fw-device.c 22.0 KB
Newer Older
1 2
/*
 * Device probing and sysfs code.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
 *
 * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

#include <linux/module.h>
#include <linux/wait.h>
#include <linux/errno.h>
#include <linux/kthread.h>
#include <linux/device.h>
#include <linux/delay.h>
27
#include <linux/idr.h>
28 29
#include <linux/rwsem.h>
#include <asm/semaphore.h>
30
#include <asm/system.h>
31
#include <linux/ctype.h>
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
#include "fw-transaction.h"
#include "fw-topology.h"
#include "fw-device.h"

void fw_csr_iterator_init(struct fw_csr_iterator *ci, u32 * p)
{
	ci->p = p + 1;
	ci->end = ci->p + (p[0] >> 16);
}
EXPORT_SYMBOL(fw_csr_iterator_init);

int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
{
	*key = *ci->p >> 24;
	*value = *ci->p & 0xffffff;

	return ci->p++ < ci->end;
}
EXPORT_SYMBOL(fw_csr_iterator_next);

static int is_fw_unit(struct device *dev);

54
static int match_unit_directory(u32 * directory, const struct fw_device_id *id)
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
{
	struct fw_csr_iterator ci;
	int key, value, match;

	match = 0;
	fw_csr_iterator_init(&ci, directory);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		if (key == CSR_VENDOR && value == id->vendor)
			match |= FW_MATCH_VENDOR;
		if (key == CSR_MODEL && value == id->model)
			match |= FW_MATCH_MODEL;
		if (key == CSR_SPECIFIER_ID && value == id->specifier_id)
			match |= FW_MATCH_SPECIFIER_ID;
		if (key == CSR_VERSION && value == id->version)
			match |= FW_MATCH_VERSION;
	}

	return (match & id->match_flags) == id->match_flags;
}

static int fw_unit_match(struct device *dev, struct device_driver *drv)
{
	struct fw_unit *unit = fw_unit(dev);
	struct fw_driver *driver = fw_driver(drv);
	int i;

	/* We only allow binding to fw_units. */
	if (!is_fw_unit(dev))
		return 0;

	for (i = 0; driver->id_table[i].match_flags != 0; i++) {
		if (match_unit_directory(unit->directory, &driver->id_table[i]))
			return 1;
	}

	return 0;
}

static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
{
	struct fw_device *device = fw_device(unit->device.parent);
	struct fw_csr_iterator ci;

	int key, value;
	int vendor = 0;
	int model = 0;
	int specifier_id = 0;
	int version = 0;

	fw_csr_iterator_init(&ci, &device->config_rom[5]);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		switch (key) {
		case CSR_VENDOR:
			vendor = value;
			break;
		case CSR_MODEL:
			model = value;
			break;
		}
	}

	fw_csr_iterator_init(&ci, unit->directory);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		switch (key) {
		case CSR_SPECIFIER_ID:
			specifier_id = value;
			break;
		case CSR_VERSION:
			version = value;
			break;
		}
	}

	return snprintf(buffer, buffer_size,
			"ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
			vendor, model, specifier_id, version);
}

static int
134
fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
135 136 137 138
{
	struct fw_unit *unit = fw_unit(dev);
	char modalias[64];

139
	get_modalias(unit, modalias, sizeof(modalias));
140

141
	if (add_uevent_var(env, "MODALIAS=%s", modalias))
142 143 144 145 146 147
		return -ENOMEM;

	return 0;
}

struct bus_type fw_bus_type = {
148
	.name = "firewire",
149 150 151 152
	.match = fw_unit_match,
};
EXPORT_SYMBOL(fw_bus_type);

153
struct fw_device *fw_device_get(struct fw_device *device)
154 155 156 157 158 159
{
	get_device(&device->device);

	return device;
}

160
void fw_device_put(struct fw_device *device)
161 162 163 164 165 166 167 168 169
{
	put_device(&device->device);
}

static void fw_device_release(struct device *dev)
{
	struct fw_device *device = fw_device(dev);
	unsigned long flags;

170 171 172 173
	/*
	 * Take the card lock so we don't set this to NULL while a
	 * FW_NODE_UPDATED callback is being handled.
	 */
174 175 176 177 178 179 180 181 182 183 184 185
	spin_lock_irqsave(&device->card->lock, flags);
	device->node->data = NULL;
	spin_unlock_irqrestore(&device->card->lock, flags);

	fw_node_put(device->node);
	fw_card_put(device->card);
	kfree(device->config_rom);
	kfree(device);
}

int fw_device_enable_phys_dma(struct fw_device *device)
{
186 187 188 189 190
	int generation = device->generation;

