blk-settings.c 26.4 KB
Newer Older
J
Jens Axboe 已提交
1 2 3 4 5 6 7 8 9
/*
 * Functions related to setting various queue properties from drivers
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/bootmem.h>	/* for max_pfn/max_low_pfn */
10
#include <linux/gcd.h>
11
#include <linux/lcm.h>
R
Randy Dunlap 已提交
12
#include <linux/jiffies.h>
13
#include <linux/gfp.h>
J
Jens Axboe 已提交
14 15 16

#include "blk.h"

17
unsigned long blk_max_low_pfn;
J
Jens Axboe 已提交
18
EXPORT_SYMBOL(blk_max_low_pfn);
19 20

unsigned long blk_max_pfn;
J
Jens Axboe 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

/**
 * blk_queue_prep_rq - set a prepare_request function for queue
 * @q:		queue
 * @pfn:	prepare_request function
 *
 * It's possible for a queue to register a prepare_request callback which
 * is invoked before the request is handed to the request_fn. The goal of
 * the function is to prepare a request for I/O, it can be used to build a
 * cdb from the request data for instance.
 *
 */
void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
{
	q->prep_rq_fn = pfn;
}
EXPORT_SYMBOL(blk_queue_prep_rq);

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
/**
 * blk_queue_unprep_rq - set an unprepare_request function for queue
 * @q:		queue
 * @ufn:	unprepare_request function
 *
 * It's possible for a queue to register an unprepare_request callback
 * which is invoked before the request is finally completed. The goal
 * of the function is to deallocate any data that was allocated in the
 * prepare_request callback.
 *
 */
void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
{
	q->unprep_rq_fn = ufn;
}
EXPORT_SYMBOL(blk_queue_unprep_rq);

J
Jens Axboe 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
/**
 * blk_queue_merge_bvec - set a merge_bvec function for queue
 * @q:		queue
 * @mbfn:	merge_bvec_fn
 *
 * Usually queues have static limitations on the max sectors or segments that
 * we can put in a request. Stacking drivers may have some settings that
 * are dynamic, and thus we have to query the queue whether it is ok to
 * add a new bio_vec to a bio at a given offset or not. If the block device
 * has such limitations, it needs to register a merge_bvec_fn to control
 * the size of bio's sent to it. Note that a block device *must* allow a
 * single page to be added to an empty bio. The block device driver may want
 * to use the bio_split() function to deal with these bio's. By default
 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
 * honored.
 */
void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
{
	q->merge_bvec_fn = mbfn;
}
EXPORT_SYMBOL(blk_queue_merge_bvec);

void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
{
	q->softirq_done_fn = fn;
}
EXPORT_SYMBOL(blk_queue_softirq_done);

J
Jens Axboe 已提交
84 85 86 87 88 89 90 91 92 93 94 95
void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
{
	q->rq_timeout = timeout;
}
EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);

void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
{
	q->rq_timed_out_fn = fn;
}
EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);

96 97 98 99 100 101
void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
{
	q->lld_busy_fn = fn;
}
EXPORT_SYMBOL_GPL(blk_queue_lld_busy);

102 103
/**
 * blk_set_default_limits - reset limits to default values
104
 * @lim:  the queue_limits structure to reset
105 106
 *
 * Description:
107
 *   Returns a queue_limit struct to its default state.
108 109 110
 */
void blk_set_default_limits(struct queue_limits *lim)
{
111
	lim->max_segments = BLK_MAX_SEGMENTS;
112
	lim->max_integrity_segments = 0;
113
	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
114
	lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
115
	lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
116
	lim->max_write_same_sectors = 0;
117 118 119 120
	lim->max_discard_sectors = 0;
	lim->discard_granularity = 0;
	lim->discard_alignment = 0;
	lim->discard_misaligned = 0;
121
	lim->discard_zeroes_data = 0;
122
	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
123
	lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
124 125 126
	lim->alignment_offset = 0;
	lim->io_opt = 0;
	lim->misaligned = 0;
127
	lim->cluster = 1;
128 129 130
}
EXPORT_SYMBOL(blk_set_default_limits);

