fw-device.c 22.2 KB
Newer Older
1 2
/*
 * Device probing and sysfs code.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
 *
 * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

#include <linux/module.h>
#include <linux/wait.h>
#include <linux/errno.h>
#include <linux/kthread.h>
#include <linux/device.h>
#include <linux/delay.h>
27
#include <linux/idr.h>
28 29
#include <linux/rwsem.h>
#include <asm/semaphore.h>
30
#include <asm/system.h>
31
#include <linux/ctype.h>
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
#include "fw-transaction.h"
#include "fw-topology.h"
#include "fw-device.h"

void fw_csr_iterator_init(struct fw_csr_iterator *ci, u32 * p)
{
	ci->p = p + 1;
	ci->end = ci->p + (p[0] >> 16);
}
EXPORT_SYMBOL(fw_csr_iterator_init);

int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
{
	*key = *ci->p >> 24;
	*value = *ci->p & 0xffffff;

	return ci->p++ < ci->end;
}
EXPORT_SYMBOL(fw_csr_iterator_next);

static int is_fw_unit(struct device *dev);

54
static int match_unit_directory(u32 * directory, const struct fw_device_id *id)
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
{
	struct fw_csr_iterator ci;
	int key, value, match;

	match = 0;
	fw_csr_iterator_init(&ci, directory);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		if (key == CSR_VENDOR && value == id->vendor)
			match |= FW_MATCH_VENDOR;
		if (key == CSR_MODEL && value == id->model)
			match |= FW_MATCH_MODEL;
		if (key == CSR_SPECIFIER_ID && value == id->specifier_id)
			match |= FW_MATCH_SPECIFIER_ID;
		if (key == CSR_VERSION && value == id->version)
			match |= FW_MATCH_VERSION;
	}

	return (match & id->match_flags) == id->match_flags;
}

static int fw_unit_match(struct device *dev, struct device_driver *drv)
{
	struct fw_unit *unit = fw_unit(dev);
	struct fw_driver *driver = fw_driver(drv);
	int i;

	/* We only allow binding to fw_units. */
	if (!is_fw_unit(dev))
		return 0;

	for (i = 0; driver->id_table[i].match_flags != 0; i++) {
		if (match_unit_directory(unit->directory, &driver->id_table[i]))
			return 1;
	}

	return 0;
}

static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
{
	struct fw_device *device = fw_device(unit->device.parent);
	struct fw_csr_iterator ci;

	int key, value;
	int vendor = 0;
	int model = 0;
	int specifier_id = 0;
	int version = 0;

	fw_csr_iterator_init(&ci, &device->config_rom[5]);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		switch (key) {
		case CSR_VENDOR:
			vendor = value;
			break;
		case CSR_MODEL:
			model = value;
			break;
		}
	}

	fw_csr_iterator_init(&ci, unit->directory);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		switch (key) {
		case CSR_SPECIFIER_ID:
			specifier_id = value;
			break;
		case CSR_VERSION:
			version = value;
			break;
		}
	}

	return snprintf(buffer, buffer_size,
			"ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
			vendor, model, specifier_id, version);
}

static int
134
fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
135 136 137 138
{
	struct fw_unit *unit = fw_unit(dev);
	char modalias[64];

139
	get_modalias(unit, modalias, sizeof(modalias));
140

141
	if (add_uevent_var(env, "MODALIAS=%s", modalias))
142 143 144 145 146 147
		return -ENOMEM;

	return 0;
}

struct bus_type fw_bus_type = {
148
	.name = "firewire",
149 150 151 152 153 154 155
	.match = fw_unit_match,
};
EXPORT_SYMBOL(fw_bus_type);

static void fw_device_release(struct device *dev)
{
	struct fw_device *device = fw_device(dev);
156
	struct fw_card *card = device->card;
157 158
	unsigned long flags;

159 160 161 162
	/*
	 * Take the card lock so we don't set this to NULL while a
	 * FW_NODE_UPDATED callback is being handled.
	 */
163 164 165 166 167 168 169
	spin_lock_irqsave(&device->card->lock, flags);
	device->node->data = NULL;
	spin_unlock_irqrestore(&device->card->lock, flags);

	fw_node_put(device->node);
	kfree(device->config_rom);
	kfree(device);
170
	atomic_dec(&card->device_count);
171 172 173 174
}

int fw_device_enable_phys_dma(struct fw_device *device)
{
175 176 177 178 179
	int generation = device->generation;

