blk-settings.c 25.1 KB
Newer Older
J
Jens Axboe 已提交
1 2 3 4 5 6 7 8 9
/*
 * Functions related to setting various queue properties from drivers
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/bootmem.h>	/* for max_pfn/max_low_pfn */
10
#include <linux/gcd.h>
11
#include <linux/lcm.h>
R
Randy Dunlap 已提交
12
#include <linux/jiffies.h>
13
#include <linux/gfp.h>
J
Jens Axboe 已提交
14 15 16

#include "blk.h"

17
unsigned long blk_max_low_pfn;
J
Jens Axboe 已提交
18
EXPORT_SYMBOL(blk_max_low_pfn);
19 20

unsigned long blk_max_pfn;
J
Jens Axboe 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

/**
 * blk_queue_prep_rq - set a prepare_request function for queue
 * @q:		queue
 * @pfn:	prepare_request function
 *
 * It's possible for a queue to register a prepare_request callback which
 * is invoked before the request is handed to the request_fn. The goal of
 * the function is to prepare a request for I/O, it can be used to build a
 * cdb from the request data for instance.
 *
 */
void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
{
	q->prep_rq_fn = pfn;
}
EXPORT_SYMBOL(blk_queue_prep_rq);

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
/**
 * blk_queue_unprep_rq - set an unprepare_request function for queue
 * @q:		queue
 * @ufn:	unprepare_request function
 *
 * It's possible for a queue to register an unprepare_request callback
 * which is invoked before the request is finally completed. The goal
 * of the function is to deallocate any data that was allocated in the
 * prepare_request callback.
 *
 */
void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
{
	q->unprep_rq_fn = ufn;
}
EXPORT_SYMBOL(blk_queue_unprep_rq);

J
Jens Axboe 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
/**
 * blk_queue_merge_bvec - set a merge_bvec function for queue
 * @q:		queue
 * @mbfn:	merge_bvec_fn
 *
 * Usually queues have static limitations on the max sectors or segments that
 * we can put in a request. Stacking drivers may have some settings that
 * are dynamic, and thus we have to query the queue whether it is ok to
 * add a new bio_vec to a bio at a given offset or not. If the block device
 * has such limitations, it needs to register a merge_bvec_fn to control
 * the size of bio's sent to it. Note that a block device *must* allow a
 * single page to be added to an empty bio. The block device driver may want
 * to use the bio_split() function to deal with these bio's. By default
 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
 * honored.
 */
void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
{
	q->merge_bvec_fn = mbfn;
}
EXPORT_SYMBOL(blk_queue_merge_bvec);

void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
{
	q->softirq_done_fn = fn;
}
EXPORT_SYMBOL(blk_queue_softirq_done);

J
Jens Axboe 已提交
84 85 86 87 88 89 90 91 92 93 94 95
void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
{
	q->rq_timeout = timeout;
}
EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);

void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
{
	q->rq_timed_out_fn = fn;
}
EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);

96 97 98 99 100 101
void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
{
	q->lld_busy_fn = fn;
}
EXPORT_SYMBOL_GPL(blk_queue_lld_busy);

102 103
/**
 * blk_set_default_limits - reset limits to default values
104
 * @lim:  the queue_limits structure to reset
105 106 107 108 109 110 111 112
 *
 * Description:
 *   Returns a queue_limit struct to its default state.  Can be used by
 *   stacking drivers like DM that stage table swaps and reuse an
 *   existing device queue.
 */
void blk_set_default_limits(struct queue_limits *lim)
{
113
	lim->max_segments = BLK_MAX_SEGMENTS;
114
	lim->max_integrity_segments = 0;
115
	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
116
	lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
117 118
	lim->max_sectors = BLK_DEF_MAX_SECTORS;
	lim->max_hw_sectors = INT_MAX;
119 120 121 122
	lim->max_discard_sectors = 0;
	lim->discard_granularity = 0;
	lim->discard_alignment = 0;
	lim->discard_misaligned = 0;
123
	lim->discard_zeroes_data = -1;
124
	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
125
	lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
126 127 128
	lim->alignment_offset = 0;
	lim->io_opt = 0;
	lim->misaligned = 0;
129
	lim->cluster = 1;
130 131 132
}
EXPORT_SYMBOL(blk_set_default_limits);

