ldst_helper.c 74.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * Helpers for loads and stores
 *
 *  Copyright (c) 2003-2005 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

#include "cpu.h"
21
#include "exec/helper-proto.h"
P
Paolo Bonzini 已提交
22
#include "exec/cpu_ldst.h"
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

//#define DEBUG_MMU
//#define DEBUG_MXCC
//#define DEBUG_UNALIGNED
//#define DEBUG_UNASSIGNED
//#define DEBUG_ASI
//#define DEBUG_CACHE_CONTROL

#ifdef DEBUG_MMU
#define DPRINTF_MMU(fmt, ...)                                   \
    do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DPRINTF_MMU(fmt, ...) do {} while (0)
#endif

#ifdef DEBUG_MXCC
#define DPRINTF_MXCC(fmt, ...)                                  \
    do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DPRINTF_MXCC(fmt, ...) do {} while (0)
#endif

#ifdef DEBUG_ASI
#define DPRINTF_ASI(fmt, ...)                                   \
    do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
#endif

#ifdef DEBUG_CACHE_CONTROL
#define DPRINTF_CACHE_CONTROL(fmt, ...)                                 \
    do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
#endif

#ifdef TARGET_SPARC64
#ifndef TARGET_ABI32
#define AM_CHECK(env1) ((env1)->pstate & PS_AM)
#else
#define AM_CHECK(env1) (1)
#endif
#endif

#define QT0 (env->qt0)
#define QT1 (env->qt1)

#if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
/* Calculates TSB pointer value for fault page size 8k or 64k */
static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
                                       uint64_t tag_access_register,
                                       int page_size)
{
    uint64_t tsb_base = tsb_register & ~0x1fffULL;
    int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
    int tsb_size  = tsb_register & 0xf;

    /* discard lower 13 bits which hold tag access context */
    uint64_t tag_access_va = tag_access_register & ~0x1fffULL;

    /* now reorder bits */
    uint64_t tsb_base_mask = ~0x1fffULL;
    uint64_t va = tag_access_va;

    /* move va bits to correct position */
    if (page_size == 8*1024) {
        va >>= 9;
    } else if (page_size == 64*1024) {
        va >>= 12;
    }

    if (tsb_size) {
        tsb_base_mask <<= tsb_size;
    }

    /* calculate tsb_base mask and adjust va if split is in use */
    if (tsb_split) {
        if (page_size == 8*1024) {
            va &= ~(1ULL << (13 + tsb_size));
        } else if (page_size == 64*1024) {
            va |= (1ULL << (13 + tsb_size));
        }
        tsb_base_mask <<= 1;
    }

    return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
}

/* Calculates tag target register value by reordering bits
   in tag access register */
static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
{
    return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
}

static void replace_tlb_entry(SparcTLBEntry *tlb,
                              uint64_t tlb_tag, uint64_t tlb_tte,
118
                              CPUSPARCState *env1)
119 120 121 122 123
{
    target_ulong mask, size, va, offset;

    /* flush page range if translation is valid */
    if (TTE_IS_VALID(tlb->tte)) {
124
        CPUState *cs = CPU(sparc_env_get_cpu(env1));
125 126 127 128 129 130 131 132

        mask = 0xffffffffffffe000ULL;
        mask <<= 3 * ((tlb->tte >> 61) & 3);
        size = ~mask + 1;

        va = tlb->tag & mask;

        for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
133
            tlb_flush_page(cs, va + offset);
134 135 136 137 138 139 140 141
        }
    }

    tlb->tag = tlb_tag;
    tlb->tte = tlb_tte;
}

static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
142
                      const char *strmmu, CPUSPARCState *env1)
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
{
    unsigned int i;
    target_ulong mask;
    uint64_t context;

    int is_demap_context = (demap_addr >> 6) & 1;

    /* demap context */
    switch ((demap_addr >> 4) & 3) {
    case 0: /* primary */
        context = env1->dmmu.mmu_primary_context;
        break;
    case 1: /* secondary */
        context = env1->dmmu.mmu_secondary_context;
        break;
    case 2: /* nucleus */
        context = 0;
        break;
    case 3: /* reserved */
    default:
        return;
    }

    for (i = 0; i < 64; i++) {
        if (TTE_IS_VALID(tlb[i].tte)) {

            if (is_demap_context) {
                /* will remove non-global entries matching context value */
                if (TTE_IS_GLOBAL(tlb[i].tte) ||
                    !tlb_compare_context(&tlb[i], context)) {
                    continue;
                }
            } else {
                /* demap page
                   will remove any entry matching VA */
                mask = 0xffffffffffffe000ULL;
                mask <<= 3 * ((tlb[i].tte >> 61) & 3);

                if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
                    continue;
                }

                /* entry should be global or matching context value */
                if (!TTE_IS_GLOBAL(tlb[i].tte) &&
                    !tlb_compare_context(&tlb[i], context)) {
                    continue;
                }
            }

            replace_tlb_entry(&tlb[i], 0, 0, env1);
#ifdef DEBUG_MMU
            DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
            dump_mmu(stdout, fprintf, env1);
#endif
        }
    }
}

static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
                                 uint64_t tlb_tag, uint64_t tlb_tte,
203
                                 const char *strmmu, CPUSPARCState *env1)
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
{
    unsigned int i, replace_used;

    /* Try replacing invalid entry */
    for (i = 0; i < 64; i++) {
        if (!TTE_IS_VALID(tlb[i].tte)) {
            replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
#ifdef DEBUG_MMU
            DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
            dump_mmu(stdout, fprintf, env1);
#endif
            return;
        }
    }

    /* All entries are valid, try replacing unlocked entry */

    for (replace_used = 0; replace_used < 2; ++replace_used) {

        /* Used entries are not replaced on first pass */

        for (i = 0; i < 64; i++) {
            if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {

                replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
#ifdef DEBUG_MMU
                DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
                            strmmu, (replace_used ? "used" : "unused"), i);
                dump_mmu(stdout, fprintf, env1);
#endif
                return;
            }
        }

        /* Now reset used bit and search for unused entries again */

        for (i = 0; i < 64; i++) {
            TTE_SET_UNUSED(tlb[i].tte);
        }
    }

#ifdef DEBUG_MMU
    DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu);
#endif
    /* error state? */
}

#endif

253
static inline target_ulong address_mask(CPUSPARCState *env1, target_ulong addr)
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
{
#ifdef TARGET_SPARC64
    if (AM_CHECK(env1)) {
        addr &= 0xffffffffULL;
    }
#endif
    return addr;
}

/* returns true if access using this ASI is to have address translated by MMU
   otherwise access is to raw physical address */
static inline int is_translating_asi(int asi)
{
#ifdef TARGET_SPARC64
    /* Ultrasparc IIi translating asi
       - note this list is defined by cpu implementation
    */
    switch (asi) {
    case 0x04 ... 0x11:
    case 0x16 ... 0x19:
    case 0x1E ... 0x1F:
    case 0x24 ... 0x2C:
    case 0x70 ... 0x73:
    case 0x78 ... 0x79:
    case 0x80 ... 0xFF:
        return 1;

    default:
        return 0;
    }
#else
    /* TODO: check sparc32 bits */
    return 0;
#endif
}

290
static inline target_ulong asi_address_mask(CPUSPARCState *env,
291 292 293 294 295 296 297 298 299
                                            int asi, target_ulong addr)
{
    if (is_translating_asi(asi)) {
        return address_mask(env, addr);
    } else {
        return addr;
    }
}

300
void helper_check_align(CPUSPARCState *env, target_ulong addr, uint32_t align)
301 302 303 304 305 306 307 308 309 310 311 312
{
    if (addr & align) {
#ifdef DEBUG_UNALIGNED
        printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
               "\n", addr, env->pc);
#endif
        helper_raise_exception(env, TT_UNALIGNED);
    }
}

#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) &&   \
    defined(DEBUG_MXCC)
313
static void dump_mxcc(CPUSPARCState *env)
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
{
    printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
           "\n",
           env->mxccdata[0], env->mxccdata[1],
           env->mxccdata[2], env->mxccdata[3]);
    printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
           "\n"
           "          %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
           "\n",
           env->mxccregs[0], env->mxccregs[1],
           env->mxccregs[2], env->mxccregs[3],
           env->mxccregs[4], env->mxccregs[5],
           env->mxccregs[6], env->mxccregs[7]);
}
#endif

#if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY))     \
    && defined(DEBUG_ASI)
static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
                     uint64_t r1)
{
    switch (size) {
    case 1:
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
                    addr, asi, r1 & 0xff);
        break;
    case 2:
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
                    addr, asi, r1 & 0xffff);
        break;
    case 4:
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
                    addr, asi, r1 & 0xffffffff);
        break;
    case 8:
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
                    addr, asi, r1);
        break;
    }
}
#endif

#ifndef TARGET_SPARC64
#ifndef CONFIG_USER_ONLY


/* Leon3 cache control */

362 363
static void leon3_cache_control_st(CPUSPARCState *env, target_ulong addr,
                                   uint64_t val, int size)
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
{
    DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
                          addr, val, size);

    if (size != 4) {
        DPRINTF_CACHE_CONTROL("32bits only\n");
        return;
    }

    switch (addr) {
    case 0x00:              /* Cache control */

        /* These values must always be read as zeros */
        val &= ~CACHE_CTRL_FD;
        val &= ~CACHE_CTRL_FI;
        val &= ~CACHE_CTRL_IB;
        val &= ~CACHE_CTRL_IP;
        val &= ~CACHE_CTRL_DP;

        env->cache_control = val;
        break;
    case 0x04:              /* Instruction cache configuration */
    case 0x08:              /* Data cache configuration */
        /* Read Only */
        break;
    default:
        DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
        break;
    };
}