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
/**
 * blk_set_stacking_limits - set default limits for stacking devices
 * @lim:  the queue_limits structure to reset
 *
 * Description:
 *   Returns a queue_limit struct to its default state. Should be used
 *   by stacking drivers like DM that have no internal limits.
 */
void blk_set_stacking_limits(struct queue_limits *lim)
{
	blk_set_default_limits(lim);

	/* Inherit limits from component devices */
	lim->discard_zeroes_data = 1;
	lim->max_segments = USHRT_MAX;
	lim->max_hw_sectors = UINT_MAX;
147
	lim->max_segment_size = UINT_MAX;
148
	lim->max_sectors = UINT_MAX;
149
	lim->max_write_same_sectors = UINT_MAX;
150 151 152
}
EXPORT_SYMBOL(blk_set_stacking_limits);

J
Jens Axboe 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
/**
 * blk_queue_make_request - define an alternate make_request function for a device
 * @q:  the request queue for the device to be affected
 * @mfn: the alternate make_request function
 *
 * Description:
 *    The normal way for &struct bios to be passed to a device
 *    driver is for them to be collected into requests on a request
 *    queue, and then to allow the device driver to select requests
 *    off that queue when it is ready.  This works well for many block
 *    devices. However some block devices (typically virtual devices
 *    such as md or lvm) do not benefit from the processing on the
 *    request queue, and are served best by having the requests passed
 *    directly to them.  This can be achieved by providing a function
 *    to blk_queue_make_request().
 *
 * Caveat:
 *    The driver that does this *must* be able to deal appropriately
 *    with buffers in "highmemory". This can be accomplished by either calling
 *    __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
 *    blk_queue_bounce() to create a buffer in normal memory.
 **/
175
void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
J
Jens Axboe 已提交
176 177 178 179 180
{
	/*
	 * set defaults
	 */
	q->nr_requests = BLKDEV_MAX_RQ;
181

J
Jens Axboe 已提交
182 183 184 185 186
	q->make_request_fn = mfn;
	blk_queue_dma_alignment(q, 511);
	blk_queue_congestion_threshold(q);
	q->nr_batching = BLK_BATCH_REQ;

187 188
	blk_set_default_limits(&q->limits);

J
Jens Axboe 已提交
189 190 191 192 193 194 195 196 197
	/*
	 * by default assume old behaviour and bounce for any highmem page
	 */
	blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
}
EXPORT_SYMBOL(blk_queue_make_request);

/**
 * blk_queue_bounce_limit - set bounce buffer limit for queue
198
 * @q: the request queue for the device
199
 * @max_addr: the maximum address the device can handle
J
Jens Axboe 已提交
200 201 202 203 204
 *
 * Description:
 *    Different hardware can have different requirements as to what pages
 *    it can do I/O directly to. A low level driver can call
 *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
205
 *    buffers for doing I/O to pages residing above @max_addr.
J
Jens Axboe 已提交
206
 **/
207
void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr)
J
Jens Axboe 已提交
208
{
209
	unsigned long b_pfn = max_addr >> PAGE_SHIFT;
J
Jens Axboe 已提交
210 211 212 213
	int dma = 0;

	q->bounce_gfp = GFP_NOIO;
#if BITS_PER_LONG == 64
214 215 216 217 218 219
	/*
	 * Assume anything <= 4GB can be handled by IOMMU.  Actually
	 * some IOMMUs can handle everything, but I don't know of a
	 * way to test this here.
	 */
	if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
J
Jens Axboe 已提交
220
		dma = 1;
221
	q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
J
Jens Axboe 已提交
222
#else
223
	if (b_pfn < blk_max_low_pfn)
J
Jens Axboe 已提交
224
		dma = 1;
225
	q->limits.bounce_pfn = b_pfn;
226
#endif
J
Jens Axboe 已提交
227 228 229
	if (dma) {
		init_emergency_isa_pool();
		q->bounce_gfp = GFP_NOIO | GFP_DMA;
230
		q->limits.bounce_pfn = b_pfn;
J
Jens Axboe 已提交
231 232 233 234 235
	}
}
EXPORT_SYMBOL(blk_queue_bounce_limit);