J
Jens Axboe 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
/**
 * blk_queue_make_request - define an alternate make_request function for a device
 * @q:  the request queue for the device to be affected
 * @mfn: the alternate make_request function
 *
 * Description:
 *    The normal way for &struct bios to be passed to a device
 *    driver is for them to be collected into requests on a request
 *    queue, and then to allow the device driver to select requests
 *    off that queue when it is ready.  This works well for many block
 *    devices. However some block devices (typically virtual devices
 *    such as md or lvm) do not benefit from the processing on the
 *    request queue, and are served best by having the requests passed
 *    directly to them.  This can be achieved by providing a function
 *    to blk_queue_make_request().
 *
 * Caveat:
 *    The driver that does this *must* be able to deal appropriately
 *    with buffers in "highmemory". This can be accomplished by either calling
 *    __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
 *    blk_queue_bounce() to create a buffer in normal memory.
 **/
155
void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
J
Jens Axboe 已提交
156 157 158 159 160
{
	/*
	 * set defaults
	 */
	q->nr_requests = BLKDEV_MAX_RQ;
161

J
Jens Axboe 已提交
162 163 164 165 166
	q->make_request_fn = mfn;
	blk_queue_dma_alignment(q, 511);
	blk_queue_congestion_threshold(q);
	q->nr_batching = BLK_BATCH_REQ;

167
	blk_set_default_limits(&q->limits);
168
	blk_queue_max_hw_sectors(q, BLK_SAFE_MAX_SECTORS);
169

J
Jens Axboe 已提交
170 171 172 173 174 175 176 177 178
	/*
	 * by default assume old behaviour and bounce for any highmem page
	 */
	blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
}
EXPORT_SYMBOL(blk_queue_make_request);

/**
 * blk_queue_bounce_limit - set bounce buffer limit for queue
179 180
 * @q: the request queue for the device
 * @dma_mask: the maximum address the device can handle
J
Jens Axboe 已提交
181 182 183 184 185
 *
 * Description:
 *    Different hardware can have different requirements as to what pages
 *    it can do I/O directly to. A low level driver can call
 *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
186
 *    buffers for doing I/O to pages residing above @dma_mask.
J
Jens Axboe 已提交
187
 **/
188
void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask)
J
Jens Axboe 已提交
189
{
190
	unsigned long b_pfn = dma_mask >> PAGE_SHIFT;
J
Jens Axboe 已提交
191 192 193 194
	int dma = 0;

	q->bounce_gfp = GFP_NOIO;
#if BITS_PER_LONG == 64
195 196 197 198 199 200
	/*
	 * Assume anything <= 4GB can be handled by IOMMU.  Actually
	 * some IOMMUs can handle everything, but I don't know of a
	 * way to test this here.
	 */
	if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
J
Jens Axboe 已提交
201
		dma = 1;
202
	q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
J
Jens Axboe 已提交
203
#else
204
	if (b_pfn < blk_max_low_pfn)
J
Jens Axboe 已提交
205
		dma = 1;
206
	q->limits.bounce_pfn = b_pfn;
207
#endif
J
Jens Axboe 已提交
208 209 210
	if (dma) {
		init_emergency_isa_pool();
		q->bounce_gfp = GFP_NOIO | GFP_DMA;
211
		q->limits.bounce_pfn = b_pfn;
J
Jens Axboe 已提交
212 213 214 215 216
	}
}
EXPORT_SYMBOL(blk_queue_bounce_limit);

/**
217 218
 * blk_limits_max_hw_sectors - set hard and soft limit of max sectors for request
 * @limits: the queue limits
219
 * @max_hw_sectors:  max hardware sectors in the usual 512b unit
J
Jens Axboe 已提交
220 221
 *
 * Description:
222 223 224 225 226 227 228 229 230
 *    Enables a low level driver to set a hard upper limit,
 *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
 *    the device driver based upon the combined capabilities of I/O
 *    controller and storage device.
 *
 *    max_sectors is a soft limit imposed by the block layer for
 *    filesystem type requests.  This value can be overridden on a
 *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
 *    The soft limit can not exceed max_hw_sectors.
J
Jens Axboe 已提交
231
 **/
232
void blk_limits_max_hw_sectors(struct queue_limits *limits, unsigned int max_hw_sectors)
J
Jens Axboe 已提交
233
{
234 235
	if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) {
		max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
236
		printk(KERN_INFO "%s: set to minimum %d\n",
237
		       __func__, max_hw_sectors);
J
Jens Axboe 已提交
238 239
	}