395 396
static uint64_t leon3_cache_control_ld(CPUSPARCState *env, target_ulong addr,
                                       int size)
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
{
    uint64_t ret = 0;

    if (size != 4) {
        DPRINTF_CACHE_CONTROL("32bits only\n");
        return 0;
    }

    switch (addr) {
    case 0x00:              /* Cache control */
        ret = env->cache_control;
        break;

        /* Configuration registers are read and only always keep those
           predefined values */

    case 0x04:              /* Instruction cache configuration */
        ret = 0x10220000;
        break;
    case 0x08:              /* Data cache configuration */
        ret = 0x18220000;
        break;
    default:
        DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
        break;
    };
    DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
                          addr, ret, size);
    return ret;
}

428 429
uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
                       int sign)
430
{
431
    CPUState *cs = CPU(sparc_env_get_cpu(env));
432 433 434 435 436
    uint64_t ret = 0;
#if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
    uint32_t last_addr = addr;
#endif

437
    helper_check_align(env, addr, size - 1);
438 439 440 441 442 443 444
    switch (asi) {
    case 2: /* SuperSparc MXCC registers and Leon3 cache control */
        switch (addr) {
        case 0x00:          /* Leon3 Cache Control */
        case 0x08:          /* Leon3 Instruction Cache config */
        case 0x0C:          /* Leon3 Date Cache config */
            if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
445
                ret = leon3_cache_control_ld(env, addr, size);
446 447 448 449 450 451
            }
            break;
        case 0x01c00a00: /* MXCC control register */
            if (size == 8) {
                ret = env->mxccregs[3];
            } else {
452 453 454
                qemu_log_mask(LOG_UNIMP,
                              "%08x: unimplemented access size: %d\n", addr,
                              size);
455 456 457 458 459 460
            }
            break;
        case 0x01c00a04: /* MXCC control register */
            if (size == 4) {
                ret = env->mxccregs[3];
            } else {
461 462 463
                qemu_log_mask(LOG_UNIMP,
                              "%08x: unimplemented access size: %d\n", addr,
                              size);
464 465 466 467 468 469 470
            }
            break;
        case 0x01c00c00: /* Module reset register */
            if (size == 8) {
                ret = env->mxccregs[5];
                /* should we do something here? */
            } else {
471 472 473
                qemu_log_mask(LOG_UNIMP,
                              "%08x: unimplemented access size: %d\n", addr,
                              size);
474 475 476 477 478 479
            }
            break;
        case 0x01c00f00: /* MBus port address register */
            if (size == 8) {
                ret = env->mxccregs[7];
            } else {
480 481 482
                qemu_log_mask(LOG_UNIMP,
                              "%08x: unimplemented access size: %d\n", addr,
                              size);
483 484 485
            }
            break;
        default:
486 487 488
            qemu_log_mask(LOG_UNIMP,
                          "%08x: unimplemented address, size: %d\n", addr,
                          size);
489 490 491 492 493 494 495 496 497 498
            break;
        }
        DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
                     "addr = %08x -> ret = %" PRIx64 ","
                     "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
#ifdef DEBUG_MXCC
        dump_mxcc(env);
#endif
        break;
    case 3: /* MMU probe */
499
    case 0x18: /* LEON3 MMU probe */
500 501 502 503 504 505 506 507 508 509 510 511 512 513
        {
            int mmulev;

            mmulev = (addr >> 8) & 15;
            if (mmulev > 4) {
                ret = 0;
            } else {
                ret = mmu_probe(env, addr, mmulev);
            }
            DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
                        addr, mmulev, ret);
        }
        break;
    case 4: /* read MMU regs */
514
    case 0x19: /* LEON3 read MMU regs */
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
        {
            int reg = (addr >> 8) & 0x1f;

            ret = env->mmuregs[reg];
            if (reg == 3) { /* Fault status cleared on read */
                env->mmuregs[3] = 0;
            } else if (reg == 0x13) { /* Fault status read */
                ret = env->mmuregs[3];
            } else if (reg == 0x14) { /* Fault address read */
                ret = env->mmuregs[4];
            }
            DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
        }
        break;
    case 5: /* Turbosparc ITLB Diagnostic */
    case 6: /* Turbosparc DTLB Diagnostic */
    case 7: /* Turbosparc IOTLB Diagnostic */
        break;
    case 9: /* Supervisor code access */
        switch (size) {
        case 1:
536
            ret = cpu_ldub_code(env, addr);
537 538
            break;
        case 2:
539
            ret = cpu_lduw_code(env, addr);
540 541 542
            break;
        default:
        case 4:
543
            ret = cpu_ldl_code(env, addr);
544 545
            break;
        case 8:
546
            ret = cpu_ldq_code(env, addr);
547 548 549 550 551 552
            break;
        }
        break;
    case 0xa: /* User data access */
        switch (size) {
        case 1:
553
            ret = cpu_ldub_user(env, addr);
554 555
            break;
        case 2:
556
            ret = cpu_lduw_user(env, addr);
557 558 559
            break;
        default:
        case 4:
560
            ret = cpu_ldl_user(env, addr);
561 562
            break;
        case 8:
563
            ret = cpu_ldq_user(env, addr);
564 565 566 567
            break;
        }
        break;
    case 0xb: /* Supervisor data access */
568
    case 0x80:
569 570
        switch (size) {
        case 1:
571
            ret = cpu_ldub_kernel(env, addr);
572 573
            break;
        case 2:
574
            ret = cpu_lduw_kernel(env, addr);
575 576 577
            break;
        default:
        case 4:
578
            ret = cpu_ldl_kernel(env, addr);
579 580
            break;
        case 8:
581
            ret = cpu_ldq_kernel(env, addr);
582 583 584 585 586 587 588 589 590
            break;
        }
        break;
    case 0xc: /* I-cache tag */
    case 0xd: /* I-cache data */
    case 0xe: /* D-cache tag */
    case 0xf: /* D-cache data */
        break;
    case 0x20: /* MMU passthrough */
591
    case 0x1c: /* LEON MMU passthrough */
592 593
        switch (size) {
        case 1:
594
            ret = ldub_phys(cs->as, addr);
595 596
            break;
        case 2:
597
            ret = lduw_phys(cs->as, addr);
598 599 600
            break;
        default:
        case 4:
601
            ret = ldl_phys(cs->as, addr);
602 603
            break;
        case 8:
604
            ret = ldq_phys(cs->as, addr);
605 606 607 608 609 610
            break;
        }
        break;
    case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
        switch (size) {
        case 1:
611
            ret = ldub_phys(cs->as, (hwaddr)addr
A
Avi Kivity 已提交
612
                            | ((hwaddr)(asi & 0xf) << 32));
613 614
            break;
        case 2:
615
            ret = lduw_phys(cs->as, (hwaddr)addr
A
Avi Kivity 已提交
616
                            | ((hwaddr)(asi & 0xf) << 32));
617 618 619
            break;
        default:
        case 4:
620
            ret = ldl_phys(cs->as, (hwaddr)addr
A
Avi Kivity 已提交
621
                           | ((hwaddr)(asi & 0xf) << 32));
622 623
            break;
        case 8:
624
            ret = ldq_phys(cs->as, (hwaddr)addr
A
Avi Kivity 已提交
625
                           | ((hwaddr)(asi & 0xf) << 32));
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
            break;
        }
        break;
    case 0x30: /* Turbosparc secondary cache diagnostic */
    case 0x31: /* Turbosparc RAM snoop */
    case 0x32: /* Turbosparc page table descriptor diagnostic */
    case 0x39: /* data cache diagnostic register */
        ret = 0;
        break;
    case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
        {
            int reg = (addr >> 8) & 3;

            switch (reg) {
            case 0: /* Breakpoint Value (Addr) */
                ret = env->mmubpregs[reg];
                break;
            case 1: /* Breakpoint Mask */
                ret = env->mmubpregs[reg];
                break;
            case 2: /* Breakpoint Control */
                ret = env->mmubpregs[reg];
                break;
            case 3: /* Breakpoint Status */
                ret = env->mmubpregs[reg];
                env->mmubpregs[reg] = 0ULL;
                break;
            }
            DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
                        ret);
        }
        break;
    case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
        ret = env->mmubpctrv;
        break;
    case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
        ret = env->mmubpctrc;
        break;
    case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
        ret = env->mmubpctrs;
        break;
    case 0x4c: /* SuperSPARC MMU Breakpoint Action */
        ret = env->mmubpaction;
        break;
    case 8: /* User code access, XXX */
    default:
672
        cpu_unassigned_access(cs, addr, false, false, asi, size);
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
        ret = 0;
        break;
    }
    if (sign) {
        switch (size) {
        case 1:
            ret = (int8_t) ret;
            break;
        case 2:
            ret = (int16_t) ret;
            break;
        case 4:
            ret = (int32_t) ret;
            break;
        default:
            break;
        }
    }
#ifdef DEBUG_ASI
    dump_asi("read ", last_addr, asi, size, ret);
#endif
    return ret;
}

697 698
void helper_st_asi(CPUSPARCState *env, target_ulong addr, uint64_t val, int asi,
                   int size)
699
{
700 701 702
    SPARCCPU *cpu = sparc_env_get_cpu(env);
    CPUState *cs = CPU(cpu);