/**
236 237
 * blk_limits_max_hw_sectors - set hard and soft limit of max sectors for request
 * @limits: the queue limits
238
 * @max_hw_sectors:  max hardware sectors in the usual 512b unit
J
Jens Axboe 已提交
239 240
 *
 * Description:
241 242 243 244 245 246 247 248 249
 *    Enables a low level driver to set a hard upper limit,
 *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
 *    the device driver based upon the combined capabilities of I/O
 *    controller and storage device.
 *
 *    max_sectors is a soft limit imposed by the block layer for
 *    filesystem type requests.  This value can be overridden on a
 *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
 *    The soft limit can not exceed max_hw_sectors.
J
Jens Axboe 已提交
250
 **/
251
void blk_limits_max_hw_sectors(struct queue_limits *limits, unsigned int max_hw_sectors)
J
Jens Axboe 已提交
252
{
253 254
	if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) {
		max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
255
		printk(KERN_INFO "%s: set to minimum %d\n",
256
		       __func__, max_hw_sectors);
J
Jens Axboe 已提交
257 258
	}

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
	limits->max_hw_sectors = max_hw_sectors;
	limits->max_sectors = min_t(unsigned int, max_hw_sectors,
				    BLK_DEF_MAX_SECTORS);
}
EXPORT_SYMBOL(blk_limits_max_hw_sectors);

/**
 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
 * @q:  the request queue for the device
 * @max_hw_sectors:  max hardware sectors in the usual 512b unit
 *
 * Description:
 *    See description for blk_limits_max_hw_sectors().
 **/
void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
{
	blk_limits_max_hw_sectors(&q->limits, max_hw_sectors);
J
Jens Axboe 已提交
276
}
277
EXPORT_SYMBOL(blk_queue_max_hw_sectors);
J
Jens Axboe 已提交
278

279 280 281
/**
 * blk_queue_max_discard_sectors - set max sectors for a single discard
 * @q:  the request queue for the device
282
 * @max_discard_sectors: maximum number of sectors to discard
283 284 285 286 287 288 289 290
 **/
void blk_queue_max_discard_sectors(struct request_queue *q,
		unsigned int max_discard_sectors)
{
	q->limits.max_discard_sectors = max_discard_sectors;
}
EXPORT_SYMBOL(blk_queue_max_discard_sectors);

291 292 293 294 295 296 297 298 299 300 301 302
/**
 * blk_queue_max_write_same_sectors - set max sectors for a single write same
 * @q:  the request queue for the device
 * @max_write_same_sectors: maximum number of sectors to write per command
 **/
void blk_queue_max_write_same_sectors(struct request_queue *q,
				      unsigned int max_write_same_sectors)
{
	q->limits.max_write_same_sectors = max_write_same_sectors;
}
EXPORT_SYMBOL(blk_queue_max_write_same_sectors);

J
Jens Axboe 已提交
303
/**
304
 * blk_queue_max_segments - set max hw segments for a request for this queue
J
Jens Axboe 已提交
305 306 307 308 309
 * @q:  the request queue for the device
 * @max_segments:  max number of segments
 *
 * Description:
 *    Enables a low level driver to set an upper limit on the number of
310
 *    hw data segments in a request.
J
Jens Axboe 已提交
311
 **/
312
void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
J
Jens Axboe 已提交
313 314 315
{
	if (!max_segments) {
		max_segments = 1;
316 317
		printk(KERN_INFO "%s: set to minimum %d\n",
		       __func__, max_segments);
J
Jens Axboe 已提交
318 319
	}