	/* device->node_id, accessed below, must not be older than generation */
	smp_rmb();

191 192
	return device->card->driver->enable_phys_dma(device->card,
						     device->node_id,
193
						     generation);
194 195 196
}
EXPORT_SYMBOL(fw_device_enable_phys_dma);

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
struct config_rom_attribute {
	struct device_attribute attr;
	u32 key;
};

static ssize_t
show_immediate(struct device *dev, struct device_attribute *dattr, char *buf)
{
	struct config_rom_attribute *attr =
		container_of(dattr, struct config_rom_attribute, attr);
	struct fw_csr_iterator ci;
	u32 *dir;
	int key, value;

	if (is_fw_unit(dev))
		dir = fw_unit(dev)->directory;
	else
		dir = fw_device(dev)->config_rom + 5;

	fw_csr_iterator_init(&ci, dir);
	while (fw_csr_iterator_next(&ci, &key, &value))
		if (attr->key == key)
			return snprintf(buf, buf ? PAGE_SIZE : 0,
					"0x%06x\n", value);

	return -ENOENT;
}

#define IMMEDIATE_ATTR(name, key)				\
	{ __ATTR(name, S_IRUGO, show_immediate, NULL), key }

static ssize_t
show_text_leaf(struct device *dev, struct device_attribute *dattr, char *buf)
{
	struct config_rom_attribute *attr =
		container_of(dattr, struct config_rom_attribute, attr);
	struct fw_csr_iterator ci;
	u32 *dir, *block = NULL, *p, *end;
	int length, key, value, last_key = 0;
	char *b;

	if (is_fw_unit(dev))
		dir = fw_unit(dev)->directory;
	else
		dir = fw_device(dev)->config_rom + 5;

	fw_csr_iterator_init(&ci, dir);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		if (attr->key == last_key &&
		    key == (CSR_DESCRIPTOR | CSR_LEAF))
			block = ci.p - 1 + value;
		last_key = key;
	}

	if (block == NULL)
		return -ENOENT;

	length = min(block[0] >> 16, 256U);
	if (length < 3)
		return -ENOENT;

	if (block[1] != 0 || block[2] != 0)
		/* Unknown encoding. */
		return -ENOENT;

	if (buf == NULL)
		return length * 4;

	b = buf;
	end = &block[length + 1];
	for (p = &block[3]; p < end; p++, b += 4)
		* (u32 *) b = (__force u32) __cpu_to_be32(*p);

	/* Strip trailing whitespace and add newline. */
	while (b--, (isspace(*b) || *b == '\0') && b > buf);
	strcpy(b + 1, "\n");

	return b + 2 - buf;
}

#define TEXT_LEAF_ATTR(name, key)				\
	{ __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }

static struct config_rom_attribute config_rom_attributes[] = {
	IMMEDIATE_ATTR(vendor, CSR_VENDOR),
	IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
	IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
	IMMEDIATE_ATTR(version, CSR_VERSION),
	IMMEDIATE_ATTR(model, CSR_MODEL),
	TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
	TEXT_LEAF_ATTR(model_name, CSR_MODEL),
	TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
};

static void
292 293 294
init_fw_attribute_group(struct device *dev,
			struct device_attribute *attrs,
			struct fw_attribute_group *group)
295 296
{
	struct device_attribute *attr;
297 298 299 300
	int i, j;

	for (j = 0; attrs[j].attr.name != NULL; j++)
		group->attrs[j] = &attrs[j].attr;
301 302 303 304 305

	for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
		attr = &config_rom_attributes[i].attr;
		if (attr->show(dev, attr, NULL) < 0)
			continue;
306
		group->attrs[j++] = &attr->attr;
307 308
	}

309 310 311 312 313 314
	BUG_ON(j >= ARRAY_SIZE(group->attrs));
	group->attrs[j++] = NULL;
	group->groups[0] = &group->group;
	group->groups[1] = NULL;
	group->group.attrs = group->attrs;
	dev->groups = group->groups;
315 316
}