	/* device->node_id, accessed below, must not be older than generation */
	smp_rmb();

180 181
	return device->card->driver->enable_phys_dma(device->card,
						     device->node_id,
182
						     generation);
183 184 185
}
EXPORT_SYMBOL(fw_device_enable_phys_dma);

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
struct config_rom_attribute {
	struct device_attribute attr;
	u32 key;
};

static ssize_t
show_immediate(struct device *dev, struct device_attribute *dattr, char *buf)
{
	struct config_rom_attribute *attr =
		container_of(dattr, struct config_rom_attribute, attr);
	struct fw_csr_iterator ci;
	u32 *dir;
	int key, value;

	if (is_fw_unit(dev))
		dir = fw_unit(dev)->directory;
	else
		dir = fw_device(dev)->config_rom + 5;

	fw_csr_iterator_init(&ci, dir);
	while (fw_csr_iterator_next(&ci, &key, &value))
		if (attr->key == key)
			return snprintf(buf, buf ? PAGE_SIZE : 0,
					"0x%06x\n", value);

	return -ENOENT;
}

#define IMMEDIATE_ATTR(name, key)				\
	{ __ATTR(name, S_IRUGO, show_immediate, NULL), key }

static ssize_t
show_text_leaf(struct device *dev, struct device_attribute *dattr, char *buf)
{
	struct config_rom_attribute *attr =
		container_of(dattr, struct config_rom_attribute, attr);
	struct fw_csr_iterator ci;
	u32 *dir, *block = NULL, *p, *end;
	int length, key, value, last_key = 0;
	char *b;

	if (is_fw_unit(dev))
		dir = fw_unit(dev)->directory;
	else
		dir = fw_device(dev)->config_rom + 5;

	fw_csr_iterator_init(&ci, dir);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		if (attr->key == last_key &&
		    key == (CSR_DESCRIPTOR | CSR_LEAF))
			block = ci.p - 1 + value;
		last_key = key;
	}

	if (block == NULL)
		return -ENOENT;

	length = min(block[0] >> 16, 256U);
	if (length < 3)
		return -ENOENT;

	if (block[1] != 0 || block[2] != 0)
		/* Unknown encoding. */
		return -ENOENT;

	if (buf == NULL)
		return length * 4;

	b = buf;
	end = &block[length + 1];
	for (p = &block[3]; p < end; p++, b += 4)
		* (u32 *) b = (__force u32) __cpu_to_be32(*p);

	/* Strip trailing whitespace and add newline. */
	while (b--, (isspace(*b) || *b == '\0') && b > buf);
	strcpy(b + 1, "\n");

	return b + 2 - buf;
}

#define TEXT_LEAF_ATTR(name, key)				\
	{ __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }

static struct config_rom_attribute config_rom_attributes[] = {
	IMMEDIATE_ATTR(vendor, CSR_VENDOR),
	IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
	IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
	IMMEDIATE_ATTR(version, CSR_VERSION),
	IMMEDIATE_ATTR(model, CSR_MODEL),
	TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
	TEXT_LEAF_ATTR(model_name, CSR_MODEL),
	TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
};

static void
281 282 283
init_fw_attribute_group(struct device *dev,
			struct device_attribute *attrs,
			struct fw_attribute_group *group)
284 285
{
	struct device_attribute *attr;
286 287 288 289
	int i, j;

	for (j = 0; attrs[j].attr.name != NULL; j++)
		group->attrs[j] = &attrs[j].attr;
290 291 292 293 294

	for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
		attr = &config_rom_attributes[i].attr;
		if (attr->show(dev, attr, NULL) < 0)
			continue;
295
		group->attrs[j++] = &attr->attr;
296 297
	}

298 299 300 301 302 303
	BUG_ON(j >= ARRAY_SIZE(group->attrs));
	group->attrs[j++] = NULL;
	group->groups[0] = &group->group;
	group->groups[1] = NULL;
	group->group.attrs = group->attrs;
	dev->groups = group->groups;
304 305
}

306
static ssize_t
307 308
modalias_show(struct device *dev,
	      struct device_attribute *attr, char *buf)
309 310 311 312 313 314 315 316 317 318 319
{
	struct fw_unit *unit = fw_unit(dev);
	int length;

	length = get_modalias(unit, buf, PAGE_SIZE);
	strcpy(buf + length, "\n");

	return length + 1;
}

static ssize_t
320 321
rom_index_show(struct device *dev,
	       struct device_attribute *attr, char *buf)
322
{
323 324
	struct fw_device *device = fw_device(dev->parent);
	struct fw_unit *unit = fw_unit(dev);
325