320
	q->limits.max_segments = max_segments;
J
Jens Axboe 已提交
321
}
322
EXPORT_SYMBOL(blk_queue_max_segments);
J
Jens Axboe 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336

/**
 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
 * @q:  the request queue for the device
 * @max_size:  max size of segment in bytes
 *
 * Description:
 *    Enables a low level driver to set an upper limit on the size of a
 *    coalesced segment
 **/
void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
{
	if (max_size < PAGE_CACHE_SIZE) {
		max_size = PAGE_CACHE_SIZE;
337 338
		printk(KERN_INFO "%s: set to minimum %d\n",
		       __func__, max_size);
J
Jens Axboe 已提交
339 340
	}

341
	q->limits.max_segment_size = max_size;
J
Jens Axboe 已提交
342 343 344 345
}
EXPORT_SYMBOL(blk_queue_max_segment_size);

/**
346
 * blk_queue_logical_block_size - set logical block size for the queue
J
Jens Axboe 已提交
347
 * @q:  the request queue for the device
348
 * @size:  the logical block size, in bytes
J
Jens Axboe 已提交
349 350
 *
 * Description:
351 352 353
 *   This should be set to the lowest possible block size that the
 *   storage device can address.  The default of 512 covers most
 *   hardware.
J
Jens Axboe 已提交
354
 **/
355
void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
J
Jens Axboe 已提交
356
{
357
	q->limits.logical_block_size = size;
358 359 360 361 362 363

	if (q->limits.physical_block_size < size)
		q->limits.physical_block_size = size;

	if (q->limits.io_min < q->limits.physical_block_size)
		q->limits.io_min = q->limits.physical_block_size;
J
Jens Axboe 已提交
364
}
365
EXPORT_SYMBOL(blk_queue_logical_block_size);
J
Jens Axboe 已提交
366

367 368 369 370 371 372 373 374 375 376
/**
 * blk_queue_physical_block_size - set physical block size for the queue
 * @q:  the request queue for the device
 * @size:  the physical block size, in bytes
 *
 * Description:
 *   This should be set to the lowest possible sector size that the
 *   hardware can operate on without reverting to read-modify-write
 *   operations.
 */
377
void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
378 379 380 381 382 383 384 385 386 387 388 389 390 391
{
	q->limits.physical_block_size = size;

	if (q->limits.physical_block_size < q->limits.logical_block_size)
		q->limits.physical_block_size = q->limits.logical_block_size;

	if (q->limits.io_min < q->limits.physical_block_size)
		q->limits.io_min = q->limits.physical_block_size;
}
EXPORT_SYMBOL(blk_queue_physical_block_size);

/**
 * blk_queue_alignment_offset - set physical block alignment offset
 * @q:	the request queue for the device
392
 * @offset: alignment offset in bytes
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
 *
 * Description:
 *   Some devices are naturally misaligned to compensate for things like
 *   the legacy DOS partition table 63-sector offset.  Low-level drivers
 *   should call this function for devices whose first sector is not
 *   naturally aligned.
 */
void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
{
	q->limits.alignment_offset =
		offset & (q->limits.physical_block_size - 1);
	q->limits.misaligned = 0;
}
EXPORT_SYMBOL(blk_queue_alignment_offset);

408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
/**
 * blk_limits_io_min - set minimum request size for a device
 * @limits: the queue limits
 * @min:  smallest I/O size in bytes
 *
 * Description:
 *   Some devices have an internal block size bigger than the reported
 *   hardware sector size.  This function can be used to signal the
 *   smallest I/O the device can perform without incurring a performance
 *   penalty.
 */
void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
{
	limits->io_min = min;

	if (limits->io_min < limits->logical_block_size)
		limits->io_min = limits->logical_block_size;

	if (limits->io_min < limits->physical_block_size)
		limits->io_min = limits->physical_block_size;
}
EXPORT_SYMBOL(blk_limits_io_min);