317
static ssize_t
318 319
modalias_show(struct device *dev,
	      struct device_attribute *attr, char *buf)
320 321 322 323 324 325 326 327 328 329 330
{
	struct fw_unit *unit = fw_unit(dev);
	int length;

	length = get_modalias(unit, buf, PAGE_SIZE);
	strcpy(buf + length, "\n");

	return length + 1;
}

static ssize_t
331 332
rom_index_show(struct device *dev,
	       struct device_attribute *attr, char *buf)
333
{
334 335
	struct fw_device *device = fw_device(dev->parent);
	struct fw_unit *unit = fw_unit(dev);
336

337 338
	return snprintf(buf, PAGE_SIZE, "%d\n",
			(int)(unit->directory - device->config_rom));
339 340
}

341 342 343 344
static struct device_attribute fw_unit_attributes[] = {
	__ATTR_RO(modalias),
	__ATTR_RO(rom_index),
	__ATTR_NULL,
345 346
};

347
static ssize_t
348
config_rom_show(struct device *dev, struct device_attribute *attr, char *buf)
349
{
350
	struct fw_device *device = fw_device(dev);
351

352 353 354
	memcpy(buf, device->config_rom, device->config_rom_length * 4);

	return device->config_rom_length * 4;
355 356
}

357 358 359 360 361 362 363 364
static ssize_t
guid_show(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct fw_device *device = fw_device(dev);
	u64 guid;

	guid = ((u64)device->config_rom[3] << 32) | device->config_rom[4];

A
Andrew Morton 已提交
365 366
	return snprintf(buf, PAGE_SIZE, "0x%016llx\n",
			(unsigned long long)guid);
367 368
}

369 370
static struct device_attribute fw_device_attributes[] = {
	__ATTR_RO(config_rom),
371
	__ATTR_RO(guid),
372
	__ATTR_NULL,
373 374
};

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
struct read_quadlet_callback_data {
	struct completion done;
	int rcode;
	u32 data;
};

static void
complete_transaction(struct fw_card *card, int rcode,
		     void *payload, size_t length, void *data)
{
	struct read_quadlet_callback_data *callback_data = data;

	if (rcode == RCODE_COMPLETE)
		callback_data->data = be32_to_cpu(*(__be32 *)payload);
	callback_data->rcode = rcode;
	complete(&callback_data->done);
}

393 394
static int
read_rom(struct fw_device *device, int generation, int index, u32 *data)
395 396 397 398
{
	struct read_quadlet_callback_data callback_data;
	struct fw_transaction t;
	u64 offset;
399 400 401

	/* device->node_id, accessed below, must not be older than generation */
	smp_rmb();
402 403 404 405 406

	init_completion(&callback_data.done);

	offset = 0xfffff0000400ULL + index * 4;
	fw_send_request(device->card, &t, TCODE_READ_QUADLET_REQUEST,
407
			device->node_id, generation, device->max_speed,
408 409 410 411 412 413 414 415 416
			offset, NULL, 4, complete_transaction, &callback_data);

	wait_for_completion(&callback_data.done);

	*data = callback_data.data;

	return callback_data.rcode;
}

417 418 419 420 421 422 423 424
/*
 * Read the bus info block, perform a speed probe, and read all of the rest of
 * the config ROM.  We do all this with a cached bus generation.  If the bus
 * generation changes under us, read_bus_info_block will fail and get retried.
 * It's better to start all over in this case because the node from which we
 * are reading the ROM may have changed the ROM during the reset.
 */
static int read_bus_info_block(struct fw_device *device, int generation)
425 426 427 428 429
{
	static u32 rom[256];
	u32 stack[16], sp, key;
	int i, end, length;

430 431
	device->max_speed = SCODE_100;

432 433
	/* First read the bus info block. */
	for (i = 0; i < 5; i++) {
434
		if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
435
			return -1;
436 437
		/*
		 * As per IEEE1212 7.2, during power-up, devices can
438 439 440 441
		 * reply with a 0 for the first quadlet of the config
		 * rom to indicate that they are booting (for example,
		 * if the firmware is on the disk of a external
		 * harddisk).  In that case we just fail, and the
442 443
		 * retry mechanism will try again later.
		 */
444 445 446 447
		if (i == 0 && rom[i] == 0)
			return -1;
	}

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
	device->max_speed = device->node->max_speed;

	/*
	 * Determine the speed of
	 *   - devices with link speed less than PHY speed,
	 *   - devices with 1394b PHY (unless only connected to 1394a PHYs),
	 *   - all devices if there are 1394b repeaters.
	 * Note, we cannot use the bus info block's link_spd as starting point
	 * because some buggy firmwares set it lower than necessary and because
	 * 1394-1995 nodes do not have the field.
	 */
	if ((rom[2] & 0x7) < device->max_speed ||
	    device->max_speed == SCODE_BETA ||
	    device->card->beta_repeaters_present) {
		u32 dummy;