703
    helper_check_align(env, addr, size - 1);
704 705 706 707 708 709 710
    switch (asi) {
    case 2: /* SuperSparc MXCC registers and Leon3 cache control */
        switch (addr) {
        case 0x00:          /* Leon3 Cache Control */
        case 0x08:          /* Leon3 Instruction Cache config */
        case 0x0C:          /* Leon3 Date Cache config */
            if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
711
                leon3_cache_control_st(env, addr, val, size);
712 713 714 715 716 717 718
            }
            break;

        case 0x01c00000: /* MXCC stream data register 0 */
            if (size == 8) {
                env->mxccdata[0] = val;
            } else {
719 720 721
                qemu_log_mask(LOG_UNIMP,
                              "%08x: unimplemented access size: %d\n", addr,
                              size);
722 723 724 725 726 727
            }
            break;
        case 0x01c00008: /* MXCC stream data register 1 */
            if (size == 8) {
                env->mxccdata[1] = val;
            } else {
728 729 730
                qemu_log_mask(LOG_UNIMP,
                              "%08x: unimplemented access size: %d\n", addr,
                              size);
731 732 733 734 735 736
            }
            break;
        case 0x01c00010: /* MXCC stream data register 2 */
            if (size == 8) {
                env->mxccdata[2] = val;
            } else {
737 738 739
                qemu_log_mask(LOG_UNIMP,
                              "%08x: unimplemented access size: %d\n", addr,
                              size);
740 741 742 743 744 745
            }
            break;
        case 0x01c00018: /* MXCC stream data register 3 */
            if (size == 8) {
                env->mxccdata[3] = val;
            } else {
746 747 748
                qemu_log_mask(LOG_UNIMP,
                              "%08x: unimplemented access size: %d\n", addr,
                              size);
749 750 751 752 753 754
            }
            break;
        case 0x01c00100: /* MXCC stream source */
            if (size == 8) {
                env->mxccregs[0] = val;
            } else {
755 756 757
                qemu_log_mask(LOG_UNIMP,
                              "%08x: unimplemented access size: %d\n", addr,
                              size);
758
            }
759 760
            env->mxccdata[0] = ldq_phys(cs->as,
                                        (env->mxccregs[0] & 0xffffffffULL) +
761
                                        0);
762 763
            env->mxccdata[1] = ldq_phys(cs->as,
                                        (env->mxccregs[0] & 0xffffffffULL) +
764
                                        8);
765 766
            env->mxccdata[2] = ldq_phys(cs->as,
                                        (env->mxccregs[0] & 0xffffffffULL) +
767
                                        16);
768 769
            env->mxccdata[3] = ldq_phys(cs->as,
                                        (env->mxccregs[0] & 0xffffffffULL) +
770 771 772 773 774 775
                                        24);
            break;
        case 0x01c00200: /* MXCC stream destination */
            if (size == 8) {
                env->mxccregs[1] = val;
            } else {
776 777 778
                qemu_log_mask(LOG_UNIMP,
                              "%08x: unimplemented access size: %d\n", addr,
                              size);
779
            }
780
            stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) +  0,
781
                     env->mxccdata[0]);
782
            stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) +  8,
783
                     env->mxccdata[1]);
784
            stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 16,
785
                     env->mxccdata[2]);
786
            stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 24,
787 788 789 790 791 792
                     env->mxccdata[3]);
            break;
        case 0x01c00a00: /* MXCC control register */
            if (size == 8) {
                env->mxccregs[3] = val;
            } else {
793 794 795
                qemu_log_mask(LOG_UNIMP,
                              "%08x: unimplemented access size: %d\n", addr,
                              size);
796 797 798 799 800 801 802
            }
            break;
        case 0x01c00a04: /* MXCC control register */
            if (size == 4) {
                env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
                    | val;
            } else {
803 804 805
                qemu_log_mask(LOG_UNIMP,
                              "%08x: unimplemented access size: %d\n", addr,
                              size);
806 807 808 809 810 811 812
            }
            break;
        case 0x01c00e00: /* MXCC error register  */
            /* writing a 1 bit clears the error */
            if (size == 8) {
                env->mxccregs[6] &= ~val;
            } else {
813 814 815
                qemu_log_mask(LOG_UNIMP,
                              "%08x: unimplemented access size: %d\n", addr,
                              size);
816 817 818 819 820 821
            }
            break;
        case 0x01c00f00: /* MBus port address register */
            if (size == 8) {
                env->mxccregs[7] = val;
            } else {
822 823 824
                qemu_log_mask(LOG_UNIMP,
                              "%08x: unimplemented access size: %d\n", addr,
                              size);
825 826 827
            }
            break;
        default:
828 829 830
            qemu_log_mask(LOG_UNIMP,
                          "%08x: unimplemented address, size: %d\n", addr,
                          size);
831 832 833 834 835 836 837 838 839
            break;
        }
        DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
                     asi, size, addr, val);
#ifdef DEBUG_MXCC
        dump_mxcc(env);
#endif
        break;
    case 3: /* MMU flush */
840
    case 0x18: /* LEON3 MMU flush */
841 842 843 844 845 846 847
        {
            int mmulev;

            mmulev = (addr >> 8) & 15;
            DPRINTF_MMU("mmu flush level %d\n", mmulev);
            switch (mmulev) {
            case 0: /* flush page */
848
                tlb_flush_page(CPU(cpu), addr & 0xfffff000);
849 850 851 852 853
                break;
            case 1: /* flush segment (256k) */
            case 2: /* flush region (16M) */
            case 3: /* flush context (4G) */
            case 4: /* flush entire */
854
                tlb_flush(CPU(cpu), 1);
855 856 857 858 859 860 861 862 863 864
                break;
            default:
                break;
            }
#ifdef DEBUG_MMU
            dump_mmu(stdout, fprintf, env);
#endif
        }
        break;
    case 4: /* write MMU regs */
865
    case 0x19: /* LEON3 write MMU regs */
866 867 868 869 870 871 872 873 874 875 876 877 878
        {
            int reg = (addr >> 8) & 0x1f;
            uint32_t oldreg;

            oldreg = env->mmuregs[reg];
            switch (reg) {
            case 0: /* Control Register */
                env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
                    (val & 0x00ffffff);
                /* Mappings generated during no-fault mode or MMU
                   disabled mode are invalid in normal mode */
                if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
                    (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm))) {
879
                    tlb_flush(CPU(cpu), 1);
880 881 882 883 884 885 886 887 888 889
                }
                break;
            case 1: /* Context Table Pointer Register */
                env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
                break;
            case 2: /* Context Register */
                env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
                if (oldreg != env->mmuregs[reg]) {
                    /* we flush when the MMU context changes because
                       QEMU has no MMU context support */
890
                    tlb_flush(CPU(cpu), 1);
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
                }
                break;
            case 3: /* Synchronous Fault Status Register with Clear */
            case 4: /* Synchronous Fault Address Register */
                break;
            case 0x10: /* TLB Replacement Control Register */
                env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
                break;
            case 0x13: /* Synchronous Fault Status Register with Read
                          and Clear */
                env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
                break;
            case 0x14: /* Synchronous Fault Address Register */
                env->mmuregs[4] = val;
                break;
            default:
                env->mmuregs[reg] = val;
                break;
            }
            if (oldreg != env->mmuregs[reg]) {
                DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
                            reg, oldreg, env->mmuregs[reg]);
            }
#ifdef DEBUG_MMU
            dump_mmu(stdout, fprintf, env);
#endif
        }
        break;
    case 5: /* Turbosparc ITLB Diagnostic */
    case 6: /* Turbosparc DTLB Diagnostic */
    case 7: /* Turbosparc IOTLB Diagnostic */
        break;
    case 0xa: /* User data access */
        switch (size) {
        case 1:
926
            cpu_stb_user(env, addr, val);
927 928
            break;
        case 2:
929
            cpu_stw_user(env, addr, val);
930 931 932
            break;
        default:
        case 4:
933
            cpu_stl_user(env, addr, val);
934 935
            break;
        case 8:
936
            cpu_stq_user(env, addr, val);
937 938 939 940
            break;
        }
        break;
    case 0xb: /* Supervisor data access */
941
    case 0x80:
942 943
        switch (size) {
        case 1:
944
            cpu_stb_kernel(env, addr, val);
945 946
            break;
        case 2:
947
            cpu_stw_kernel(env, addr, val);
948 949 950
            break;
        default:
        case 4:
951
            cpu_stl_kernel(env, addr, val);
952 953
            break;
        case 8:
954
            cpu_stq_kernel(env, addr, val);
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
            break;
        }
        break;
    case 0xc: /* I-cache tag */
    case 0xd: /* I-cache data */
    case 0xe: /* D-cache tag */
    case 0xf: /* D-cache data */
    case 0x10: /* I/D-cache flush page */
    case 0x11: /* I/D-cache flush segment */
    case 0x12: /* I/D-cache flush region */
    case 0x13: /* I/D-cache flush context */
    case 0x14: /* I/D-cache flush user */
        break;
    case 0x17: /* Block copy, sta access */
        {
            /* val = src
               addr = dst
               copy 32 bytes */
            unsigned int i;
            uint32_t src = val & ~3, dst = addr & ~3, temp;

            for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
977 978
                temp = cpu_ldl_kernel(env, src);
                cpu_stl_kernel(env, dst, temp);
979 980 981 982 983 984 985 986 987 988 989
            }
        }
        break;
    case 0x1f: /* Block fill, stda access */
        {
            /* addr = dst
               fill 32 bytes with val */
            unsigned int i;
            uint32_t dst = addr & 7;