431 432 433
/**
 * blk_queue_io_min - set minimum request size for the queue
 * @q:	the request queue for the device
434
 * @min:  smallest I/O size in bytes
435 436
 *
 * Description:
437 438 439 440 441 442 443
 *   Storage devices may report a granularity or preferred minimum I/O
 *   size which is the smallest request the device can perform without
 *   incurring a performance penalty.  For disk drives this is often the
 *   physical block size.  For RAID arrays it is often the stripe chunk
 *   size.  A properly aligned multiple of minimum_io_size is the
 *   preferred request size for workloads where a high number of I/O
 *   operations is desired.
444 445 446
 */
void blk_queue_io_min(struct request_queue *q, unsigned int min)
{
447
	blk_limits_io_min(&q->limits, min);
448 449 450
}
EXPORT_SYMBOL(blk_queue_io_min);

451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
/**
 * blk_limits_io_opt - set optimal request size for a device
 * @limits: the queue limits
 * @opt:  smallest I/O size in bytes
 *
 * Description:
 *   Storage devices may report an optimal I/O size, which is the
 *   device's preferred unit for sustained I/O.  This is rarely reported
 *   for disk drives.  For RAID arrays it is usually the stripe width or
 *   the internal track size.  A properly aligned multiple of
 *   optimal_io_size is the preferred request size for workloads where
 *   sustained throughput is desired.
 */
void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
{
	limits->io_opt = opt;
}
EXPORT_SYMBOL(blk_limits_io_opt);

470 471 472
/**
 * blk_queue_io_opt - set optimal request size for the queue
 * @q:	the request queue for the device
473
 * @opt:  optimal request size in bytes
474 475
 *
 * Description:
476 477 478 479 480 481
 *   Storage devices may report an optimal I/O size, which is the
 *   device's preferred unit for sustained I/O.  This is rarely reported
 *   for disk drives.  For RAID arrays it is usually the stripe width or
 *   the internal track size.  A properly aligned multiple of
 *   optimal_io_size is the preferred request size for workloads where
 *   sustained throughput is desired.
482 483 484
 */
void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
{
485
	blk_limits_io_opt(&q->limits, opt);
486 487 488
}
EXPORT_SYMBOL(blk_queue_io_opt);

J
Jens Axboe 已提交
489 490 491 492 493 494 495
/**
 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
 * @t:	the stacking driver (top)
 * @b:  the underlying device (bottom)
 **/
void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
{
496
	blk_stack_limits(&t->limits, &b->limits, 0);
J
Jens Axboe 已提交
497 498 499
}
EXPORT_SYMBOL(blk_queue_stack_limits);

500 501
/**
 * blk_stack_limits - adjust queue_limits for stacked devices
502 503
 * @t:	the stacking driver limits (top device)
 * @b:  the underlying queue limits (bottom, component device)
504
 * @start:  first data sector within component device
505 506
 *
 * Description:
507 508 509 510 511 512 513 514 515 516 517 518 519
 *    This function is used by stacking drivers like MD and DM to ensure
 *    that all component devices have compatible block sizes and
 *    alignments.  The stacking driver must provide a queue_limits
 *    struct (top) and then iteratively call the stacking function for
 *    all component (bottom) devices.  The stacking function will
 *    attempt to combine the values and ensure proper alignment.
 *
 *    Returns 0 if the top and bottom queue_limits are compatible.  The
 *    top device's block sizes and alignment offsets may be adjusted to
 *    ensure alignment with the bottom device. If no compatible sizes
 *    and alignments exist, -1 is returned and the resulting top
 *    queue_limits will have the misaligned flag set to indicate that
 *    the alignment_offset is undefined.
520 521
 */
int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
522
		     sector_t start)
523
{
524
	unsigned int top, bottom, alignment, ret = 0;
525