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
	limits->max_hw_sectors = max_hw_sectors;
	limits->max_sectors = min_t(unsigned int, max_hw_sectors,
				    BLK_DEF_MAX_SECTORS);
}
EXPORT_SYMBOL(blk_limits_max_hw_sectors);

/**
 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
 * @q:  the request queue for the device
 * @max_hw_sectors:  max hardware sectors in the usual 512b unit
 *
 * Description:
 *    See description for blk_limits_max_hw_sectors().
 **/
void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
{
	blk_limits_max_hw_sectors(&q->limits, max_hw_sectors);
J
Jens Axboe 已提交
257
}
258
EXPORT_SYMBOL(blk_queue_max_hw_sectors);
J
Jens Axboe 已提交
259

260 261 262
/**
 * blk_queue_max_discard_sectors - set max sectors for a single discard
 * @q:  the request queue for the device
263
 * @max_discard_sectors: maximum number of sectors to discard
264 265 266 267 268 269 270 271
 **/
void blk_queue_max_discard_sectors(struct request_queue *q,
		unsigned int max_discard_sectors)
{
	q->limits.max_discard_sectors = max_discard_sectors;
}
EXPORT_SYMBOL(blk_queue_max_discard_sectors);

J
Jens Axboe 已提交
272
/**
273
 * blk_queue_max_segments - set max hw segments for a request for this queue
J
Jens Axboe 已提交
274 275 276 277 278
 * @q:  the request queue for the device
 * @max_segments:  max number of segments
 *
 * Description:
 *    Enables a low level driver to set an upper limit on the number of
279
 *    hw data segments in a request.
J
Jens Axboe 已提交
280
 **/
281
void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
J
Jens Axboe 已提交
282 283 284
{
	if (!max_segments) {
		max_segments = 1;
285 286
		printk(KERN_INFO "%s: set to minimum %d\n",
		       __func__, max_segments);
J
Jens Axboe 已提交
287 288
	}

289
	q->limits.max_segments = max_segments;
J
Jens Axboe 已提交
290
}
291
EXPORT_SYMBOL(blk_queue_max_segments);
J
Jens Axboe 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304 305

/**
 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
 * @q:  the request queue for the device
 * @max_size:  max size of segment in bytes
 *
 * Description:
 *    Enables a low level driver to set an upper limit on the size of a
 *    coalesced segment
 **/
void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
{
	if (max_size < PAGE_CACHE_SIZE) {
		max_size = PAGE_CACHE_SIZE;
306 307
		printk(KERN_INFO "%s: set to minimum %d\n",
		       __func__, max_size);
J
Jens Axboe 已提交
308 309
	}

310
	q->limits.max_segment_size = max_size;
J
Jens Axboe 已提交
311 312 313 314
}
EXPORT_SYMBOL(blk_queue_max_segment_size);

/**
315
 * blk_queue_logical_block_size - set logical block size for the queue
J
Jens Axboe 已提交
316
 * @q:  the request queue for the device
317
 * @size:  the logical block size, in bytes
J
Jens Axboe 已提交
318 319
 *
 * Description:
320 321 322
 *   This should be set to the lowest possible block size that the
 *   storage device can address.  The default of 512 covers most
 *   hardware.
J
Jens Axboe 已提交
323
 **/
324
void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
J
Jens Axboe 已提交
325
{
326
	q->limits.logical_block_size = size;
327 328 329 330 331 332

	if (q->limits.physical_block_size < size)
		q->limits.physical_block_size = size;

	if (q->limits.io_min < q->limits.physical_block_size)
		q->limits.io_min = q->limits.physical_block_size;
J
Jens Axboe 已提交
333
}
334
EXPORT_SYMBOL(blk_queue_logical_block_size);
J
Jens Axboe 已提交
335