326 327
	return snprintf(buf, PAGE_SIZE, "%d\n",
			(int)(unit->directory - device->config_rom));
328 329
}

330 331 332 333
static struct device_attribute fw_unit_attributes[] = {
	__ATTR_RO(modalias),
	__ATTR_RO(rom_index),
	__ATTR_NULL,
334 335
};

336
static ssize_t
337
config_rom_show(struct device *dev, struct device_attribute *attr, char *buf)
338
{
339
	struct fw_device *device = fw_device(dev);
340

341 342 343
	memcpy(buf, device->config_rom, device->config_rom_length * 4);

	return device->config_rom_length * 4;
344 345
}

346 347 348 349 350
static ssize_t
guid_show(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct fw_device *device = fw_device(dev);

351 352
	return snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
			device->config_rom[3], device->config_rom[4]);
353 354
}

355 356
static struct device_attribute fw_device_attributes[] = {
	__ATTR_RO(config_rom),
357
	__ATTR_RO(guid),
358
	__ATTR_NULL,
359 360
};

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
struct read_quadlet_callback_data {
	struct completion done;
	int rcode;
	u32 data;
};

static void
complete_transaction(struct fw_card *card, int rcode,
		     void *payload, size_t length, void *data)
{
	struct read_quadlet_callback_data *callback_data = data;

	if (rcode == RCODE_COMPLETE)
		callback_data->data = be32_to_cpu(*(__be32 *)payload);
	callback_data->rcode = rcode;
	complete(&callback_data->done);
}

379 380
static int
read_rom(struct fw_device *device, int generation, int index, u32 *data)
381 382 383 384
{
	struct read_quadlet_callback_data callback_data;
	struct fw_transaction t;
	u64 offset;
385 386 387

	/* device->node_id, accessed below, must not be older than generation */
	smp_rmb();
388 389 390 391 392

	init_completion(&callback_data.done);

	offset = 0xfffff0000400ULL + index * 4;
	fw_send_request(device->card, &t, TCODE_READ_QUADLET_REQUEST,
393
			device->node_id, generation, device->max_speed,
394 395 396 397 398 399 400 401 402
			offset, NULL, 4, complete_transaction, &callback_data);

	wait_for_completion(&callback_data.done);

	*data = callback_data.data;

	return callback_data.rcode;
}

403 404 405 406 407 408 409 410
/*
 * Read the bus info block, perform a speed probe, and read all of the rest of
 * the config ROM.  We do all this with a cached bus generation.  If the bus
 * generation changes under us, read_bus_info_block will fail and get retried.
 * It's better to start all over in this case because the node from which we
 * are reading the ROM may have changed the ROM during the reset.
 */
static int read_bus_info_block(struct fw_device *device, int generation)
411 412 413 414 415
{
	static u32 rom[256];
	u32 stack[16], sp, key;
	int i, end, length;

416 417
	device->max_speed = SCODE_100;

418 419
	/* First read the bus info block. */
	for (i = 0; i < 5; i++) {
420
		if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
421
			return -1;
422 423
		/*
		 * As per IEEE1212 7.2, during power-up, devices can
424 425 426 427
		 * reply with a 0 for the first quadlet of the config
		 * rom to indicate that they are booting (for example,
		 * if the firmware is on the disk of a external
		 * harddisk).  In that case we just fail, and the
428 429
		 * retry mechanism will try again later.
		 */
430 431 432 433
		if (i == 0 && rom[i] == 0)
			return -1;
	}

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
	device->max_speed = device->node->max_speed;

	/*
	 * Determine the speed of
	 *   - devices with link speed less than PHY speed,
	 *   - devices with 1394b PHY (unless only connected to 1394a PHYs),
	 *   - all devices if there are 1394b repeaters.
	 * Note, we cannot use the bus info block's link_spd as starting point
	 * because some buggy firmwares set it lower than necessary and because
	 * 1394-1995 nodes do not have the field.
	 */
	if ((rom[2] & 0x7) < device->max_speed ||
	    device->max_speed == SCODE_BETA ||
	    device->card->beta_repeaters_present) {
		u32 dummy;

		/* for S1600 and S3200 */
		if (device->max_speed == SCODE_BETA)
			device->max_speed = device->card->link_speed;

		while (device->max_speed > SCODE_100) {
455 456
			if (read_rom(device, generation, 0, &dummy) ==
			    RCODE_COMPLETE)
457 458 459 460 461
				break;
			device->max_speed--;
		}
	}

