spapr_pci.c 15.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
/*
 * QEMU sPAPR PCI host originated from Uninorth PCI host
 *
 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
 * Copyright (C) 2011 David Gibson, IBM Corporation.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include "hw.h"
#include "pci.h"
#include "pci_host.h"
#include "hw/spapr.h"
#include "hw/spapr_pci.h"
#include "exec-memory.h"
#include <libfdt.h>

#include "hw/pci_internals.h"

static PCIDevice *find_dev(sPAPREnvironment *spapr,
                           uint64_t buid, uint32_t config_addr)
{
    DeviceState *qdev;
    int devfn = (config_addr >> 8) & 0xFF;
    sPAPRPHBState *phb;

    QLIST_FOREACH(phb, &spapr->phbs, list) {
        if (phb->buid != buid) {
            continue;
        }

A
Anthony Liguori 已提交
47
        QTAILQ_FOREACH(qdev, &phb->host_state.bus->qbus.children, sibling) {
48 49 50 51 52 53 54 55 56 57
            PCIDevice *dev = (PCIDevice *)qdev;
            if (dev->devfn == devfn) {
                return dev;
            }
        }
    }

    return NULL;
}

58 59
static uint32_t rtas_pci_cfgaddr(uint32_t arg)
{
60
    /* This handles the encoding of extended config space addresses */
61 62 63
    return ((arg >> 20) & 0xf00) | (arg & 0xff);
}

64 65 66
static void finish_read_pci_config(sPAPREnvironment *spapr, uint64_t buid,
                                   uint32_t addr, uint32_t size,
                                   target_ulong rets)
67
{
68 69 70 71 72 73 74
    PCIDevice *pci_dev;
    uint32_t val;

    if ((size != 1) && (size != 2) && (size != 4)) {
        /* access must be 1, 2 or 4 bytes */
        rtas_st(rets, 0, -1);
        return;
75 76
    }

77 78 79 80 81 82 83 84
    pci_dev = find_dev(spapr, buid, addr);
    addr = rtas_pci_cfgaddr(addr);

    if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
        /* Access must be to a valid device, within bounds and
         * naturally aligned */
        rtas_st(rets, 0, -1);
        return;
85
    }
86 87 88 89 90 91

    val = pci_host_config_read_common(pci_dev, addr,
                                      pci_config_size(pci_dev), size);

    rtas_st(rets, 0, 0);
    rtas_st(rets, 1, val);
92 93
}

94 95 96 97 98
static void rtas_ibm_read_pci_config(sPAPREnvironment *spapr,
                                     uint32_t token, uint32_t nargs,
                                     target_ulong args,
                                     uint32_t nret, target_ulong rets)
{
99 100
    uint64_t buid;
    uint32_t size, addr;
101

102
    if ((nargs != 4) || (nret != 2)) {
103 104 105
        rtas_st(rets, 0, -1);
        return;
    }
106 107

    buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
108
    size = rtas_ld(args, 3);
109 110 111
    addr = rtas_ld(args, 0);

    finish_read_pci_config(spapr, buid, addr, size, rets);
112 113 114 115 116 117 118
}

static void rtas_read_pci_config(sPAPREnvironment *spapr,
                                 uint32_t token, uint32_t nargs,
                                 target_ulong args,
                                 uint32_t nret, target_ulong rets)
{
119
    uint32_t size, addr;
120

121
    if ((nargs != 2) || (nret != 2)) {
122 123 124
        rtas_st(rets, 0, -1);
        return;
    }
125

126
    size = rtas_ld(args, 1);
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    addr = rtas_ld(args, 0);

    finish_read_pci_config(spapr, 0, addr, size, rets);
}

static void finish_write_pci_config(sPAPREnvironment *spapr, uint64_t buid,
                                    uint32_t addr, uint32_t size,
                                    uint32_t val, target_ulong rets)
{
    PCIDevice *pci_dev;

    if ((size != 1) && (size != 2) && (size != 4)) {
        /* access must be 1, 2 or 4 bytes */
        rtas_st(rets, 0, -1);
        return;
    }

    pci_dev = find_dev(spapr, buid, addr);
    addr = rtas_pci_cfgaddr(addr);

    if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
        /* Access must be to a valid device, within bounds and
         * naturally aligned */
        rtas_st(rets, 0, -1);
        return;
    }

    pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
                                 val, size);

