode);
1648
		spin_unlock(&inode->i_lock);
1649 1650
		spin_unlock(&inode_sb_list_lock);

1651
		/*
1652 1653 1654 1655 1656 1657
		 * We hold a reference to 'inode' so it couldn't have been
		 * removed from s_inodes list while we dropped the
		 * inode_sb_list_lock.  We cannot iput the inode now as we can
		 * be holding the last reference and we cannot iput it under
		 * inode_sb_list_lock. So we keep the reference and iput it
		 * later.
1658 1659 1660 1661 1662 1663 1664 1665
		 */
		iput(old_inode);
		old_inode = inode;

		filemap_fdatawait(mapping);

		cond_resched();

1666
		spin_lock(&inode_sb_list_lock);
1667
	}
1668
	spin_unlock(&inode_sb_list_lock);
1669
	iput(old_inode);
L
Linus Torvalds 已提交
1670 1671
}

1672 1673
static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
				     enum wb_reason reason, bool skip_if_busy)
L
Linus Torvalds 已提交
1674
{
1675
	DEFINE_WB_COMPLETION_ONSTACK(done);
1676
	struct wb_writeback_work work = {
1677 1678 1679 1680 1681
		.sb			= sb,
		.sync_mode		= WB_SYNC_NONE,
		.tagged_writepages	= 1,
		.done			= &done,
		.nr_pages		= nr,
1682
		.reason			= reason,
1683
	};
1684
	struct backing_dev_info *bdi = sb->s_bdi;
1685

1686
	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
1687
		return;
1688
	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1689

1690
	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
1691
	wb_wait_for_completion(bdi, &done);
1692
}
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709

/**
 * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
 * @sb: the superblock
 * @nr: the number of pages to write
 * @reason: reason why some writeback work initiated
 *
 * Start writeback on some inodes on this super_block. No guarantees are made
 * on how many (if any) will be written, and this function does not wait
 * for IO completion of submitted IO.
 */
void writeback_inodes_sb_nr(struct super_block *sb,
			    unsigned long nr,
			    enum wb_reason reason)
{
	__writeback_inodes_sb_nr(sb, nr, reason, false);
}
1710 1711 1712 1713 1714
EXPORT_SYMBOL(writeback_inodes_sb_nr);

/**
 * writeback_inodes_sb	-	writeback dirty inodes from given super_block
 * @sb: the superblock
1715
 * @reason: reason why some writeback work was initiated
1716 1717 1718 1719 1720
 *
 * Start writeback on some inodes on this super_block. No guarantees are made
 * on how many (if any) will be written, and this function does not wait
 * for IO completion of submitted IO.
 */
1721
void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1722
{
1723
	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1724
}
1725
EXPORT_SYMBOL(writeback_inodes_sb);
1726

1727
/**
1728
 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1729
 * @sb: the superblock
1730 1731
 * @nr: the number of pages to write
 * @reason: the reason of writeback
1732
 *
1733
 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1734 1735
 * Returns 1 if writeback was started, 0 if not.
 */
1736 1737
bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
				   enum wb_reason reason)
1738
{
1739
	if (!down_read_trylock(&sb->s_umount))
1740
		return false;
1741

1742
	__writeback_inodes_sb_nr(sb, nr, reason, true);
1743
	up_read(&sb->s_umount);
1744
	return true;
1745
}
1746
EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1747

1748
/**
1749
 * try_to_writeback_inodes_sb - try to start writeback if none underway
1750
 * @sb: the superblock
1751
 * @reason: reason why some writeback work was initiated
1752
 *
1753
 * Implement by try_to_writeback_inodes_sb_nr()
1754 1755
 * Returns 1 if writeback was started, 0 if not.
 */
1756
bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1757
{
1758
	return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1759
}
1760
EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1761

1762 1763
/**
 * sync_inodes_sb	-	sync sb inode pages
1764
 * @sb: the superblock
1765 1766
 *
 * This function writes and waits on any dirty inode belonging to this
1767
 * super_block.
1768
 */
1769
void sync_inodes_sb(struct super_block *sb)
1770
{
1771
	DEFINE_WB_COMPLETION_ONSTACK(done);
1772
	struct wb_writeback_work work = {
1773 1774 1775 1776
		.sb		= sb,
		.sync_mode	= WB_SYNC_ALL,
		.nr_pages	= LONG_MAX,
		.range_cyclic	= 0,
1777
		.done		= &done,
1778
		.reason		= WB_REASON_SYNC,
1779
		.for_sync	= 1,
1780
	};
1781
	struct backing_dev_info *bdi = sb->s_bdi;
1782

1783
	/* Nothing to do? */
1784
	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
1785
		return;
1786 1787
	WARN_ON(!rwsem_is_locked(&sb->s_umount));

1788
	bdi_split_work_to_wbs(bdi, &work, false);
1789
	wb_wait_for_completion(bdi, &done);
1790

1791
	wait_sb_inodes(sb);
L
Linus Torvalds 已提交
1792
}
1793
EXPORT_SYMBOL(sync_inodes_sb);
L
Linus Torvalds 已提交
1794 1795

/**
1796 1797 1798 1799 1800 1801
 * write_inode_now	-	write an inode to disk
 * @inode: inode to write to disk
 * @sync: whether the write should be synchronous or not
 *
 * This function commits an inode to disk immediately if it is dirty. This is
 * primarily needed by knfsd.
L
Linus Torvalds 已提交
1802
 *
1803
 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
L
Linus Torvalds 已提交
1804 1805 1806
 */
int write_inode_now(struct inode *inode, int sync)
{
1807
	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
L
Linus Torvalds 已提交
1808 1809
	struct writeback_control wbc = {
		.nr_to_write = LONG_MAX,
1810
		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1811 1812
		.range_start = 0,
		.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
1813 1814 1815
	};

	if (!mapping_cap_writeback_dirty(inode->i_mapping))
1816
		wbc.nr_to_write = 0;
L
Linus Torvalds 已提交
1817 1818

	might_sleep();
1819
	return writeback_single_inode(inode, wb, &wbc);
L
Linus Torvalds 已提交
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
}
EXPORT_SYMBOL(write_inode_now);

/**
 * sync_inode - write an inode and its pages to disk.
 * @inode: the inode to sync
 * @wbc: controls the writeback mode
 *
 * sync_inode() will write an inode and its pages to disk.  It will also
 * correctly update the inode on its superblock's dirty inode lists and will
 * update inode->i_state.
 *
 * The caller must have a ref on the inode.
 */
int sync_inode(struct inode *inode, struct writeback_control *wbc)
{
1836
	return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
L
Linus Torvalds 已提交
1837 1838
}
EXPORT_SYMBOL(sync_inode);
C
Christoph Hellwig 已提交
1839 1840

/**
A
Andrew Morton 已提交
1841
 * sync_inode_metadata - write an inode to disk
C
Christoph Hellwig 已提交
1842 1843 1844
 * @inode: the inode to sync
 * @wait: wait for I/O to complete.
 *
A
Andrew Morton 已提交
1845
 * Write an inode to disk and adjust its dirty state after completion.
C
Christoph Hellwig 已提交
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
 *
 * Note: only writes the actual inode, no associated data or other metadata.
 */
int sync_inode_metadata(struct inode *inode, int wait)
{
	struct writeback_control wbc = {
		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
		.nr_to_write = 0, /* metadata-only */
	};

	return sync_inode(inode, &wbc);
}
EXPORT_SYMBOL(sync_inode_metadata);