462 463
	/*
	 * Now parse the config rom.  The config rom is a recursive
464 465 466
	 * directory structure so we parse it using a stack of
	 * references to the blocks that make up the structure.  We
	 * push a reference to the root directory on the stack to
467 468
	 * start things off.
	 */
469 470 471 472
	length = i;
	sp = 0;
	stack[sp++] = 0xc0000005;
	while (sp > 0) {
473 474
		/*
		 * Pop the next block reference of the stack.  The
475 476
		 * lower 24 bits is the offset into the config rom,
		 * the upper 8 bits are the type of the reference the
477 478
		 * block.
		 */
479 480 481
		key = stack[--sp];
		i = key & 0xffffff;
		if (i >= ARRAY_SIZE(rom))
482 483 484 485
			/*
			 * The reference points outside the standard
			 * config rom area, something's fishy.
			 */
486 487 488
			return -1;

		/* Read header quadlet for the block to get the length. */
489
		if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
490 491 492 493
			return -1;
		end = i + (rom[i] >> 16) + 1;
		i++;
		if (end > ARRAY_SIZE(rom))
494 495
			/*
			 * This block extends outside standard config
496 497
			 * area (and the array we're reading it
			 * into).  That's broken, so ignore this
498 499
			 * device.
			 */
500 501
			return -1;

502 503
		/*
		 * Now read in the block.  If this is a directory
504
		 * block, check the entries as we read them to see if
505 506
		 * it references another block, and push it in that case.
		 */
507
		while (i < end) {
508 509
			if (read_rom(device, generation, i, &rom[i]) !=
			    RCODE_COMPLETE)
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
				return -1;
			if ((key >> 30) == 3 && (rom[i] >> 30) > 1 &&
			    sp < ARRAY_SIZE(stack))
				stack[sp++] = i + rom[i];
			i++;
		}
		if (length < i)
			length = i;
	}

	device->config_rom = kmalloc(length * 4, GFP_KERNEL);
	if (device->config_rom == NULL)
		return -1;
	memcpy(device->config_rom, rom, length * 4);
	device->config_rom_length = length;

	return 0;
}

static void fw_unit_release(struct device *dev)
{
	struct fw_unit *unit = fw_unit(dev);

	kfree(unit);
}

536 537 538 539 540
static struct device_type fw_unit_type = {
	.uevent		= fw_unit_uevent,
	.release	= fw_unit_release,
};

541 542
static int is_fw_unit(struct device *dev)
{
543
	return dev->type == &fw_unit_type;
544 545 546 547 548 549 550 551 552 553 554 555 556 557
}

static void create_units(struct fw_device *device)
{
	struct fw_csr_iterator ci;
	struct fw_unit *unit;
	int key, value, i;

	i = 0;
	fw_csr_iterator_init(&ci, &device->config_rom[5]);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		if (key != (CSR_UNIT | CSR_DIRECTORY))
			continue;

558 559 560 561
		/*
		 * Get the address of the unit directory and try to
		 * match the drivers id_tables against it.
		 */
562
		unit = kzalloc(sizeof(*unit), GFP_KERNEL);
563 564 565 566 567 568 569
		if (unit == NULL) {
			fw_error("failed to allocate memory for unit\n");
			continue;
		}

		unit->directory = ci.p + value - 1;
		unit->device.bus = &fw_bus_type;
570
		unit->device.type = &fw_unit_type;
571
		unit->device.parent = &device->device;
572
		snprintf(unit->device.bus_id, sizeof(unit->device.bus_id),
573 574
			 "%s.%d", device->device.bus_id, i++);

575 576 577
		init_fw_attribute_group(&unit->device,
					fw_unit_attributes,
					&unit->attribute_group);
578 579 580 581 582 583 584
		if (device_register(&unit->device) < 0)
			goto skip_unit;

		continue;

	skip_unit:
		kfree(unit);
585 586 587 588 589
	}
}

static int shutdown_unit(struct device *device, void *data)
{
590
	device_unregister(device);
591 592 593 594

	return 0;
}

595
static DECLARE_RWSEM(idr_rwsem);
596 597 598
static DEFINE_IDR(fw_device_idr);
int fw_cdev_major;

599
struct fw_device *fw_device_get_by_devt(dev_t devt)
600 601 602
{
	struct fw_device *device;