157 158 159 160 161 162 163 164
    rtas_st(rets, 0, 0);
}

static void rtas_ibm_write_pci_config(sPAPREnvironment *spapr,
                                      uint32_t token, uint32_t nargs,
                                      target_ulong args,
                                      uint32_t nret, target_ulong rets)
{
165
    uint64_t buid;
166 167
    uint32_t val, size, addr;

168
    if ((nargs != 5) || (nret != 1)) {
169 170 171
        rtas_st(rets, 0, -1);
        return;
    }
172 173

    buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
174 175
    val = rtas_ld(args, 4);
    size = rtas_ld(args, 3);
176 177 178
    addr = rtas_ld(args, 0);

    finish_write_pci_config(spapr, buid, addr, size, val, rets);
179 180 181 182 183 184 185 186 187
}

static void rtas_write_pci_config(sPAPREnvironment *spapr,
                                  uint32_t token, uint32_t nargs,
                                  target_ulong args,
                                  uint32_t nret, target_ulong rets)
{
    uint32_t val, size, addr;

188
    if ((nargs != 3) || (nret != 1)) {
189 190 191
        rtas_st(rets, 0, -1);
        return;
    }
192 193


194 195
    val = rtas_ld(args, 2);
    size = rtas_ld(args, 1);
196 197 198
    addr = rtas_ld(args, 0);

    finish_write_pci_config(spapr, 0, addr, size, val, rets);
199 200
}

201 202 203 204 205
static int pci_spapr_swizzle(int slot, int pin)
{
    return (slot + pin) % PCI_NUM_PINS;
}

206 207 208 209
static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
{
    /*
     * Here we need to convert pci_dev + irq_num to some unique value
210 211 212
     * which is less than number of IRQs on the specific bus (4).  We
     * use standard PCI swizzling, that is (slot number + pin number)
     * % 4.
213
     */
214
    return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
}

static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
{
    /*
     * Here we use the number returned by pci_spapr_map_irq to find a
     * corresponding qemu_irq.
     */
    sPAPRPHBState *phb = opaque;

    qemu_set_irq(phb->lsi_table[irq_num].qirq, level);
}

static uint64_t spapr_io_read(void *opaque, target_phys_addr_t addr,
                              unsigned size)
{
    switch (size) {
    case 1:
        return cpu_inb(addr);
    case 2:
        return cpu_inw(addr);
    case 4:
        return cpu_inl(addr);
    }
    assert(0);
}

static void spapr_io_write(void *opaque, target_phys_addr_t addr,
                           uint64_t data, unsigned size)
{
    switch (size) {
    case 1:
        cpu_outb(addr, data);
        return;
    case 2:
        cpu_outw(addr, data);
        return;
    case 4:
        cpu_outl(addr, data);
        return;
    }
    assert(0);
}

259
static const MemoryRegionOps spapr_io_ops = {
260 261 262 263 264
    .endianness = DEVICE_LITTLE_ENDIAN,
    .read = spapr_io_read,
    .write = spapr_io_write
};

265 266 267 268
/*
 * PHB PCI device
 */
static int spapr_phb_init(SysBusDevice *s)
269
{
270 271 272
    sPAPRPHBState *phb = FROM_SYSBUS(sPAPRPHBState, s);
    char *namebuf;
    int i;
273 274
    PCIBus *bus;

275 276
    phb->dtbusname = g_strdup_printf("pci@%" PRIx64, phb->buid);
    namebuf = alloca(strlen(phb->dtbusname) + 32);
277

278 279
    /* Initialize memory regions */
    sprintf(namebuf, "%s.mmio", phb->dtbusname);
280 281
    memory_region_init(&phb->memspace, namebuf, INT64_MAX);