            for (i = 0; i < 32; i += 8, dst += 8) {
990
                cpu_stq_kernel(env, dst, val);
991 992 993 994
            }
        }
        break;
    case 0x20: /* MMU passthrough */
995
    case 0x1c: /* LEON MMU passthrough */
996 997 998
        {
            switch (size) {
            case 1:
999
                stb_phys(cs->as, addr, val);
1000 1001
                break;
            case 2:
1002
                stw_phys(cs->as, addr, val);
1003 1004 1005
                break;
            case 4:
            default:
1006
                stl_phys(cs->as, addr, val);
1007 1008
                break;
            case 8:
1009
                stq_phys(cs->as, addr, val);
1010 1011 1012 1013 1014 1015 1016 1017
                break;
            }
        }
        break;
    case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
        {
            switch (size) {
            case 1:
1018
                stb_phys(cs->as, (hwaddr)addr
A
Avi Kivity 已提交
1019
                         | ((hwaddr)(asi & 0xf) << 32), val);
1020 1021
                break;
            case 2:
1022
                stw_phys(cs->as, (hwaddr)addr
A
Avi Kivity 已提交
1023
                         | ((hwaddr)(asi & 0xf) << 32), val);
1024 1025 1026
                break;
            case 4:
            default:
1027
                stl_phys(cs->as, (hwaddr)addr
A
Avi Kivity 已提交
1028
                         | ((hwaddr)(asi & 0xf) << 32), val);
1029 1030
                break;
            case 8:
1031
                stq_phys(cs->as, (hwaddr)addr
A
Avi Kivity 已提交
1032
                         | ((hwaddr)(asi & 0xf) << 32), val);
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
                break;
            }
        }
        break;
    case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
    case 0x31: /* store buffer data, Ross RT620 I-cache flush or
                  Turbosparc snoop RAM */
    case 0x32: /* store buffer control or Turbosparc page table
                  descriptor diagnostic */
    case 0x36: /* I-cache flash clear */
    case 0x37: /* D-cache flash clear */
        break;
    case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
        {
            int reg = (addr >> 8) & 3;

            switch (reg) {
            case 0: /* Breakpoint Value (Addr) */
                env->mmubpregs[reg] = (val & 0xfffffffffULL);
                break;
            case 1: /* Breakpoint Mask */
                env->mmubpregs[reg] = (val & 0xfffffffffULL);
                break;
            case 2: /* Breakpoint Control */
                env->mmubpregs[reg] = (val & 0x7fULL);
                break;
            case 3: /* Breakpoint Status */
                env->mmubpregs[reg] = (val & 0xfULL);
                break;
            }
            DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
                        env->mmuregs[reg]);
        }
        break;
    case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
        env->mmubpctrv = val & 0xffffffff;
        break;
    case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
        env->mmubpctrc = val & 0x3;
        break;
    case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
        env->mmubpctrs = val & 0x3;
        break;
    case 0x4c: /* SuperSPARC MMU Breakpoint Action */
        env->mmubpaction = val & 0x1fff;
        break;
    case 8: /* User code access, XXX */
    case 9: /* Supervisor code access, XXX */
    default:
1082 1083
        cpu_unassigned_access(CPU(sparc_env_get_cpu(env)),
                              addr, true, false, asi, size);
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
        break;
    }
#ifdef DEBUG_ASI
    dump_asi("write", addr, asi, size, val);
#endif
}

#endif /* CONFIG_USER_ONLY */
#else /* TARGET_SPARC64 */

#ifdef CONFIG_USER_ONLY
1095 1096
uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
                       int sign)
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
{
    uint64_t ret = 0;
#if defined(DEBUG_ASI)
    target_ulong last_addr = addr;
#endif

    if (asi < 0x80) {
        helper_raise_exception(env, TT_PRIV_ACT);
    }

1107
    helper_check_align(env, addr, size - 1);
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
    addr = asi_address_mask(env, asi, addr);

    switch (asi) {
    case 0x82: /* Primary no-fault */
    case 0x8a: /* Primary no-fault LE */
        if (page_check_range(addr, size, PAGE_READ) == -1) {
#ifdef DEBUG_ASI
            dump_asi("read ", last_addr, asi, size, ret);
#endif
            return 0;
        }
        /* Fall through */
    case 0x80: /* Primary */
    case 0x88: /* Primary LE */
        {
            switch (size) {
            case 1:
1125
                ret = cpu_ldub_data(env, addr);
1126 1127
                break;
            case 2:
1128
                ret = cpu_lduw_data(env, addr);
1129 1130
                break;
            case 4:
1131
                ret = cpu_ldl_data(env, addr);
1132 1133 1134
                break;
            default:
            case 8:
1135
                ret = cpu_ldq_data(env, addr);
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
                break;
            }
        }
        break;
    case 0x83: /* Secondary no-fault */
    case 0x8b: /* Secondary no-fault LE */
        if (page_check_range(addr, size, PAGE_READ) == -1) {
#ifdef DEBUG_ASI
            dump_asi("read ", last_addr, asi, size, ret);
#endif
            return 0;
        }
        /* Fall through */
    case 0x81: /* Secondary */
    case 0x89: /* Secondary LE */
        /* XXX */
        break;
    default:
        break;
    }

    /* Convert from little endian */
    switch (asi) {
    case 0x88: /* Primary LE */
    case 0x89: /* Secondary LE */
    case 0x8a: /* Primary no-fault LE */
    case 0x8b: /* Secondary no-fault LE */
        switch (size) {
        case 2:
            ret = bswap16(ret);
            break;
        case 4:
            ret = bswap32(ret);
            break;
        case 8:
            ret = bswap64(ret);
            break;
        default:
            break;
        }
    default:
        break;
    }

    /* Convert to signed number */
    if (sign) {
        switch (size) {
        case 1:
            ret = (int8_t) ret;
            break;
        case 2:
            ret = (int16_t) ret;
            break;
        case 4:
            ret = (int32_t) ret;
            break;
        default:
            break;
        }
    }
#ifdef DEBUG_ASI
    dump_asi("read ", last_addr, asi, size, ret);
#endif
    return ret;
}

1202 1203
void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
                   int asi, int size)
1204 1205 1206 1207 1208 1209 1210 1211
{
#ifdef DEBUG_ASI
    dump_asi("write", addr, asi, size, val);
#endif
    if (asi < 0x80) {
        helper_raise_exception(env, TT_PRIV_ACT);
    }

1212
    helper_check_align(env, addr, size - 1);
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
    addr = asi_address_mask(env, asi, addr);

    /* Convert to little endian */
    switch (asi) {
    case 0x88: /* Primary LE */
    case 0x89: /* Secondary LE */
        switch (size) {
        case 2:
            val = bswap16(val);
            break;
        case 4:
            val = bswap32(val);
            break;
        case 8:
            val = bswap64(val);
            break;
        default:
            break;
        }
    default:
        break;
    }

    switch (asi) {
    case 0x80: /* Primary */
    case 0x88: /* Primary LE */
        {
            switch (size) {
            case 1:
1242
                cpu_stb_data(env, addr, val);
1243 1244
                break;
            case 2:
1245
                cpu_stw_data(env, addr, val);
1246 1247
                break;
            case 4:
1248
                cpu_stl_data(env, addr, val);
1249 1250 1251
                break;
            case 8:
            default:
1252
                cpu_stq_data(env, addr, val);
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
                break;
            }
        }
        break;
    case 0x81: /* Secondary */
    case 0x89: /* Secondary LE */
        /* XXX */
        return;

    case 0x82: /* Primary no-fault, RO */
    case 0x83: /* Secondary no-fault, RO */
    case 0x8a: /* Primary no-fault LE, RO */
    case 0x8b: /* Secondary no-fault LE, RO */
    default:
1267
        helper_raise_exception(env, TT_DATA_ACCESS);
1268 1269 1270 1271 1272 1273
        return;
    }
}

#else /* CONFIG_USER_ONLY */

1274 1275
uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
                       int sign)
1276
{
1277
    CPUState *cs = CPU(sparc_env_get_cpu(env));
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
    uint64_t ret = 0;
#if defined(DEBUG_ASI)
    target_ulong last_addr = addr;
#endif

    asi &= 0xff;

    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
        || (cpu_has_hypervisor(env)
            && asi >= 0x30 && asi < 0x80
            && !(env->hpstate & HS_PRIV))) {
        helper_raise_exception(env, TT_PRIV_ACT);
    }

1292
    helper_check_align(env, addr, size - 1);
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
    addr = asi_address_mask(env, asi, addr);

    /* process nonfaulting loads first */
    if ((asi & 0xf6) == 0x82) {
        int mmu_idx;

        /* secondary space access has lowest asi bit equal to 1 */
        if (env->pstate & PS_PRIV) {
            mmu_idx = (asi & 1) ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX;
        } else {
            mmu_idx = (asi & 1) ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX;
        }

        if (cpu_get_phys_page_nofault(env, addr, mmu_idx) == -1ULL) {
#ifdef DEBUG_ASI
            dump_asi("read ", last_addr, asi, size, ret);
#endif
            /* env->exception_index is set in get_physical_address_data(). */
1311
            helper_raise_exception(env, cs->exception_index);
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
        }