603
	down_read(&idr_rwsem);
604
	device = idr_find(&fw_device_idr, MINOR(devt));
605 606
	if (device)
		fw_device_get(device);
607
	up_read(&idr_rwsem);
608 609 610 611

	return device;
}

612 613 614 615
static void fw_device_shutdown(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);
616 617
	int minor = MINOR(device->device.devt);

618
	fw_device_cdev_remove(device);
619 620
	device_for_each_child(&device->device, NULL, shutdown_unit);
	device_unregister(&device->device);
621 622 623 624 625

	down_write(&idr_rwsem);
	idr_remove(&fw_device_idr, minor);
	up_write(&idr_rwsem);
	fw_device_put(device);
626 627
}

628 629 630 631
static struct device_type fw_device_type = {
	.release	= fw_device_release,
};

632 633
/*
 * These defines control the retry behavior for reading the config
634 635 636 637 638 639
 * rom.  It shouldn't be necessary to tweak these; if the device
 * doesn't respond to a config rom read within 10 seconds, it's not
 * going to respond at all.  As for the initial delay, a lot of
 * devices will be able to respond within half a second after bus
 * reset.  On the other hand, it's not really worth being more
 * aggressive than that, since it scales pretty well; if 10 devices
640 641
 * are plugged in, they're all getting read within one second.
 */
642

643 644
#define MAX_RETRIES	10
#define RETRY_DELAY	(3 * HZ)
645 646 647 648 649 650
#define INITIAL_DELAY	(HZ / 2)

static void fw_device_init(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);
651
	int minor, err;
652

653 654
	/*
	 * All failure paths here set node->data to NULL, so that we
655
	 * don't try to do device_for_each_child() on a kfree()'d
656 657
	 * device.
	 */
658

659
	if (read_bus_info_block(device, device->generation) < 0) {
660 661
		if (device->config_rom_retries < MAX_RETRIES &&
		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
662 663 664
			device->config_rom_retries++;
			schedule_delayed_work(&device->work, RETRY_DELAY);
		} else {
665
			fw_notify("giving up on config rom for node id %x\n",
666
				  device->node_id);
667 668
			if (device->node == device->card->root_node)
				schedule_delayed_work(&device->card->work, 0);
669 670 671 672 673
			fw_device_release(&device->device);
		}
		return;
	}

674
	err = -ENOMEM;
675 676

	fw_device_get(device);
677
	down_write(&idr_rwsem);
678 679
	if (idr_pre_get(&fw_device_idr, GFP_KERNEL))
		err = idr_get_new(&fw_device_idr, device, &minor);
680
	up_write(&idr_rwsem);
681

682 683 684
	if (err < 0)
		goto error;

685
	device->device.bus = &fw_bus_type;
686
	device->device.type = &fw_device_type;
687
	device->device.parent = device->card->device;
688
	device->device.devt = MKDEV(fw_cdev_major, minor);
689
	snprintf(device->device.bus_id, sizeof(device->device.bus_id),
690
		 "fw%d", minor);
691

692 693 694
	init_fw_attribute_group(&device->device,
				fw_device_attributes,
				&device->attribute_group);
695 696
	if (device_add(&device->device)) {
		fw_error("Failed to add device.\n");
697
		goto error_with_cdev;
698 699 700 701
	}

	create_units(device);

702 703
	/*
	 * Transition the device to running state.  If it got pulled
704 705 706 707 708
	 * out from under us while we did the intialization work, we
	 * have to shut down the device again here.  Normally, though,
	 * fw_node_event will be responsible for shutting it down when
	 * necessary.  We have to use the atomic cmpxchg here to avoid
	 * racing with the FW_NODE_DESTROYED case in
709 710
	 * fw_node_event().
	 */
711
	if (atomic_cmpxchg(&device->state,
712
		    FW_DEVICE_INITIALIZING,
713
		    FW_DEVICE_RUNNING) == FW_DEVICE_SHUTDOWN) {
714
		fw_device_shutdown(&device->work.work);
715 716 717 718 719 720 721 722 723 724 725 726 727 728
	} else {
		if (device->config_rom_retries)
			fw_notify("created device %s: GUID %08x%08x, S%d00, "
				  "%d config ROM retries\n",
				  device->device.bus_id,
				  device->config_rom[3], device->config_rom[4],
				  1 << device->max_speed,
				  device->config_rom_retries);
		else
			fw_notify("created device %s: GUID %08x%08x, S%d00\n",
				  device->device.bus_id,
				  device->config_rom[3], device->config_rom[4],
				  1 << device->max_speed);
	}
729