282
    sprintf(namebuf, "%s.mmio-alias", phb->dtbusname);
283
    memory_region_init_alias(&phb->memwindow, namebuf, &phb->memspace,
284 285
                             SPAPR_PCI_MEM_WIN_BUS_OFFSET, phb->mem_win_size);
    memory_region_add_subregion(get_system_memory(), phb->mem_win_addr,
286 287 288 289 290 291 292 293 294 295
                                &phb->memwindow);

    /* On ppc, we only have MMIO no specific IO space from the CPU
     * perspective.  In theory we ought to be able to embed the PCI IO
     * memory region direction in the system memory space.  However,
     * if any of the IO BAR subregions use the old_portio mechanism,
     * that won't be processed properly unless accessed from the
     * system io address space.  This hack to bounce things via
     * system_io works around the problem until all the users of
     * old_portion are updated */
296
    sprintf(namebuf, "%s.io", phb->dtbusname);
297 298 299 300
    memory_region_init(&phb->iospace, namebuf, SPAPR_PCI_IO_WIN_SIZE);
    /* FIXME: fix to support multiple PHBs */
    memory_region_add_subregion(get_system_io(), 0, &phb->iospace);

301
    sprintf(namebuf, "%s.io-alias", phb->dtbusname);
302 303
    memory_region_init_io(&phb->iowindow, &spapr_io_ops, phb,
                          namebuf, SPAPR_PCI_IO_WIN_SIZE);
304
    memory_region_add_subregion(get_system_memory(), phb->io_win_addr,
305 306
                                &phb->iowindow);

307 308 309 310
    bus = pci_register_bus(&phb->busdev.qdev,
                           phb->busname ? phb->busname : phb->dtbusname,
                           pci_spapr_set_irq, pci_spapr_map_irq, phb,
                           &phb->memspace, &phb->iospace,
311
                           PCI_DEVFN(0, 0), PCI_NUM_PINS);
312 313 314 315 316
    phb->host_state.bus = bus;

    QLIST_INSERT_HEAD(&spapr->phbs, phb, list);

    /* Initialize the LSI table */
317
    for (i = 0; i < PCI_NUM_PINS; i++) {
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
        qemu_irq qirq;
        uint32_t num;

        qirq = spapr_allocate_lsi(0, &num);
        if (!qirq) {
            return -1;
        }

        phb->lsi_table[i].dt_irq = num;
        phb->lsi_table[i].qirq = qirq;
    }

    return 0;
}

static Property spapr_phb_properties[] = {
    DEFINE_PROP_HEX64("buid", sPAPRPHBState, buid, 0),
    DEFINE_PROP_STRING("busname", sPAPRPHBState, busname),
    DEFINE_PROP_HEX64("mem_win_addr", sPAPRPHBState, mem_win_addr, 0),
    DEFINE_PROP_HEX64("mem_win_size", sPAPRPHBState, mem_win_size, 0x20000000),
    DEFINE_PROP_HEX64("io_win_addr", sPAPRPHBState, io_win_addr, 0),
    DEFINE_PROP_HEX64("io_win_size", sPAPRPHBState, io_win_size, 0x10000),
    DEFINE_PROP_END_OF_LIST(),
};

static void spapr_phb_class_init(ObjectClass *klass, void *data)
{
    SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
    DeviceClass *dc = DEVICE_CLASS(klass);

    sdc->init = spapr_phb_init;
    dc->props = spapr_phb_properties;
350 351 352 353 354

    spapr_rtas_register("read-pci-config", rtas_read_pci_config);
    spapr_rtas_register("write-pci-config", rtas_write_pci_config);
    spapr_rtas_register("ibm,read-pci-config", rtas_ibm_read_pci_config);
    spapr_rtas_register("ibm,write-pci-config", rtas_ibm_write_pci_config);
355
}
356