        /* convert nonfaulting load ASIs to normal load ASIs */
        asi &= ~0x02;
    }

    switch (asi) {
    case 0x10: /* As if user primary */
    case 0x11: /* As if user secondary */
    case 0x18: /* As if user primary LE */
    case 0x19: /* As if user secondary LE */
    case 0x80: /* Primary */
    case 0x81: /* Secondary */
    case 0x88: /* Primary LE */
    case 0x89: /* Secondary LE */
    case 0xe2: /* UA2007 Primary block init */
    case 0xe3: /* UA2007 Secondary block init */
        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
            if (cpu_hypervisor_mode(env)) {
                switch (size) {
                case 1:
1333
                    ret = cpu_ldub_hypv(env, addr);
1334 1335
                    break;
                case 2:
1336
                    ret = cpu_lduw_hypv(env, addr);
1337 1338
                    break;
                case 4:
1339
                    ret = cpu_ldl_hypv(env, addr);
1340 1341 1342
                    break;
                default:
                case 8:
1343
                    ret = cpu_ldq_hypv(env, addr);
1344 1345 1346 1347 1348 1349 1350
                    break;
                }
            } else {
                /* secondary space access has lowest asi bit equal to 1 */
                if (asi & 1) {
                    switch (size) {
                    case 1:
1351
                        ret = cpu_ldub_kernel_secondary(env, addr);
1352 1353
                        break;
                    case 2:
1354
                        ret = cpu_lduw_kernel_secondary(env, addr);
1355 1356
                        break;
                    case 4:
1357
                        ret = cpu_ldl_kernel_secondary(env, addr);
1358 1359 1360
                        break;
                    default:
                    case 8:
1361
                        ret = cpu_ldq_kernel_secondary(env, addr);
1362 1363 1364 1365 1366
                        break;
                    }
                } else {
                    switch (size) {
                    case 1:
1367
                        ret = cpu_ldub_kernel(env, addr);
1368 1369
                        break;
                    case 2:
1370
                        ret = cpu_lduw_kernel(env, addr);
1371 1372
                        break;
                    case 4:
1373
                        ret = cpu_ldl_kernel(env, addr);
1374 1375 1376
                        break;
                    default:
                    case 8:
1377
                        ret = cpu_ldq_kernel(env, addr);
1378 1379 1380 1381 1382 1383 1384 1385 1386
                        break;
                    }
                }
            }
        } else {
            /* secondary space access has lowest asi bit equal to 1 */
            if (asi & 1) {
                switch (size) {
                case 1:
1387
                    ret = cpu_ldub_user_secondary(env, addr);
1388 1389
                    break;
                case 2:
1390
                    ret = cpu_lduw_user_secondary(env, addr);
1391 1392
                    break;
                case 4:
1393
                    ret = cpu_ldl_user_secondary(env, addr);
1394 1395 1396
                    break;
                default:
                case 8:
1397
                    ret = cpu_ldq_user_secondary(env, addr);
1398 1399 1400 1401 1402
                    break;
                }
            } else {
                switch (size) {
                case 1:
1403
                    ret = cpu_ldub_user(env, addr);
1404 1405
                    break;
                case 2:
1406
                    ret = cpu_lduw_user(env, addr);
1407 1408
                    break;
                case 4:
1409
                    ret = cpu_ldl_user(env, addr);
1410 1411 1412
                    break;
                default:
                case 8:
1413
                    ret = cpu_ldq_user(env, addr);
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
                    break;
                }
            }
        }
        break;
    case 0x14: /* Bypass */
    case 0x15: /* Bypass, non-cacheable */
    case 0x1c: /* Bypass LE */
    case 0x1d: /* Bypass, non-cacheable LE */
        {
            switch (size) {
            case 1:
1426
                ret = ldub_phys(cs->as, addr);
1427 1428
                break;
            case 2:
1429
                ret = lduw_phys(cs->as, addr);
1430 1431
                break;
            case 4:
1432
                ret = ldl_phys(cs->as, addr);
1433 1434 1435
                break;
            default:
            case 8:
1436
                ret = ldq_phys(cs->as, addr);
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
                break;
            }
            break;
        }
    case 0x24: /* Nucleus quad LDD 128 bit atomic */
    case 0x2c: /* Nucleus quad LDD 128 bit atomic LE
                  Only ldda allowed */
        helper_raise_exception(env, TT_ILL_INSN);
        return 0;
    case 0x04: /* Nucleus */
    case 0x0c: /* Nucleus Little Endian (LE) */
        {
            switch (size) {
            case 1:
1451
                ret = cpu_ldub_nucleus(env, addr);
1452 1453
                break;
            case 2:
1454
                ret = cpu_lduw_nucleus(env, addr);
1455 1456
                break;
            case 4:
1457
                ret = cpu_ldl_nucleus(env, addr);
1458 1459 1460
                break;
            default:
            case 8:
1461
                ret = cpu_ldq_nucleus(env, addr);
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
                break;
            }
            break;
        }
    case 0x4a: /* UPA config */
        /* XXX */
        break;
    case 0x45: /* LSU */
        ret = env->lsu;
        break;
    case 0x50: /* I-MMU regs */
        {
            int reg = (addr >> 3) & 0xf;

            if (reg == 0) {
                /* I-TSB Tag Target register */
                ret = ultrasparc_tag_target(env->immu.tag_access);
            } else {
                ret = env->immuregs[reg];
            }

            break;
        }
    case 0x51: /* I-MMU 8k TSB pointer */
        {
            /* env->immuregs[5] holds I-MMU TSB register value
               env->immuregs[6] holds I-MMU Tag Access register value */
            ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
                                         8*1024);
            break;
        }
    case 0x52: /* I-MMU 64k TSB pointer */
        {
            /* env->immuregs[5] holds I-MMU TSB register value
               env->immuregs[6] holds I-MMU Tag Access register value */
            ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
                                         64*1024);
            break;
        }
    case 0x55: /* I-MMU data access */
        {
            int reg = (addr >> 3) & 0x3f;

            ret = env->itlb[reg].tte;
            break;
        }
    case 0x56: /* I-MMU tag read */
        {
            int reg = (addr >> 3) & 0x3f;

            ret = env->itlb[reg].tag;
            break;
        }
    case 0x58: /* D-MMU regs */
        {
            int reg = (addr >> 3) & 0xf;

            if (reg == 0) {
                /* D-TSB Tag Target register */
                ret = ultrasparc_tag_target(env->dmmu.tag_access);
            } else {
                ret = env->dmmuregs[reg];
            }
            break;
        }
    case 0x59: /* D-MMU 8k TSB pointer */
        {
            /* env->dmmuregs[5] holds D-MMU TSB register value
               env->dmmuregs[6] holds D-MMU Tag Access register value */
            ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
                                         8*1024);
            break;
        }
    case 0x5a: /* D-MMU 64k TSB pointer */
        {
            /* env->dmmuregs[5] holds D-MMU TSB register value
               env->dmmuregs[6] holds D-MMU Tag Access register value */
            ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
                                         64*1024);
            break;
        }
    case 0x5d: /* D-MMU data access */
        {
            int reg = (addr >> 3) & 0x3f;

            ret = env->dtlb[reg].tte;
            break;
        }
    case 0x5e: /* D-MMU tag read */
        {
            int reg = (addr >> 3) & 0x3f;

            ret = env->dtlb[reg].tag;
            break;
        }
B
Blue Swirl 已提交
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
    case 0x48: /* Interrupt dispatch, RO */
        break;
    case 0x49: /* Interrupt data receive */
        ret = env->ivec_status;
        break;
    case 0x7f: /* Incoming interrupt vector, RO */
        {
            int reg = (addr >> 4) & 0x3;
            if (reg < 3) {
                ret = env->ivec_data[reg];
            }
            break;
        }
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
    case 0x46: /* D-cache data */
    case 0x47: /* D-cache tag access */
    case 0x4b: /* E-cache error enable */
    case 0x4c: /* E-cache asynchronous fault status */
    case 0x4d: /* E-cache asynchronous fault address */
    case 0x4e: /* E-cache tag data */
    case 0x66: /* I-cache instruction access */
    case 0x67: /* I-cache tag access */
    case 0x6e: /* I-cache predecode */
    case 0x6f: /* I-cache LRU etc. */
    case 0x76: /* E-cache tag */
    case 0x7e: /* E-cache tag */
        break;
    case 0x5b: /* D-MMU data pointer */
    case 0x54: /* I-MMU data in, WO */
    case 0x57: /* I-MMU demap, WO */
    case 0x5c: /* D-MMU data in, WO */
    case 0x5f: /* D-MMU demap, WO */
    case 0x77: /* Interrupt vector, WO */
    default:
1590
        cpu_unassigned_access(cs, addr, false, false, 1, size);
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
        ret = 0;
        break;
    }

    /* Convert from little endian */
    switch (asi) {
    case 0x0c: /* Nucleus Little Endian (LE) */
    case 0x18: /* As if user primary LE */
    case 0x19: /* As if user secondary LE */
    case 0x1c: /* Bypass LE */
    case 0x1d: /* Bypass, non-cacheable LE */
    case 0x88: /* Primary LE */
    case 0x89: /* Secondary LE */
        switch(size) {
        case 2:
            ret = bswap16(ret);
            break;
        case 4:
            ret = bswap32(ret);
            break;
        case 8:
            ret = bswap64(ret);
            break;
        default:
            break;
        }
    default:
        break;
    }

    /* Convert to signed number */
    if (sign) {
        switch (size) {
        case 1:
            ret = (int8_t) ret;
            break;
        case 2:
            ret = (int16_t) ret;
            break;
        case 4:
            ret = (int32_t) ret;
            break;
        default:
            break;
        }
    }
#ifdef DEBUG_ASI
    dump_asi("read ", last_addr, asi, size, ret);
#endif
    return ret;
}

1643 1644
void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
                   int asi, int size)
1645
{
1646 1647 1648
    SPARCCPU *cpu = sparc_env_get_cpu(env);
    CPUState *cs = CPU(cpu);

1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
#ifdef DEBUG_ASI
    dump_asi("write", addr, asi, size, val);
#endif

    asi &= 0xff;