526 527
	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
528 529
	t->max_write_same_sectors = min(t->max_write_same_sectors,
					b->max_write_same_sectors);
530
	t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
531 532 533 534

	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
					    b->seg_boundary_mask);

535
	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
536 537
	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
						 b->max_integrity_segments);
538 539 540 541

	t->max_segment_size = min_not_zero(t->max_segment_size,
					   b->max_segment_size);

542 543
	t->misaligned |= b->misaligned;

544
	alignment = queue_limit_alignment_offset(b, start);
545

546 547 548
	/* Bottom device has different alignment.  Check that it is
	 * compatible with the current top alignment.
	 */
549 550 551 552
	if (t->alignment_offset != alignment) {

		top = max(t->physical_block_size, t->io_min)
			+ t->alignment_offset;
553
		bottom = max(b->physical_block_size, b->io_min) + alignment;
554

555
		/* Verify that top and bottom intervals line up */
556
		if (max(top, bottom) & (min(top, bottom) - 1)) {
557
			t->misaligned = 1;
558 559
			ret = -1;
		}
560 561
	}

562 563 564 565 566 567 568
	t->logical_block_size = max(t->logical_block_size,
				    b->logical_block_size);

	t->physical_block_size = max(t->physical_block_size,
				     b->physical_block_size);

	t->io_min = max(t->io_min, b->io_min);
569 570
	t->io_opt = lcm(t->io_opt, b->io_opt);

571
	t->cluster &= b->cluster;
572
	t->discard_zeroes_data &= b->discard_zeroes_data;
573

574
	/* Physical block size a multiple of the logical block size? */
575 576
	if (t->physical_block_size & (t->logical_block_size - 1)) {
		t->physical_block_size = t->logical_block_size;
577
		t->misaligned = 1;
578
		ret = -1;
579 580
	}

581
	/* Minimum I/O a multiple of the physical block size? */
582 583 584
	if (t->io_min & (t->physical_block_size - 1)) {
		t->io_min = t->physical_block_size;
		t->misaligned = 1;
585
		ret = -1;
586 587
	}

588
	/* Optimal I/O a multiple of the physical block size? */
589 590 591
	if (t->io_opt & (t->physical_block_size - 1)) {
		t->io_opt = 0;
		t->misaligned = 1;
592
		ret = -1;
593
	}
594

595 596 597 598
	t->raid_partial_stripes_expensive =
		max(t->raid_partial_stripes_expensive,
		    b->raid_partial_stripes_expensive);

599
	/* Find lowest common alignment_offset */
600 601
	t->alignment_offset = lcm(t->alignment_offset, alignment)
		& (max(t->physical_block_size, t->io_min) - 1);
602

603
	/* Verify that new alignment_offset is on a logical block boundary */
604
	if (t->alignment_offset & (t->logical_block_size - 1)) {
605
		t->misaligned = 1;
606 607
		ret = -1;
	}
608

609 610
	/* Discard alignment and granularity */
	if (b->discard_granularity) {
611
		alignment = queue_limit_discard_alignment(b, start);
612 613 614 615 616

		if (t->discard_granularity != 0 &&
		    t->discard_alignment != alignment) {
			top = t->discard_granularity + t->discard_alignment;
			bottom = b->discard_granularity + alignment;
617

618
			/* Verify that top and bottom intervals line up */
619
			if ((max(top, bottom) % min(top, bottom)) != 0)
620 621 622
				t->discard_misaligned = 1;
		}

623 624
		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
						      b->max_discard_sectors);
625 626
		t->discard_granularity = max(t->discard_granularity,
					     b->discard_granularity);
627 628
		t->discard_alignment = lcm(t->discard_alignment, alignment) %
			t->discard_granularity;
629
	}
630

631
	return ret;
632
}
M
Mike Snitzer 已提交
633
EXPORT_SYMBOL(blk_stack_limits);
634