730 731
	/*
	 * Reschedule the IRM work if we just finished reading the
732 733
	 * root node config rom.  If this races with a bus reset we
	 * just end up running the IRM work a couple of extra times -
734 735
	 * pretty harmless.
	 */
736 737 738 739 740
	if (device->node == device->card->root_node)
		schedule_delayed_work(&device->card->work, 0);

	return;

741
 error_with_cdev:
742
	down_write(&idr_rwsem);
743
	idr_remove(&fw_device_idr, minor);
744
	up_write(&idr_rwsem);
S
Stefan Richter 已提交
745
 error:
746 747 748
	fw_device_put(device);		/* fw_device_idr's reference */

	put_device(&device->device);	/* our reference */
749 750 751 752 753 754 755
}

static int update_unit(struct device *dev, void *data)
{
	struct fw_unit *unit = fw_unit(dev);
	struct fw_driver *driver = (struct fw_driver *)dev->driver;

756 757
	if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
		down(&dev->sem);
758
		driver->update(unit);
759 760
		up(&dev->sem);
	}
761 762 763 764

	return 0;
}

765 766 767 768 769
static void fw_device_update(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);

770
	fw_device_cdev_update(device);
771 772 773
	device_for_each_child(&device->device, NULL, update_unit);
}

774 775 776 777 778 779 780 781 782 783 784 785 786 787
void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
{
	struct fw_device *device;

	switch (event) {
	case FW_NODE_CREATED:
	case FW_NODE_LINK_ON:
		if (!node->link_on)
			break;

		device = kzalloc(sizeof(*device), GFP_ATOMIC);
		if (device == NULL)
			break;

788 789
		/*
		 * Do minimal intialization of the device here, the
790 791 792 793
		 * rest will happen in fw_device_init().  We need the
		 * card and node so we can read the config rom and we
		 * need to do device_initialize() now so
		 * device_for_each_child() in FW_NODE_UPDATED is
794 795
		 * doesn't freak out.
		 */
796
		device_initialize(&device->device);
797
		atomic_set(&device->state, FW_DEVICE_INITIALIZING);
798 799
		atomic_inc(&card->device_count);
		device->card = card;
800 801 802
		device->node = fw_node_get(node);
		device->node_id = node->node_id;
		device->generation = card->generation;
803
		INIT_LIST_HEAD(&device->client_list);
804

805 806
		/*
		 * Set the node data to point back to this device so
807
		 * FW_NODE_UPDATED callbacks can update the node_id
808 809
		 * and generation for the device.
		 */
810 811
		node->data = device;

812 813
		/*
		 * Many devices are slow to respond after bus resets,
814 815
		 * especially if they are bus powered and go through
		 * power-up after getting plugged in.  We schedule the
816 817
		 * first config rom scan half a second after bus reset.
		 */
818 819 820 821 822 823 824 825 826 827
		INIT_DELAYED_WORK(&device->work, fw_device_init);
		schedule_delayed_work(&device->work, INITIAL_DELAY);
		break;

	case FW_NODE_UPDATED:
		if (!node->link_on || node->data == NULL)
			break;

		device = node->data;
		device->node_id = node->node_id;
828
		smp_wmb();  /* update node_id before generation */
829
		device->generation = card->generation;
830 831 832 833
		if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
			PREPARE_DELAYED_WORK(&device->work, fw_device_update);
			schedule_delayed_work(&device->work, 0);
		}
834 835 836 837 838 839 840
		break;

	case FW_NODE_DESTROYED:
	case FW_NODE_LINK_OFF:
		if (!node->data)
			break;

841 842
		/*
		 * Destroy the device associated with the node.  There
843 844 845 846 847 848 849 850
		 * are two cases here: either the device is fully
		 * initialized (FW_DEVICE_RUNNING) or we're in the
		 * process of reading its config rom
		 * (FW_DEVICE_INITIALIZING).  If it is fully
		 * initialized we can reuse device->work to schedule a
		 * full fw_device_shutdown().  If not, there's work
		 * scheduled to read it's config rom, and we just put
		 * the device in shutdown state to have that code fail
851 852
		 * to create the device.
		 */
853
		device = node->data;
854
		if (atomic_xchg(&device->state,
855 856
				FW_DEVICE_SHUTDOWN) == FW_DEVICE_RUNNING) {
			PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
857 858 859 860 861
			schedule_delayed_work(&device->work, 0);
		}
		break;
	}
}