    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
        || (cpu_has_hypervisor(env)
            && asi >= 0x30 && asi < 0x80
            && !(env->hpstate & HS_PRIV))) {
        helper_raise_exception(env, TT_PRIV_ACT);
    }

1662
    helper_check_align(env, addr, size - 1);
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
    addr = asi_address_mask(env, asi, addr);

    /* Convert to little endian */
    switch (asi) {
    case 0x0c: /* Nucleus Little Endian (LE) */
    case 0x18: /* As if user primary LE */
    case 0x19: /* As if user secondary LE */
    case 0x1c: /* Bypass LE */
    case 0x1d: /* Bypass, non-cacheable LE */
    case 0x88: /* Primary LE */
    case 0x89: /* Secondary LE */
        switch (size) {
        case 2:
            val = bswap16(val);
            break;
        case 4:
            val = bswap32(val);
            break;
        case 8:
            val = bswap64(val);
            break;
        default:
            break;
        }
    default:
        break;
    }

    switch (asi) {
    case 0x10: /* As if user primary */
    case 0x11: /* As if user secondary */
    case 0x18: /* As if user primary LE */
    case 0x19: /* As if user secondary LE */
    case 0x80: /* Primary */
    case 0x81: /* Secondary */
    case 0x88: /* Primary LE */
    case 0x89: /* Secondary LE */
    case 0xe2: /* UA2007 Primary block init */
    case 0xe3: /* UA2007 Secondary block init */
        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
            if (cpu_hypervisor_mode(env)) {
                switch (size) {
                case 1:
1706
                    cpu_stb_hypv(env, addr, val);
1707 1708
                    break;
                case 2:
1709
                    cpu_stw_hypv(env, addr, val);
1710 1711
                    break;
                case 4:
1712
                    cpu_stl_hypv(env, addr, val);
1713 1714 1715
                    break;
                case 8:
                default:
1716
                    cpu_stq_hypv(env, addr, val);
1717 1718 1719 1720 1721 1722 1723
                    break;
                }
            } else {
                /* secondary space access has lowest asi bit equal to 1 */
                if (asi & 1) {
                    switch (size) {
                    case 1:
1724
                        cpu_stb_kernel_secondary(env, addr, val);
1725 1726
                        break;
                    case 2:
1727
                        cpu_stw_kernel_secondary(env, addr, val);
1728 1729
                        break;
                    case 4:
1730
                        cpu_stl_kernel_secondary(env, addr, val);
1731 1732 1733
                        break;
                    case 8:
                    default:
1734
                        cpu_stq_kernel_secondary(env, addr, val);
1735 1736 1737 1738 1739
                        break;
                    }
                } else {
                    switch (size) {
                    case 1:
1740
                        cpu_stb_kernel(env, addr, val);
1741 1742
                        break;
                    case 2:
1743
                        cpu_stw_kernel(env, addr, val);
1744 1745
                        break;
                    case 4:
1746
                        cpu_stl_kernel(env, addr, val);
1747 1748 1749
                        break;
                    case 8:
                    default:
1750
                        cpu_stq_kernel(env, addr, val);
1751 1752 1753 1754 1755 1756 1757 1758 1759
                        break;
                    }
                }
            }
        } else {
            /* secondary space access has lowest asi bit equal to 1 */
            if (asi & 1) {
                switch (size) {
                case 1:
1760
                    cpu_stb_user_secondary(env, addr, val);
1761 1762
                    break;
                case 2:
1763
                    cpu_stw_user_secondary(env, addr, val);
1764 1765
                    break;
                case 4:
1766
                    cpu_stl_user_secondary(env, addr, val);
1767 1768 1769
                    break;
                case 8:
                default:
1770
                    cpu_stq_user_secondary(env, addr, val);
1771 1772 1773 1774 1775
                    break;
                }
            } else {
                switch (size) {
                case 1:
1776
                    cpu_stb_user(env, addr, val);
1777 1778
                    break;
                case 2:
1779
                    cpu_stw_user(env, addr, val);
1780 1781
                    break;
                case 4:
1782
                    cpu_stl_user(env, addr, val);
1783 1784 1785
                    break;
                case 8:
                default:
1786
                    cpu_stq_user(env, addr, val);
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
                    break;
                }
            }
        }
        break;
    case 0x14: /* Bypass */
    case 0x15: /* Bypass, non-cacheable */
    case 0x1c: /* Bypass LE */
    case 0x1d: /* Bypass, non-cacheable LE */
        {
            switch (size) {
            case 1:
1799
                stb_phys(cs->as, addr, val);
1800 1801
                break;
            case 2:
1802
                stw_phys(cs->as, addr, val);
1803 1804
                break;
            case 4:
1805
                stl_phys(cs->as, addr, val);
1806 1807 1808
                break;
            case 8:
            default:
1809
                stq_phys(cs->as, addr, val);
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
                break;
            }
        }
        return;
    case 0x24: /* Nucleus quad LDD 128 bit atomic */
    case 0x2c: /* Nucleus quad LDD 128 bit atomic LE
                  Only ldda allowed */
        helper_raise_exception(env, TT_ILL_INSN);
        return;
    case 0x04: /* Nucleus */
    case 0x0c: /* Nucleus Little Endian (LE) */
        {
            switch (size) {
            case 1:
1824
                cpu_stb_nucleus(env, addr, val);
1825 1826
                break;
            case 2:
1827
                cpu_stw_nucleus(env, addr, val);
1828 1829
                break;
            case 4:
1830
                cpu_stl_nucleus(env, addr, val);
1831 1832 1833
                break;
            default:
            case 8:
1834
                cpu_stq_nucleus(env, addr, val);
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
                break;
            }
            break;
        }

    case 0x4a: /* UPA config */
        /* XXX */
        return;
    case 0x45: /* LSU */
        {
            uint64_t oldreg;

            oldreg = env->lsu;
            env->lsu = val & (DMMU_E | IMMU_E);
            /* Mappings generated during D/I MMU disabled mode are
               invalid in normal mode */
            if (oldreg != env->lsu) {
                DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
                            oldreg, env->lsu);
#ifdef DEBUG_MMU
1855
                dump_mmu(stdout, fprintf, env);
1856
#endif
1857
                tlb_flush(CPU(cpu), 1);
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
            }
            return;
        }
    case 0x50: /* I-MMU regs */
        {
            int reg = (addr >> 3) & 0xf;
            uint64_t oldreg;

            oldreg = env->immuregs[reg];
            switch (reg) {
            case 0: /* RO */
                return;
            case 1: /* Not in I-MMU */
            case 2:
                return;
            case 3: /* SFSR */
                if ((val & 1) == 0) {
                    val = 0; /* Clear SFSR */
                }
                env->immu.sfsr = val;
                break;
            case 4: /* RO */
                return;
            case 5: /* TSB access */
                DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
                            PRIx64 "\n", env->immu.tsb, val);
                env->immu.tsb = val;
                break;
            case 6: /* Tag access */
                env->immu.tag_access = val;
                break;
            case 7:
            case 8:
                return;
            default:
                break;
            }

            if (oldreg != env->immuregs[reg]) {
                DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
                            PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
            }
#ifdef DEBUG_MMU
            dump_mmu(stdout, fprintf, env);
#endif
            return;
        }
    case 0x54: /* I-MMU data in */
        replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env);
        return;
    case 0x55: /* I-MMU data access */
        {
            /* TODO: auto demap */

            unsigned int i = (addr >> 3) & 0x3f;

            replace_tlb_entry(&env->itlb[i], env->immu.tag_access, val, env);

#ifdef DEBUG_MMU
            DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
            dump_mmu(stdout, fprintf, env);
#endif
            return;
        }
    case 0x57: /* I-MMU demap */
        demap_tlb(env->itlb, addr, "immu", env);
        return;
    case 0x58: /* D-MMU regs */
        {
            int reg = (addr >> 3) & 0xf;
            uint64_t oldreg;

            oldreg = env->dmmuregs[reg];
            switch (reg) {
            case 0: /* RO */
            case 4:
                return;
            case 3: /* SFSR */
                if ((val & 1) == 0) {
                    val = 0; /* Clear SFSR, Fault address */
                    env->dmmu.sfar = 0;
                }
                env->dmmu.sfsr = val;
                break;
            case 1: /* Primary context */
                env->dmmu.mmu_primary_context = val;
                /* can be optimized to only flush MMU_USER_IDX
                   and MMU_KERNEL_IDX entries */
1946
                tlb_flush(CPU(cpu), 1);
1947 1948 1949 1950 1951
                break;
            case 2: /* Secondary context */
                env->dmmu.mmu_secondary_context = val;
                /* can be optimized to only flush MMU_USER_SECONDARY_IDX
                   and MMU_KERNEL_SECONDARY_IDX entries */
1952
                tlb_flush(CPU(cpu), 1);
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
                break;
            case 5: /* TSB access */
                DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
                            PRIx64 "\n", env->dmmu.tsb, val);
                env->dmmu.tsb = val;
                break;
            case 6: /* Tag access */
                env->dmmu.tag_access = val;
                break;
            case 7: /* Virtual Watchpoint */
            case 8: /* Physical Watchpoint */
            default:
                env->dmmuregs[reg] = val;
                break;
            }

            if (oldreg != env->dmmuregs[reg]) {
                DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
                            PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
            }
#ifdef DEBUG_MMU
            dump_mmu(stdout, fprintf, env);
#endif
            return;
        }
    case 0x5c: /* D-MMU data in */
        replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env);
        return;
    case 0x5d: /* D-MMU data access */
        {
            unsigned int i = (addr >> 3) & 0x3f;

            replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, val, env);