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
/**
 * bdev_stack_limits - adjust queue limits for stacked drivers
 * @t:	the stacking driver limits (top device)
 * @bdev:  the component block_device (bottom)
 * @start:  first data sector within component device
 *
 * Description:
 *    Merges queue limits for a top device and a block_device.  Returns
 *    0 if alignment didn't change.  Returns -1 if adding the bottom
 *    device caused misalignment.
 */
int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
		      sector_t start)
{
	struct request_queue *bq = bdev_get_queue(bdev);

	start += get_start_sect(bdev);

653
	return blk_stack_limits(t, &bq->limits, start);
654 655 656
}
EXPORT_SYMBOL(bdev_stack_limits);

657 658
/**
 * disk_stack_limits - adjust queue limits for stacked drivers
659
 * @disk:  MD/DM gendisk (top)
660 661 662 663
 * @bdev:  the underlying block device (bottom)
 * @offset:  offset to beginning of data within component device
 *
 * Description:
664 665
 *    Merges the limits for a top level gendisk and a bottom level
 *    block_device.
666 667 668 669 670 671
 */
void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
		       sector_t offset)
{
	struct request_queue *t = disk->queue;

672
	if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
673 674 675 676 677 678 679 680 681 682 683
		char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];

		disk_name(disk, 0, top);
		bdevname(bdev, bottom);

		printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
		       top, bottom);
	}
}
EXPORT_SYMBOL(disk_stack_limits);

684 685 686 687 688
/**
 * blk_queue_dma_pad - set pad mask
 * @q:     the request queue for the device
 * @mask:  pad mask
 *
689
 * Set dma pad mask.
690
 *
691 692
 * Appending pad buffer to a request modifies the last entry of a
 * scatter list such that it includes the pad buffer.
693 694 695 696 697 698 699
 **/
void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
{
	q->dma_pad_mask = mask;
}
EXPORT_SYMBOL(blk_queue_dma_pad);

700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
/**
 * blk_queue_update_dma_pad - update pad mask
 * @q:     the request queue for the device
 * @mask:  pad mask
 *
 * Update dma pad mask.
 *
 * Appending pad buffer to a request modifies the last entry of a
 * scatter list such that it includes the pad buffer.
 **/
void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
{
	if (mask > q->dma_pad_mask)
		q->dma_pad_mask = mask;
}
EXPORT_SYMBOL(blk_queue_update_dma_pad);

J
Jens Axboe 已提交
717 718 719
/**
 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
 * @q:  the request queue for the device
720
 * @dma_drain_needed: fn which returns non-zero if drain is necessary
J
Jens Axboe 已提交
721 722 723 724 725 726 727 728 729 730 731 732
 * @buf:	physically contiguous buffer
 * @size:	size of the buffer in bytes
 *
 * Some devices have excess DMA problems and can't simply discard (or
 * zero fill) the unwanted piece of the transfer.  They have to have a
 * real area of memory to transfer it into.  The use case for this is
 * ATAPI devices in DMA mode.  If the packet command causes a transfer
 * bigger than the transfer size some HBAs will lock up if there
 * aren't DMA elements to contain the excess transfer.  What this API
 * does is adjust the queue so that the buf is always appended
 * silently to the scatterlist.
 *
733 734 735 736
 * Note: This routine adjusts max_hw_segments to make room for appending
 * the drain buffer.  If you call blk_queue_max_segments() after calling
 * this routine, you must set the limit to one fewer than your device
 * can support otherwise there won't be room for the drain buffer.
J
Jens Axboe 已提交
737
 */
738
int blk_queue_dma_drain(struct request_queue *q,
739 740
			       dma_drain_needed_fn *dma_drain_needed,
			       void *buf, unsigned int size)
J
Jens Axboe 已提交
741
{
742
	if (queue_max_segments(q) < 2)
J
Jens Axboe 已提交
743 744
		return -EINVAL;
	/* make room for appending the drain */
745
	blk_queue_max_segments(q, queue_max_segments(q) - 1);
746
	q->dma_drain_needed = dma_drain_needed;
J
Jens Axboe 已提交
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
	q->dma_drain_buffer = buf;
	q->dma_drain_size = size;

	return 0;
}
EXPORT_SYMBOL_GPL(blk_queue_dma_drain);