336 337 338 339 340 341 342 343 344 345
/**
 * blk_queue_physical_block_size - set physical block size for the queue
 * @q:  the request queue for the device
 * @size:  the physical block size, in bytes
 *
 * Description:
 *   This should be set to the lowest possible sector size that the
 *   hardware can operate on without reverting to read-modify-write
 *   operations.
 */
346
void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
347 348 349 350 351 352 353 354 355 356 357 358 359 360
{
	q->limits.physical_block_size = size;

	if (q->limits.physical_block_size < q->limits.logical_block_size)
		q->limits.physical_block_size = q->limits.logical_block_size;

	if (q->limits.io_min < q->limits.physical_block_size)
		q->limits.io_min = q->limits.physical_block_size;
}
EXPORT_SYMBOL(blk_queue_physical_block_size);

/**
 * blk_queue_alignment_offset - set physical block alignment offset
 * @q:	the request queue for the device
361
 * @offset: alignment offset in bytes
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
 *
 * Description:
 *   Some devices are naturally misaligned to compensate for things like
 *   the legacy DOS partition table 63-sector offset.  Low-level drivers
 *   should call this function for devices whose first sector is not
 *   naturally aligned.
 */
void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
{
	q->limits.alignment_offset =
		offset & (q->limits.physical_block_size - 1);
	q->limits.misaligned = 0;
}
EXPORT_SYMBOL(blk_queue_alignment_offset);

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
/**
 * blk_limits_io_min - set minimum request size for a device
 * @limits: the queue limits
 * @min:  smallest I/O size in bytes
 *
 * Description:
 *   Some devices have an internal block size bigger than the reported
 *   hardware sector size.  This function can be used to signal the
 *   smallest I/O the device can perform without incurring a performance
 *   penalty.
 */
void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
{
	limits->io_min = min;

	if (limits->io_min < limits->logical_block_size)
		limits->io_min = limits->logical_block_size;

	if (limits->io_min < limits->physical_block_size)
		limits->io_min = limits->physical_block_size;
}
EXPORT_SYMBOL(blk_limits_io_min);

400 401 402
/**
 * blk_queue_io_min - set minimum request size for the queue
 * @q:	the request queue for the device
403
 * @min:  smallest I/O size in bytes
404 405
 *
 * Description:
406 407 408 409 410 411 412
 *   Storage devices may report a granularity or preferred minimum I/O
 *   size which is the smallest request the device can perform without
 *   incurring a performance penalty.  For disk drives this is often the
 *   physical block size.  For RAID arrays it is often the stripe chunk
 *   size.  A properly aligned multiple of minimum_io_size is the
 *   preferred request size for workloads where a high number of I/O
 *   operations is desired.
413 414 415
 */
void blk_queue_io_min(struct request_queue *q, unsigned int min)
{
416
	blk_limits_io_min(&q->limits, min);
417 418 419
}
EXPORT_SYMBOL(blk_queue_io_min);

420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
/**
 * blk_limits_io_opt - set optimal request size for a device
 * @limits: the queue limits
 * @opt:  smallest I/O size in bytes
 *
 * Description:
 *   Storage devices may report an optimal I/O size, which is the
 *   device's preferred unit for sustained I/O.  This is rarely reported
 *   for disk drives.  For RAID arrays it is usually the stripe width or
 *   the internal track size.  A properly aligned multiple of
 *   optimal_io_size is the preferred request size for workloads where
 *   sustained throughput is desired.
 */
void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
{
	limits->io_opt = opt;
}
EXPORT_SYMBOL(blk_limits_io_opt);

439 440 441
/**
 * blk_queue_io_opt - set optimal request size for the queue
 * @q:	the request queue for the device
442
 * @opt:  optimal request size in bytes
443 444
 *
 * Description:
445 446 447 448 449 450
 *   Storage devices may report an optimal I/O size, which is the
 *   device's preferred unit for sustained I/O.  This is rarely reported
 *   for disk drives.  For RAID arrays it is usually the stripe width or
 *   the internal track size.  A properly aligned multiple of
 *   optimal_io_size is the preferred request size for workloads where
 *   sustained throughput is desired.
451 452 453
 */
void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
{
454
	blk_limits_io_opt(&q->limits, opt);
455 456 457
}
EXPORT_SYMBOL(blk_queue_io_opt);