#ifdef DEBUG_MMU
            DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
            dump_mmu(stdout, fprintf, env);
#endif
            return;
        }
    case 0x5f: /* D-MMU demap */
        demap_tlb(env->dtlb, addr, "dmmu", env);
        return;
    case 0x49: /* Interrupt data receive */
B
Blue Swirl 已提交
1997
        env->ivec_status = val & 0x20;
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
        return;
    case 0x46: /* D-cache data */
    case 0x47: /* D-cache tag access */
    case 0x4b: /* E-cache error enable */
    case 0x4c: /* E-cache asynchronous fault status */
    case 0x4d: /* E-cache asynchronous fault address */
    case 0x4e: /* E-cache tag data */
    case 0x66: /* I-cache instruction access */
    case 0x67: /* I-cache tag access */
    case 0x6e: /* I-cache predecode */
    case 0x6f: /* I-cache LRU etc. */
    case 0x76: /* E-cache tag */
    case 0x7e: /* E-cache tag */
        return;
    case 0x51: /* I-MMU 8k TSB pointer, RO */
    case 0x52: /* I-MMU 64k TSB pointer, RO */
    case 0x56: /* I-MMU tag read, RO */
    case 0x59: /* D-MMU 8k TSB pointer, RO */
    case 0x5a: /* D-MMU 64k TSB pointer, RO */
    case 0x5b: /* D-MMU data pointer, RO */
    case 0x5e: /* D-MMU tag read, RO */
    case 0x48: /* Interrupt dispatch, RO */
    case 0x7f: /* Incoming interrupt vector, RO */
    case 0x82: /* Primary no-fault, RO */
    case 0x83: /* Secondary no-fault, RO */
    case 0x8a: /* Primary no-fault LE, RO */
    case 0x8b: /* Secondary no-fault LE, RO */
    default:
2026
        cpu_unassigned_access(cs, addr, true, false, 1, size);
2027 2028 2029 2030 2031
        return;
    }
}
#endif /* CONFIG_USER_ONLY */

2032
void helper_ldda_asi(CPUSPARCState *env, target_ulong addr, int asi, int rd)
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
{
    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
        || (cpu_has_hypervisor(env)
            && asi >= 0x30 && asi < 0x80
            && !(env->hpstate & HS_PRIV))) {
        helper_raise_exception(env, TT_PRIV_ACT);
    }

    addr = asi_address_mask(env, asi, addr);

    switch (asi) {
#if !defined(CONFIG_USER_ONLY)
    case 0x24: /* Nucleus quad LDD 128 bit atomic */
    case 0x2c: /* Nucleus quad LDD 128 bit atomic LE */
2047
        helper_check_align(env, addr, 0xf);
2048
        if (rd == 0) {
2049
            env->gregs[1] = cpu_ldq_nucleus(env, addr + 8);
2050 2051 2052 2053
            if (asi == 0x2c) {
                bswap64s(&env->gregs[1]);
            }
        } else if (rd < 8) {
2054 2055
            env->gregs[rd] = cpu_ldq_nucleus(env, addr);
            env->gregs[rd + 1] = cpu_ldq_nucleus(env, addr + 8);
2056 2057 2058 2059 2060
            if (asi == 0x2c) {
                bswap64s(&env->gregs[rd]);
                bswap64s(&env->gregs[rd + 1]);
            }
        } else {
2061 2062
            env->regwptr[rd] = cpu_ldq_nucleus(env, addr);
            env->regwptr[rd + 1] = cpu_ldq_nucleus(env, addr + 8);
2063 2064 2065 2066 2067 2068 2069 2070
            if (asi == 0x2c) {
                bswap64s(&env->regwptr[rd]);
                bswap64s(&env->regwptr[rd + 1]);
            }
        }
        break;
#endif
    default:
2071
        helper_check_align(env, addr, 0x3);
2072
        if (rd == 0) {
2073
            env->gregs[1] = helper_ld_asi(env, addr + 4, asi, 4, 0);
2074
        } else if (rd < 8) {
2075 2076
            env->gregs[rd] = helper_ld_asi(env, addr, asi, 4, 0);
            env->gregs[rd + 1] = helper_ld_asi(env, addr + 4, asi, 4, 0);
2077
        } else {
2078 2079
            env->regwptr[rd] = helper_ld_asi(env, addr, asi, 4, 0);
            env->regwptr[rd + 1] = helper_ld_asi(env, addr + 4, asi, 4, 0);
2080 2081 2082 2083 2084
        }
        break;
    }
}

2085 2086
void helper_ldf_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
                    int rd)
2087 2088
{
    unsigned int i;
2089
    target_ulong val;
2090

2091
    helper_check_align(env, addr, 3);
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
    addr = asi_address_mask(env, asi, addr);

    switch (asi) {
    case 0xf0: /* UA2007/JPS1 Block load primary */
    case 0xf1: /* UA2007/JPS1 Block load secondary */
    case 0xf8: /* UA2007/JPS1 Block load primary LE */
    case 0xf9: /* UA2007/JPS1 Block load secondary LE */
        if (rd & 7) {
            helper_raise_exception(env, TT_ILL_INSN);
            return;
        }
2103
        helper_check_align(env, addr, 0x3f);
2104
        for (i = 0; i < 8; i++, rd += 2, addr += 8) {
2105
            env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi & 0x8f, 8, 0);
2106 2107
        }
        return;
2108

2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
    case 0x16: /* UA2007 Block load primary, user privilege */
    case 0x17: /* UA2007 Block load secondary, user privilege */
    case 0x1e: /* UA2007 Block load primary LE, user privilege */
    case 0x1f: /* UA2007 Block load secondary LE, user privilege */
    case 0x70: /* JPS1 Block load primary, user privilege */
    case 0x71: /* JPS1 Block load secondary, user privilege */
    case 0x78: /* JPS1 Block load primary LE, user privilege */
    case 0x79: /* JPS1 Block load secondary LE, user privilege */
        if (rd & 7) {
            helper_raise_exception(env, TT_ILL_INSN);
            return;
        }
2121
        helper_check_align(env, addr, 0x3f);
2122
        for (i = 0; i < 8; i++, rd += 2, addr += 8) {
2123
            env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi & 0x19, 8, 0);
2124 2125
        }
        return;
2126

2127 2128 2129 2130 2131 2132 2133
    default:
        break;
    }

    switch (size) {
    default:
    case 4:
2134
        val = helper_ld_asi(env, addr, asi, size, 0);
2135
        if (rd & 1) {
2136
            env->fpr[rd / 2].l.lower = val;
2137
        } else {
2138
            env->fpr[rd / 2].l.upper = val;
2139
        }
2140 2141
        break;
    case 8:
2142
        env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi, size, 0);
2143 2144
        break;
    case 16:
2145 2146
        env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi, 8, 0);
        env->fpr[rd / 2 + 1].ll = helper_ld_asi(env, addr + 8, asi, 8, 0);
2147 2148 2149 2150
        break;
    }
}

2151 2152
void helper_stf_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
                    int rd)
2153 2154
{
    unsigned int i;
2155
    target_ulong val;
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169

    addr = asi_address_mask(env, asi, addr);

    switch (asi) {
    case 0xe0: /* UA2007/JPS1 Block commit store primary (cache flush) */
    case 0xe1: /* UA2007/JPS1 Block commit store secondary (cache flush) */
    case 0xf0: /* UA2007/JPS1 Block store primary */
    case 0xf1: /* UA2007/JPS1 Block store secondary */
    case 0xf8: /* UA2007/JPS1 Block store primary LE */
    case 0xf9: /* UA2007/JPS1 Block store secondary LE */
        if (rd & 7) {
            helper_raise_exception(env, TT_ILL_INSN);
            return;
        }
2170
        helper_check_align(env, addr, 0x3f);
2171
        for (i = 0; i < 8; i++, rd += 2, addr += 8) {
2172
            helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi & 0x8f, 8);
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
        }

        return;
    case 0x16: /* UA2007 Block load primary, user privilege */
    case 0x17: /* UA2007 Block load secondary, user privilege */
    case 0x1e: /* UA2007 Block load primary LE, user privilege */
    case 0x1f: /* UA2007 Block load secondary LE, user privilege */
    case 0x70: /* JPS1 Block store primary, user privilege */
    case 0x71: /* JPS1 Block store secondary, user privilege */
    case 0x78: /* JPS1 Block load primary LE, user privilege */
    case 0x79: /* JPS1 Block load secondary LE, user privilege */
        if (rd & 7) {
            helper_raise_exception(env, TT_ILL_INSN);
            return;
        }
2188
        helper_check_align(env, addr, 0x3f);
2189
        for (i = 0; i < 8; i++, rd += 2, addr += 8) {
2190
            helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi & 0x19, 8);
2191 2192
        }

2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
        return;
    case 0xd2: /* 16-bit floating point load primary */
    case 0xd3: /* 16-bit floating point load secondary */
    case 0xda: /* 16-bit floating point load primary, LE */
    case 0xdb: /* 16-bit floating point load secondary, LE */
        helper_check_align(env, addr, 1);
        /* Fall through */
    case 0xd0: /* 8-bit floating point load primary */
    case 0xd1: /* 8-bit floating point load secondary */
    case 0xd8: /* 8-bit floating point load primary, LE */
    case 0xd9: /* 8-bit floating point load secondary, LE */
        val = env->fpr[rd / 2].l.lower;
        helper_st_asi(env, addr, val, asi & 0x8d, ((asi & 2) >> 1) + 1);
2206 2207
        return;
    default:
2208
        helper_check_align(env, addr, 3);
2209 2210 2211 2212 2213 2214
        break;
    }

    switch (size) {
    default:
    case 4:
2215
        if (rd & 1) {
2216
            val = env->fpr[rd / 2].l.lower;
2217
        } else {
2218
            val = env->fpr[rd / 2].l.upper;
2219
        }
2220
        helper_st_asi(env, addr, val, asi, size);
2221 2222
        break;
    case 8:
2223
        helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi, size);
2224 2225
        break;
    case 16:
2226 2227
        helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi, 8);
        helper_st_asi(env, addr + 8, env->fpr[rd / 2 + 1].ll, asi, 8);
2228 2229 2230 2231
        break;
    }
}