/**
 * blk_queue_segment_boundary - set boundary rules for segment merging
 * @q:  the request queue for the device
 * @mask:  the memory boundary mask
 **/
void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
{
	if (mask < PAGE_CACHE_SIZE - 1) {
		mask = PAGE_CACHE_SIZE - 1;
763 764
		printk(KERN_INFO "%s: set to minimum %lx\n",
		       __func__, mask);
J
Jens Axboe 已提交
765 766
	}

767
	q->limits.seg_boundary_mask = mask;
J
Jens Axboe 已提交
768 769 770 771 772 773 774 775 776
}
EXPORT_SYMBOL(blk_queue_segment_boundary);

/**
 * blk_queue_dma_alignment - set dma length and memory alignment
 * @q:     the request queue for the device
 * @mask:  alignment mask
 *
 * description:
777
 *    set required memory and length alignment for direct dma transactions.
A
Alan Cox 已提交
778
 *    this is used when building direct io requests for the queue.
J
Jens Axboe 已提交
779 780 781 782 783 784 785 786 787 788 789 790 791 792
 *
 **/
void blk_queue_dma_alignment(struct request_queue *q, int mask)
{
	q->dma_alignment = mask;
}
EXPORT_SYMBOL(blk_queue_dma_alignment);

/**
 * blk_queue_update_dma_alignment - update dma length and memory alignment
 * @q:     the request queue for the device
 * @mask:  alignment mask
 *
 * description:
793
 *    update required memory and length alignment for direct dma transactions.
J
Jens Axboe 已提交
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
 *    If the requested alignment is larger than the current alignment, then
 *    the current queue alignment is updated to the new value, otherwise it
 *    is left alone.  The design of this is to allow multiple objects
 *    (driver, device, transport etc) to set their respective
 *    alignments without having them interfere.
 *
 **/
void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
{
	BUG_ON(mask > PAGE_SIZE);

	if (mask > q->dma_alignment)
		q->dma_alignment = mask;
}
EXPORT_SYMBOL(blk_queue_update_dma_alignment);

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
/**
 * blk_queue_flush - configure queue's cache flush capability
 * @q:		the request queue for the device
 * @flush:	0, REQ_FLUSH or REQ_FLUSH | REQ_FUA
 *
 * Tell block layer cache flush capability of @q.  If it supports
 * flushing, REQ_FLUSH should be set.  If it supports bypassing
 * write cache for individual writes, REQ_FUA should be set.
 */
void blk_queue_flush(struct request_queue *q, unsigned int flush)
{
	WARN_ON_ONCE(flush & ~(REQ_FLUSH | REQ_FUA));

	if (WARN_ON_ONCE(!(flush & REQ_FLUSH) && (flush & REQ_FUA)))
		flush &= ~REQ_FUA;

	q->flush_flags = flush & (REQ_FLUSH | REQ_FUA);
}
EXPORT_SYMBOL_GPL(blk_queue_flush);

830 831 832 833 834 835
void blk_queue_flush_queueable(struct request_queue *q, bool queueable)
{
	q->flush_not_queueable = !queueable;
}
EXPORT_SYMBOL_GPL(blk_queue_flush_queueable);

836
static int __init blk_settings_init(void)
J
Jens Axboe 已提交
837 838 839 840 841 842
{
	blk_max_low_pfn = max_low_pfn - 1;
	blk_max_pfn = max_pfn - 1;
	return 0;
}
subsys_initcall(blk_settings_init);