J
Jens Axboe 已提交
458 459 460 461 462 463 464
/**
 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
 * @t:	the stacking driver (top)
 * @b:  the underlying device (bottom)
 **/
void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
{
465
	blk_stack_limits(&t->limits, &b->limits, 0);
J
Jens Axboe 已提交
466 467 468
}
EXPORT_SYMBOL(blk_queue_stack_limits);

469 470
/**
 * blk_stack_limits - adjust queue_limits for stacked devices
471 472
 * @t:	the stacking driver limits (top device)
 * @b:  the underlying queue limits (bottom, component device)
473
 * @start:  first data sector within component device
474 475
 *
 * Description:
476 477 478 479 480 481 482 483 484 485 486 487 488
 *    This function is used by stacking drivers like MD and DM to ensure
 *    that all component devices have compatible block sizes and
 *    alignments.  The stacking driver must provide a queue_limits
 *    struct (top) and then iteratively call the stacking function for
 *    all component (bottom) devices.  The stacking function will
 *    attempt to combine the values and ensure proper alignment.
 *
 *    Returns 0 if the top and bottom queue_limits are compatible.  The
 *    top device's block sizes and alignment offsets may be adjusted to
 *    ensure alignment with the bottom device. If no compatible sizes
 *    and alignments exist, -1 is returned and the resulting top
 *    queue_limits will have the misaligned flag set to indicate that
 *    the alignment_offset is undefined.
489 490
 */
int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
491
		     sector_t start)
492
{
493
	unsigned int top, bottom, alignment, ret = 0;
494

495 496
	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
497
	t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
498 499 500 501

	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
					    b->seg_boundary_mask);

502
	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
503 504
	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
						 b->max_integrity_segments);
505 506 507 508

	t->max_segment_size = min_not_zero(t->max_segment_size,
					   b->max_segment_size);

509 510
	t->misaligned |= b->misaligned;

511
	alignment = queue_limit_alignment_offset(b, start);
512

513 514 515
	/* Bottom device has different alignment.  Check that it is
	 * compatible with the current top alignment.
	 */
516 517 518 519
	if (t->alignment_offset != alignment) {

		top = max(t->physical_block_size, t->io_min)
			+ t->alignment_offset;
520
		bottom = max(b->physical_block_size, b->io_min) + alignment;
521

522
		/* Verify that top and bottom intervals line up */
523
		if (max(top, bottom) & (min(top, bottom) - 1)) {
524
			t->misaligned = 1;
525 526
			ret = -1;
		}
527 528
	}

529 530 531 532 533 534 535
	t->logical_block_size = max(t->logical_block_size,
				    b->logical_block_size);

	t->physical_block_size = max(t->physical_block_size,
				     b->physical_block_size);

	t->io_min = max(t->io_min, b->io_min);
536 537
	t->io_opt = lcm(t->io_opt, b->io_opt);

538
	t->cluster &= b->cluster;
539
	t->discard_zeroes_data &= b->discard_zeroes_data;
540

541
	/* Physical block size a multiple of the logical block size? */
542 543
	if (t->physical_block_size & (t->logical_block_size - 1)) {
		t->physical_block_size = t->logical_block_size;
544
		t->misaligned = 1;
545
		ret = -1;
546 547
	}

548
	/* Minimum I/O a multiple of the physical block size? */
549 550 551
	if (t->io_min & (t->physical_block_size - 1)) {
		t->io_min = t->physical_block_size;
		t->misaligned = 1;
552
		ret = -1;
553 554
	}

555
	/* Optimal I/O a multiple of the physical block size? */
556 557 558
	if (t->io_opt & (t->physical_block_size - 1)) {
		t->io_opt = 0;
		t->misaligned = 1;
559
		ret = -1;
560
	}
561

562
	/* Find lowest common alignment_offset */
563 564
	t->alignment_offset = lcm(t->alignment_offset, alignment)
		& (max(t->physical_block_size, t->io_min) - 1);
565

566
	/* Verify that new alignment_offset is on a logical block boundary */
567
	if (t->alignment_offset & (t->logical_block_size - 1)) {
568
		t->misaligned = 1;
569 570
		ret = -1;
	}
571