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
static TypeInfo spapr_phb_info = {
    .name          = "spapr-pci-host-bridge",
    .parent        = TYPE_SYS_BUS_DEVICE,
    .instance_size = sizeof(sPAPRPHBState),
    .class_init    = spapr_phb_class_init,
};

void spapr_create_phb(sPAPREnvironment *spapr,
                      const char *busname, uint64_t buid,
                      uint64_t mem_win_addr, uint64_t mem_win_size,
                      uint64_t io_win_addr)
{
    DeviceState *dev;

    dev = qdev_create(NULL, spapr_phb_info.name);
372

373 374 375 376 377 378 379 380 381
    if (busname) {
        qdev_prop_set_string(dev, "busname", g_strdup(busname));
    }
    qdev_prop_set_uint64(dev, "buid", buid);
    qdev_prop_set_uint64(dev, "mem_win_addr", mem_win_addr);
    qdev_prop_set_uint64(dev, "mem_win_size", mem_win_size);
    qdev_prop_set_uint64(dev, "io_win_addr", io_win_addr);

    qdev_init_nofail(dev);
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
}

/* Macros to operate with address in OF binding to PCI */
#define b_x(x, p, l)    (((x) & ((1<<(l))-1)) << (p))
#define b_n(x)          b_x((x), 31, 1) /* 0 if relocatable */
#define b_p(x)          b_x((x), 30, 1) /* 1 if prefetchable */
#define b_t(x)          b_x((x), 29, 1) /* 1 if the address is aliased */
#define b_ss(x)         b_x((x), 24, 2) /* the space code */
#define b_bbbbbbbb(x)   b_x((x), 16, 8) /* bus number */
#define b_ddddd(x)      b_x((x), 11, 5) /* device number */
#define b_fff(x)        b_x((x), 8, 3)  /* function number */
#define b_rrrrrrrr(x)   b_x((x), 0, 8)  /* register number */

int spapr_populate_pci_devices(sPAPRPHBState *phb,
                               uint32_t xics_phandle,
                               void *fdt)
{
399
    int bus_off, i, j;
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
    char nodename[256];
    uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
    struct {
        uint32_t hi;
        uint64_t child;
        uint64_t parent;
        uint64_t size;
    } __attribute__((packed)) ranges[] = {
        {
            cpu_to_be32(b_ss(1)), cpu_to_be64(0),
            cpu_to_be64(phb->io_win_addr),
            cpu_to_be64(memory_region_size(&phb->iospace)),
        },
        {
            cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
            cpu_to_be64(phb->mem_win_addr),
            cpu_to_be64(memory_region_size(&phb->memwindow)),
        },
    };
    uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
    uint32_t interrupt_map_mask[] = {
421 422
        cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
    uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448

    /* Start populating the FDT */
    sprintf(nodename, "pci@%" PRIx64, phb->buid);
    bus_off = fdt_add_subnode(fdt, 0, nodename);
    if (bus_off < 0) {
        return bus_off;
    }

#define _FDT(exp) \
    do { \
        int ret = (exp);                                           \
        if (ret < 0) {                                             \
            return ret;                                            \
        }                                                          \
    } while (0)

    /* Write PHB properties */
    _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
    _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
    _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
    _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
    _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
    _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
    _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
    _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof(ranges)));
    _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
449
    _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
450

451 452 453 454 455
    /* Build the interrupt-map, this must matches what is done
     * in pci_spapr_map_irq
     */
    _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
                     &interrupt_map_mask, sizeof(interrupt_map_mask)));
456 457 458 459 460 461 462 463 464 465 466 467 468
    for (i = 0; i < PCI_SLOT_MAX; i++) {
        for (j = 0; j < PCI_NUM_PINS; j++) {
            uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
            int lsi_num = pci_spapr_swizzle(i, j);

            irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
            irqmap[1] = 0;
            irqmap[2] = 0;
            irqmap[3] = cpu_to_be32(j+1);
            irqmap[4] = cpu_to_be32(xics_phandle);
            irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].dt_irq);
            irqmap[6] = cpu_to_be32(0x8);
        }
469 470 471
    }
    /* Write interrupt map */
    _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
472
                     sizeof(interrupt_map)));
473 474 475

    return 0;
}
476 477 478 479 480 481

static void register_types(void)
{
    type_register_static(&spapr_phb_info);
}
type_init(register_types)