		/* for S1600 and S3200 */
		if (device->max_speed == SCODE_BETA)
			device->max_speed = device->card->link_speed;

		while (device->max_speed > SCODE_100) {
469 470
			if (read_rom(device, generation, 0, &dummy) ==
			    RCODE_COMPLETE)
471 472 473 474 475
				break;
			device->max_speed--;
		}
	}

476 477
	/*
	 * Now parse the config rom.  The config rom is a recursive
478 479 480
	 * directory structure so we parse it using a stack of
	 * references to the blocks that make up the structure.  We
	 * push a reference to the root directory on the stack to
481 482
	 * start things off.
	 */
483 484 485 486
	length = i;
	sp = 0;
	stack[sp++] = 0xc0000005;
	while (sp > 0) {
487 488
		/*
		 * Pop the next block reference of the stack.  The
489 490
		 * lower 24 bits is the offset into the config rom,
		 * the upper 8 bits are the type of the reference the
491 492
		 * block.
		 */
493 494 495
		key = stack[--sp];
		i = key & 0xffffff;
		if (i >= ARRAY_SIZE(rom))
496 497 498 499
			/*
			 * The reference points outside the standard
			 * config rom area, something's fishy.
			 */
500 501 502
			return -1;

		/* Read header quadlet for the block to get the length. */
503
		if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
504 505 506 507
			return -1;
		end = i + (rom[i] >> 16) + 1;
		i++;
		if (end > ARRAY_SIZE(rom))
508 509
			/*
			 * This block extends outside standard config
510 511
			 * area (and the array we're reading it
			 * into).  That's broken, so ignore this
512 513
			 * device.
			 */
514 515
			return -1;

516 517
		/*
		 * Now read in the block.  If this is a directory
518
		 * block, check the entries as we read them to see if
519 520
		 * it references another block, and push it in that case.
		 */
521
		while (i < end) {
522 523
			if (read_rom(device, generation, i, &rom[i]) !=
			    RCODE_COMPLETE)
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
				return -1;
			if ((key >> 30) == 3 && (rom[i] >> 30) > 1 &&
			    sp < ARRAY_SIZE(stack))
				stack[sp++] = i + rom[i];
			i++;
		}
		if (length < i)
			length = i;
	}

	device->config_rom = kmalloc(length * 4, GFP_KERNEL);
	if (device->config_rom == NULL)
		return -1;
	memcpy(device->config_rom, rom, length * 4);
	device->config_rom_length = length;

	return 0;
}

static void fw_unit_release(struct device *dev)
{
	struct fw_unit *unit = fw_unit(dev);

	kfree(unit);
}

550 551 552 553 554
static struct device_type fw_unit_type = {
	.uevent		= fw_unit_uevent,
	.release	= fw_unit_release,
};

555 556
static int is_fw_unit(struct device *dev)
{
557
	return dev->type == &fw_unit_type;
558 559 560 561 562 563 564 565 566 567 568 569 570 571
}

static void create_units(struct fw_device *device)
{
	struct fw_csr_iterator ci;
	struct fw_unit *unit;
	int key, value, i;

	i = 0;
	fw_csr_iterator_init(&ci, &device->config_rom[5]);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		if (key != (CSR_UNIT | CSR_DIRECTORY))
			continue;

572 573 574 575
		/*
		 * Get the address of the unit directory and try to
		 * match the drivers id_tables against it.
		 */
576
		unit = kzalloc(sizeof(*unit), GFP_KERNEL);
577 578 579 580 581 582 583
		if (unit == NULL) {
			fw_error("failed to allocate memory for unit\n");
			continue;
		}

		unit->directory = ci.p + value - 1;
		unit->device.bus = &fw_bus_type;
584
		unit->device.type = &fw_unit_type;
585
		unit->device.parent = &device->device;
586
		snprintf(unit->device.bus_id, sizeof(unit->device.bus_id),
587 588
			 "%s.%d", device->device.bus_id, i++);

589 590 591
		init_fw_attribute_group(&unit->device,
					fw_unit_attributes,
					&unit->attribute_group);
592 593 594 595 596 597 598
		if (device_register(&unit->device) < 0)
			goto skip_unit;

		continue;

	skip_unit:
		kfree(unit);
599 600 601 602 603
	}
}

static int shutdown_unit(struct device *device, void *data)
{
604
	device_unregister(device);
605 606 607 608

	return 0;
}

609
static DECLARE_RWSEM(idr_rwsem);
610 611 612
static DEFINE_IDR(fw_device_idr);
int fw_cdev_major;