572 573
	/* Discard alignment and granularity */
	if (b->discard_granularity) {
574
		alignment = queue_limit_discard_alignment(b, start);
575 576 577 578 579

		if (t->discard_granularity != 0 &&
		    t->discard_alignment != alignment) {
			top = t->discard_granularity + t->discard_alignment;
			bottom = b->discard_granularity + alignment;
580

581 582 583 584 585
			/* Verify that top and bottom intervals line up */
			if (max(top, bottom) & (min(top, bottom) - 1))
				t->discard_misaligned = 1;
		}

586 587
		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
						      b->max_discard_sectors);
588 589 590 591 592
		t->discard_granularity = max(t->discard_granularity,
					     b->discard_granularity);
		t->discard_alignment = lcm(t->discard_alignment, alignment) &
			(t->discard_granularity - 1);
	}
593

594
	return ret;
595
}
M
Mike Snitzer 已提交
596
EXPORT_SYMBOL(blk_stack_limits);
597

598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
/**
 * bdev_stack_limits - adjust queue limits for stacked drivers
 * @t:	the stacking driver limits (top device)
 * @bdev:  the component block_device (bottom)
 * @start:  first data sector within component device
 *
 * Description:
 *    Merges queue limits for a top device and a block_device.  Returns
 *    0 if alignment didn't change.  Returns -1 if adding the bottom
 *    device caused misalignment.
 */
int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
		      sector_t start)
{
	struct request_queue *bq = bdev_get_queue(bdev);

	start += get_start_sect(bdev);

616
	return blk_stack_limits(t, &bq->limits, start);
617 618 619
}
EXPORT_SYMBOL(bdev_stack_limits);

620 621
/**
 * disk_stack_limits - adjust queue limits for stacked drivers
622
 * @disk:  MD/DM gendisk (top)
623 624 625 626
 * @bdev:  the underlying block device (bottom)
 * @offset:  offset to beginning of data within component device
 *
 * Description:
627 628
 *    Merges the limits for a top level gendisk and a bottom level
 *    block_device.
629 630 631 632 633 634
 */
void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
		       sector_t offset)
{
	struct request_queue *t = disk->queue;

635
	if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
636 637 638 639 640 641 642 643 644 645 646
		char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];

		disk_name(disk, 0, top);
		bdevname(bdev, bottom);

		printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
		       top, bottom);
	}
}
EXPORT_SYMBOL(disk_stack_limits);

647 648 649 650 651
/**
 * blk_queue_dma_pad - set pad mask
 * @q:     the request queue for the device
 * @mask:  pad mask
 *
652
 * Set dma pad mask.
653
 *
654 655
 * Appending pad buffer to a request modifies the last entry of a
 * scatter list such that it includes the pad buffer.
656 657 658 659 660 661 662
 **/
void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
{
	q->dma_pad_mask = mask;
}
EXPORT_SYMBOL(blk_queue_dma_pad);

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
/**
 * blk_queue_update_dma_pad - update pad mask
 * @q:     the request queue for the device
 * @mask:  pad mask
 *
 * Update dma pad mask.
 *
 * Appending pad buffer to a request modifies the last entry of a
 * scatter list such that it includes the pad buffer.
 **/
void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
{
	if (mask > q->dma_pad_mask)
		q->dma_pad_mask = mask;
}
EXPORT_SYMBOL(blk_queue_update_dma_pad);