2232 2233 2234
target_ulong helper_casx_asi(CPUSPARCState *env, target_ulong addr,
                             target_ulong val1, target_ulong val2,
                             uint32_t asi)
2235 2236 2237
{
    target_ulong ret;

2238
    ret = helper_ld_asi(env, addr, asi, 8, 0);
2239
    if (val2 == ret) {
2240
        helper_st_asi(env, addr, val1, asi, 8);
2241 2242 2243
    }
    return ret;
}
2244
#endif /* TARGET_SPARC64 */
2245

2246 2247 2248
#if !defined(CONFIG_USER_ONLY) || defined(TARGET_SPARC64)
target_ulong helper_cas_asi(CPUSPARCState *env, target_ulong addr,
                            target_ulong val1, target_ulong val2, uint32_t asi)
2249 2250 2251
{
    target_ulong ret;

2252 2253 2254
    val2 &= 0xffffffffUL;
    ret = helper_ld_asi(env, addr, asi, 4, 0);
    ret &= 0xffffffffUL;
2255
    if (val2 == ret) {
2256
        helper_st_asi(env, addr, val1 & 0xffffffffUL, asi, 4);
2257 2258 2259
    }
    return ret;
}
2260
#endif /* !defined(CONFIG_USER_ONLY) || defined(TARGET_SPARC64) */
2261

2262
void helper_ldqf(CPUSPARCState *env, target_ulong addr, int mem_idx)
2263 2264 2265 2266
{
    /* XXX add 128 bit load */
    CPU_QuadU u;

2267
    helper_check_align(env, addr, 7);
2268 2269 2270
#if !defined(CONFIG_USER_ONLY)
    switch (mem_idx) {
    case MMU_USER_IDX:
2271 2272
        u.ll.upper = cpu_ldq_user(env, addr);
        u.ll.lower = cpu_ldq_user(env, addr + 8);
2273 2274 2275
        QT0 = u.q;
        break;
    case MMU_KERNEL_IDX:
2276 2277
        u.ll.upper = cpu_ldq_kernel(env, addr);
        u.ll.lower = cpu_ldq_kernel(env, addr + 8);
2278 2279 2280 2281
        QT0 = u.q;
        break;
#ifdef TARGET_SPARC64
    case MMU_HYPV_IDX:
2282 2283
        u.ll.upper = cpu_ldq_hypv(env, addr);
        u.ll.lower = cpu_ldq_hypv(env, addr + 8);
2284 2285 2286 2287 2288 2289 2290 2291
        QT0 = u.q;
        break;
#endif
    default:
        DPRINTF_MMU("helper_ldqf: need to check MMU idx %d\n", mem_idx);
        break;
    }
#else
2292 2293
    u.ll.upper = cpu_ldq_data(env, address_mask(env, addr));
    u.ll.lower = cpu_ldq_data(env, address_mask(env, addr + 8));
2294 2295 2296 2297
    QT0 = u.q;
#endif
}

2298
void helper_stqf(CPUSPARCState *env, target_ulong addr, int mem_idx)
2299 2300 2301 2302
{
    /* XXX add 128 bit store */
    CPU_QuadU u;

2303
    helper_check_align(env, addr, 7);
2304 2305 2306 2307
#if !defined(CONFIG_USER_ONLY)
    switch (mem_idx) {
    case MMU_USER_IDX:
        u.q = QT0;
2308 2309
        cpu_stq_user(env, addr, u.ll.upper);
        cpu_stq_user(env, addr + 8, u.ll.lower);
2310 2311 2312
        break;
    case MMU_KERNEL_IDX:
        u.q = QT0;
2313 2314
        cpu_stq_kernel(env, addr, u.ll.upper);
        cpu_stq_kernel(env, addr + 8, u.ll.lower);
2315 2316 2317 2318
        break;
#ifdef TARGET_SPARC64
    case MMU_HYPV_IDX:
        u.q = QT0;
2319 2320
        cpu_stq_hypv(env, addr, u.ll.upper);
        cpu_stq_hypv(env, addr + 8, u.ll.lower);
2321 2322 2323 2324 2325 2326 2327 2328
        break;
#endif
    default:
        DPRINTF_MMU("helper_stqf: need to check MMU idx %d\n", mem_idx);
        break;
    }
#else
    u.q = QT0;
2329 2330
    cpu_stq_data(env, address_mask(env, addr), u.ll.upper);
    cpu_stq_data(env, address_mask(env, addr + 8), u.ll.lower);
2331 2332 2333 2334
#endif
}

#if !defined(CONFIG_USER_ONLY)
2335
#ifndef TARGET_SPARC64
2336 2337 2338
void sparc_cpu_unassigned_access(CPUState *cs, hwaddr addr,
                                 bool is_write, bool is_exec, int is_asi,
                                 unsigned size)
2339
{
2340 2341
    SPARCCPU *cpu = SPARC_CPU(cs);
    CPUSPARCState *env = &cpu->env;
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
    int fault_type;

#ifdef DEBUG_UNASSIGNED
    if (is_asi) {
        printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
               " asi 0x%02x from " TARGET_FMT_lx "\n",
               is_exec ? "exec" : is_write ? "write" : "read", size,
               size == 1 ? "" : "s", addr, is_asi, env->pc);
    } else {
        printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
               " from " TARGET_FMT_lx "\n",
               is_exec ? "exec" : is_write ? "write" : "read", size,
               size == 1 ? "" : "s", addr, env->pc);
    }
#endif
    /* Don't overwrite translation and access faults */
    fault_type = (env->mmuregs[3] & 0x1c) >> 2;
    if ((fault_type > 4) || (fault_type == 0)) {
        env->mmuregs[3] = 0; /* Fault status register */
        if (is_asi) {
            env->mmuregs[3] |= 1 << 16;
        }
        if (env->psrs) {
            env->mmuregs[3] |= 1 << 5;
        }
        if (is_exec) {
            env->mmuregs[3] |= 1 << 6;
        }
        if (is_write) {
            env->mmuregs[3] |= 1 << 7;
        }
        env->mmuregs[3] |= (5 << 2) | 2;
        /* SuperSPARC will never place instruction fault addresses in the FAR */
        if (!is_exec) {
            env->mmuregs[4] = addr; /* Fault address register */
        }
    }
    /* overflow (same type fault was not read before another fault) */
    if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
        env->mmuregs[3] |= 1;
    }

    if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
        if (is_exec) {
            helper_raise_exception(env, TT_CODE_ACCESS);
        } else {
            helper_raise_exception(env, TT_DATA_ACCESS);
        }
    }

    /* flush neverland mappings created during no-fault mode,
       so the sequential MMU faults report proper fault types */
    if (env->mmuregs[0] & MMU_NF) {
2395
        tlb_flush(cs, 1);
2396 2397 2398
    }
}
#else
2399 2400 2401
void sparc_cpu_unassigned_access(CPUState *cs, hwaddr addr,
                                 bool is_write, bool is_exec, int is_asi,
                                 unsigned size)
2402
{
2403 2404 2405
    SPARCCPU *cpu = SPARC_CPU(cs);
    CPUSPARCState *env = &cpu->env;

2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
#ifdef DEBUG_UNASSIGNED
    printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
           "\n", addr, env->pc);
#endif

    if (is_exec) {
        helper_raise_exception(env, TT_CODE_ACCESS);
    } else {
        helper_raise_exception(env, TT_DATA_ACCESS);
    }
}
#endif
#endif
2419

2420
#if !defined(CONFIG_USER_ONLY)
2421 2422 2423
void QEMU_NORETURN sparc_cpu_do_unaligned_access(CPUState *cs,
                                                 vaddr addr, int is_write,
                                                 int is_user, uintptr_t retaddr)
2424
{
2425 2426 2427
    SPARCCPU *cpu = SPARC_CPU(cs);
    CPUSPARCState *env = &cpu->env;

2428 2429 2430 2431
#ifdef DEBUG_UNALIGNED
    printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
           "\n", addr, env->pc);
#endif
B
Blue Swirl 已提交
2432
    if (retaddr) {
2433
        cpu_restore_state(CPU(cpu), retaddr);
B
Blue Swirl 已提交
2434
    }
2435 2436 2437 2438 2439 2440 2441
    helper_raise_exception(env, TT_UNALIGNED);
}

/* try to fill the TLB and return an exception if error. If retaddr is
   NULL, it means that the function was called in C code (i.e. not
   from generated code or from helper.c) */
/* XXX: fix it to restore all registers */
2442
void tlb_fill(CPUState *cs, target_ulong addr, int is_write, int mmu_idx,
2443
              uintptr_t retaddr)
2444 2445 2446
{
    int ret;

2447
    ret = sparc_cpu_handle_mmu_fault(cs, addr, is_write, mmu_idx);
2448
    if (ret) {
B
Blue Swirl 已提交
2449
        if (retaddr) {
2450
            cpu_restore_state(cs, retaddr);
B
Blue Swirl 已提交
2451
        }
2452
        cpu_loop_exit(cs);
2453 2454 2455
    }
}
#endif