613
struct fw_device *fw_device_get_by_devt(dev_t devt)
614 615 616
{
	struct fw_device *device;

617
	down_read(&idr_rwsem);
618
	device = idr_find(&fw_device_idr, MINOR(devt));
619 620
	if (device)
		fw_device_get(device);
621
	up_read(&idr_rwsem);
622 623 624 625

	return device;
}

626 627 628 629
static void fw_device_shutdown(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);
630 631
	int minor = MINOR(device->device.devt);

632
	fw_device_cdev_remove(device);
633 634
	device_for_each_child(&device->device, NULL, shutdown_unit);
	device_unregister(&device->device);
635 636 637 638 639

	down_write(&idr_rwsem);
	idr_remove(&fw_device_idr, minor);
	up_write(&idr_rwsem);
	fw_device_put(device);
640 641
}

642 643 644 645
static struct device_type fw_device_type = {
	.release	= fw_device_release,
};

646 647
/*
 * These defines control the retry behavior for reading the config
648 649 650 651 652 653
 * rom.  It shouldn't be necessary to tweak these; if the device
 * doesn't respond to a config rom read within 10 seconds, it's not
 * going to respond at all.  As for the initial delay, a lot of
 * devices will be able to respond within half a second after bus
 * reset.  On the other hand, it's not really worth being more
 * aggressive than that, since it scales pretty well; if 10 devices
654 655
 * are plugged in, they're all getting read within one second.
 */
656

657 658
#define MAX_RETRIES	10
#define RETRY_DELAY	(3 * HZ)
659 660 661 662 663 664
#define INITIAL_DELAY	(HZ / 2)

static void fw_device_init(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);
665
	int minor, err;
666

667 668
	/*
	 * All failure paths here set node->data to NULL, so that we
669
	 * don't try to do device_for_each_child() on a kfree()'d
670 671
	 * device.
	 */
672

673
	if (read_bus_info_block(device, device->generation) < 0) {
674 675 676 677
		if (device->config_rom_retries < MAX_RETRIES) {
			device->config_rom_retries++;
			schedule_delayed_work(&device->work, RETRY_DELAY);
		} else {
678
			fw_notify("giving up on config rom for node id %x\n",
679
				  device->node_id);
680 681
			if (device->node == device->card->root_node)
				schedule_delayed_work(&device->card->work, 0);
682 683 684 685 686
			fw_device_release(&device->device);
		}
		return;
	}

687
	err = -ENOMEM;
688 689

	fw_device_get(device);
690
	down_write(&idr_rwsem);
691 692
	if (idr_pre_get(&fw_device_idr, GFP_KERNEL))
		err = idr_get_new(&fw_device_idr, device, &minor);
693
	up_write(&idr_rwsem);
694

695 696 697
	if (err < 0)
		goto error;

698
	device->device.bus = &fw_bus_type;
699
	device->device.type = &fw_device_type;
700
	device->device.parent = device->card->device;
701
	device->device.devt = MKDEV(fw_cdev_major, minor);
702
	snprintf(device->device.bus_id, sizeof(device->device.bus_id),
703
		 "fw%d", minor);
704

705 706 707
	init_fw_attribute_group(&device->device,
				fw_device_attributes,
				&device->attribute_group);
708 709
	if (device_add(&device->device)) {
		fw_error("Failed to add device.\n");
710
		goto error_with_cdev;
711 712 713 714
	}

	create_units(device);

715 716
	/*
	 * Transition the device to running state.  If it got pulled
717 718 719 720 721
	 * out from under us while we did the intialization work, we
	 * have to shut down the device again here.  Normally, though,
	 * fw_node_event will be responsible for shutting it down when
	 * necessary.  We have to use the atomic cmpxchg here to avoid
	 * racing with the FW_NODE_DESTROYED case in
722 723
	 * fw_node_event().
	 */
724
	if (atomic_cmpxchg(&device->state,
725 726 727 728
		    FW_DEVICE_INITIALIZING,
		    FW_DEVICE_RUNNING) == FW_DEVICE_SHUTDOWN)
		fw_device_shutdown(&device->work.work);
	else
729 730 731 732
		fw_notify("created new fw device %s "
			  "(%d config rom retries, S%d00)\n",
			  device->device.bus_id, device->config_rom_retries,
			  1 << device->max_speed);
733