J
Jens Axboe 已提交
680 681 682
/**
 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
 * @q:  the request queue for the device
683
 * @dma_drain_needed: fn which returns non-zero if drain is necessary
J
Jens Axboe 已提交
684 685 686 687 688 689 690 691 692 693 694 695
 * @buf:	physically contiguous buffer
 * @size:	size of the buffer in bytes
 *
 * Some devices have excess DMA problems and can't simply discard (or
 * zero fill) the unwanted piece of the transfer.  They have to have a
 * real area of memory to transfer it into.  The use case for this is
 * ATAPI devices in DMA mode.  If the packet command causes a transfer
 * bigger than the transfer size some HBAs will lock up if there
 * aren't DMA elements to contain the excess transfer.  What this API
 * does is adjust the queue so that the buf is always appended
 * silently to the scatterlist.
 *
696 697 698 699
 * Note: This routine adjusts max_hw_segments to make room for appending
 * the drain buffer.  If you call blk_queue_max_segments() after calling
 * this routine, you must set the limit to one fewer than your device
 * can support otherwise there won't be room for the drain buffer.
J
Jens Axboe 已提交
700
 */
701
int blk_queue_dma_drain(struct request_queue *q,
702 703
			       dma_drain_needed_fn *dma_drain_needed,
			       void *buf, unsigned int size)
J
Jens Axboe 已提交
704
{
705
	if (queue_max_segments(q) < 2)
J
Jens Axboe 已提交
706 707
		return -EINVAL;
	/* make room for appending the drain */
708
	blk_queue_max_segments(q, queue_max_segments(q) - 1);
709
	q->dma_drain_needed = dma_drain_needed;
J
Jens Axboe 已提交
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
	q->dma_drain_buffer = buf;
	q->dma_drain_size = size;

	return 0;
}
EXPORT_SYMBOL_GPL(blk_queue_dma_drain);

/**
 * blk_queue_segment_boundary - set boundary rules for segment merging
 * @q:  the request queue for the device
 * @mask:  the memory boundary mask
 **/
void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
{
	if (mask < PAGE_CACHE_SIZE - 1) {
		mask = PAGE_CACHE_SIZE - 1;
726 727
		printk(KERN_INFO "%s: set to minimum %lx\n",
		       __func__, mask);
J
Jens Axboe 已提交
728 729
	}

730
	q->limits.seg_boundary_mask = mask;
J
Jens Axboe 已提交
731 732 733 734 735 736 737 738 739
}
EXPORT_SYMBOL(blk_queue_segment_boundary);

/**
 * blk_queue_dma_alignment - set dma length and memory alignment
 * @q:     the request queue for the device
 * @mask:  alignment mask
 *
 * description:
740
 *    set required memory and length alignment for direct dma transactions.
A
Alan Cox 已提交
741
 *    this is used when building direct io requests for the queue.
J
Jens Axboe 已提交
742 743 744 745 746 747 748 749 750 751 752 753 754 755
 *
 **/
void blk_queue_dma_alignment(struct request_queue *q, int mask)
{
	q->dma_alignment = mask;
}
EXPORT_SYMBOL(blk_queue_dma_alignment);

/**
 * blk_queue_update_dma_alignment - update dma length and memory alignment
 * @q:     the request queue for the device
 * @mask:  alignment mask
 *
 * description:
756
 *    update required memory and length alignment for direct dma transactions.
J
Jens Axboe 已提交
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
 *    If the requested alignment is larger than the current alignment, then
 *    the current queue alignment is updated to the new value, otherwise it
 *    is left alone.  The design of this is to allow multiple objects
 *    (driver, device, transport etc) to set their respective
 *    alignments without having them interfere.
 *
 **/
void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
{
	BUG_ON(mask > PAGE_SIZE);

	if (mask > q->dma_alignment)
		q->dma_alignment = mask;
}
EXPORT_SYMBOL(blk_queue_update_dma_alignment);

773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
/**
 * blk_queue_flush - configure queue's cache flush capability
 * @q:		the request queue for the device
 * @flush:	0, REQ_FLUSH or REQ_FLUSH | REQ_FUA
 *
 * Tell block layer cache flush capability of @q.  If it supports
 * flushing, REQ_FLUSH should be set.  If it supports bypassing
 * write cache for individual writes, REQ_FUA should be set.
 */
void blk_queue_flush(struct request_queue *q, unsigned int flush)
{
	WARN_ON_ONCE(flush & ~(REQ_FLUSH | REQ_FUA));

	if (WARN_ON_ONCE(!(flush & REQ_FLUSH) && (flush & REQ_FUA)))
		flush &= ~REQ_FUA;

	q->flush_flags = flush & (REQ_FLUSH | REQ_FUA);
}
EXPORT_SYMBOL_GPL(blk_queue_flush);

793
static int __init blk_settings_init(void)
J
Jens Axboe 已提交
794 795 796 797 798 799
{
	blk_max_low_pfn = max_low_pfn - 1;
	blk_max_pfn = max_pfn - 1;
	return 0;
}
subsys_initcall(blk_settings_init);