734 735
	/*
	 * Reschedule the IRM work if we just finished reading the
736 737
	 * root node config rom.  If this races with a bus reset we
	 * just end up running the IRM work a couple of extra times -
738 739
	 * pretty harmless.
	 */
740 741 742 743 744
	if (device->node == device->card->root_node)
		schedule_delayed_work(&device->card->work, 0);

	return;

745
 error_with_cdev:
746
	down_write(&idr_rwsem);
747
	idr_remove(&fw_device_idr, minor);
748
	up_write(&idr_rwsem);
S
Stefan Richter 已提交
749
 error:
750 751 752
	fw_device_put(device);		/* fw_device_idr's reference */

	put_device(&device->device);	/* our reference */
753 754 755 756 757 758 759
}

static int update_unit(struct device *dev, void *data)
{
	struct fw_unit *unit = fw_unit(dev);
	struct fw_driver *driver = (struct fw_driver *)dev->driver;

760 761
	if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
		down(&dev->sem);
762
		driver->update(unit);
763 764
		up(&dev->sem);
	}
765 766 767 768

	return 0;
}

769 770 771 772 773
static void fw_device_update(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);

774
	fw_device_cdev_update(device);
775 776 777
	device_for_each_child(&device->device, NULL, update_unit);
}

778 779 780 781 782 783 784 785 786 787 788 789 790 791
void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
{
	struct fw_device *device;

	switch (event) {
	case FW_NODE_CREATED:
	case FW_NODE_LINK_ON:
		if (!node->link_on)
			break;

		device = kzalloc(sizeof(*device), GFP_ATOMIC);
		if (device == NULL)
			break;

792 793
		/*
		 * Do minimal intialization of the device here, the
794 795 796 797
		 * rest will happen in fw_device_init().  We need the
		 * card and node so we can read the config rom and we
		 * need to do device_initialize() now so
		 * device_for_each_child() in FW_NODE_UPDATED is
798 799
		 * doesn't freak out.
		 */
800
		device_initialize(&device->device);
801
		atomic_set(&device->state, FW_DEVICE_INITIALIZING);
802 803 804 805
		device->card = fw_card_get(card);
		device->node = fw_node_get(node);
		device->node_id = node->node_id;
		device->generation = card->generation;
806
		INIT_LIST_HEAD(&device->client_list);
807

808 809
		/*
		 * Set the node data to point back to this device so
810
		 * FW_NODE_UPDATED callbacks can update the node_id
811 812
		 * and generation for the device.
		 */
813 814
		node->data = device;

815 816
		/*
		 * Many devices are slow to respond after bus resets,
817 818
		 * especially if they are bus powered and go through
		 * power-up after getting plugged in.  We schedule the
819 820
		 * first config rom scan half a second after bus reset.
		 */
821 822 823 824 825 826 827 828 829 830
		INIT_DELAYED_WORK(&device->work, fw_device_init);
		schedule_delayed_work(&device->work, INITIAL_DELAY);
		break;

	case FW_NODE_UPDATED:
		if (!node->link_on || node->data == NULL)
			break;

		device = node->data;
		device->node_id = node->node_id;
831
		smp_wmb();  /* update node_id before generation */
832
		device->generation = card->generation;
833 834 835 836
		if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
			PREPARE_DELAYED_WORK(&device->work, fw_device_update);
			schedule_delayed_work(&device->work, 0);
		}
837 838 839 840 841 842 843
		break;

	case FW_NODE_DESTROYED:
	case FW_NODE_LINK_OFF:
		if (!node->data)
			break;

844 845
		/*
		 * Destroy the device associated with the node.  There
846 847 848 849 850 851 852 853
		 * are two cases here: either the device is fully
		 * initialized (FW_DEVICE_RUNNING) or we're in the
		 * process of reading its config rom
		 * (FW_DEVICE_INITIALIZING).  If it is fully
		 * initialized we can reuse device->work to schedule a
		 * full fw_device_shutdown().  If not, there's work
		 * scheduled to read it's config rom, and we just put
		 * the device in shutdown state to have that code fail
854 855
		 * to create the device.
		 */
856
		device = node->data;
857
		if (atomic_xchg(&device->state,
858 859
				FW_DEVICE_SHUTDOWN) == FW_DEVICE_RUNNING) {
			PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
860 861 862 863 864
			schedule_delayed_work(&device->work, 0);
		}
		break;
	}
}