ldst_helper.c 74.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * Helpers for loads and stores
 *
 *  Copyright (c) 2003-2005 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

#include "cpu.h"
21
#include "exec/helper-proto.h"
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

//#define DEBUG_MMU
//#define DEBUG_MXCC
//#define DEBUG_UNALIGNED
//#define DEBUG_UNASSIGNED
//#define DEBUG_ASI
//#define DEBUG_CACHE_CONTROL

#ifdef DEBUG_MMU
#define DPRINTF_MMU(fmt, ...)                                   \
    do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DPRINTF_MMU(fmt, ...) do {} while (0)
#endif

#ifdef DEBUG_MXCC
#define DPRINTF_MXCC(fmt, ...)                                  \
    do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DPRINTF_MXCC(fmt, ...) do {} while (0)
#endif

#ifdef DEBUG_ASI
#define DPRINTF_ASI(fmt, ...)                                   \
    do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
#endif

#ifdef DEBUG_CACHE_CONTROL
#define DPRINTF_CACHE_CONTROL(fmt, ...)                                 \
    do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
#endif

#ifdef TARGET_SPARC64
#ifndef TARGET_ABI32
#define AM_CHECK(env1) ((env1)->pstate & PS_AM)
#else
#define AM_CHECK(env1) (1)
#endif
#endif

#define QT0 (env->qt0)
#define QT1 (env->qt1)

67
#if !defined(CONFIG_USER_ONLY)
68
#include "exec/softmmu_exec.h"
69 70
#endif

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
#if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
/* Calculates TSB pointer value for fault page size 8k or 64k */
static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
                                       uint64_t tag_access_register,
                                       int page_size)
{
    uint64_t tsb_base = tsb_register & ~0x1fffULL;
    int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
    int tsb_size  = tsb_register & 0xf;

    /* discard lower 13 bits which hold tag access context */
    uint64_t tag_access_va = tag_access_register & ~0x1fffULL;

    /* now reorder bits */
    uint64_t tsb_base_mask = ~0x1fffULL;
    uint64_t va = tag_access_va;

    /* move va bits to correct position */
    if (page_size == 8*1024) {
        va >>= 9;
    } else if (page_size == 64*1024) {
        va >>= 12;
    }

    if (tsb_size) {
        tsb_base_mask <<= tsb_size;
    }

    /* calculate tsb_base mask and adjust va if split is in use */
    if (tsb_split) {
        if (page_size == 8*1024) {
            va &= ~(1ULL << (13 + tsb_size));
        } else if (page_size == 64*1024) {
            va |= (1ULL << (13 + tsb_size));
        }
        tsb_base_mask <<= 1;
    }

    return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
}

/* Calculates tag target register value by reordering bits
   in tag access register */
static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
{
    return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
}

static void replace_tlb_entry(SparcTLBEntry *tlb,
                              uint64_t tlb_tag, uint64_t tlb_tte,
121
                              CPUSPARCState *env1)
122 123 124 125 126
{
    target_ulong mask, size, va, offset;

    /* flush page range if translation is valid */
    if (TTE_IS_VALID(tlb->tte)) {
127
        CPUState *cs = CPU(sparc_env_get_cpu(env1));
128 129 130 131 132 133 134 135

        mask = 0xffffffffffffe000ULL;
        mask <<= 3 * ((tlb->tte >> 61) & 3);
        size = ~mask + 1;

        va = tlb->tag & mask;

        for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
136
            tlb_flush_page(cs, va + offset);
137 138 139 140 141 142 143 144
        }
    }

    tlb->tag = tlb_tag;
    tlb->tte = tlb_tte;
}

static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
145
                      const char *strmmu, CPUSPARCState *env1)
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
{
    unsigned int i;
    target_ulong mask;
    uint64_t context;

    int is_demap_context = (demap_addr >> 6) & 1;

    /* demap context */
    switch ((demap_addr >> 4) & 3) {
    case 0: /* primary */
        context = env1->dmmu.mmu_primary_context;
        break;
    case 1: /* secondary */
        context = env1->dmmu.mmu_secondary_context;
        break;
    case 2: /* nucleus */
        context = 0;
        break;
    case 3: /* reserved */
    default:
        return;
    }

    for (i = 0; i < 64; i++) {
        if (TTE_IS_VALID(tlb[i].tte)) {

            if (is_demap_context) {
                /* will remove non-global entries matching context value */
                if (TTE_IS_GLOBAL(tlb[i].tte) ||
                    !tlb_compare_context(&tlb[i], context)) {
                    continue;
                }
            } else {
                /* demap page
                   will remove any entry matching VA */
                mask = 0xffffffffffffe000ULL;
                mask <<= 3 * ((tlb[i].tte >> 61) & 3);

                if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
                    continue;
                }

                /* entry should be global or matching context value */
                if (!TTE_IS_GLOBAL(tlb[i].tte) &&
                    !tlb_compare_context(&tlb[i], context)) {
                    continue;
                }
            }

            replace_tlb_entry(&tlb[i], 0, 0, env1);
#ifdef DEBUG_MMU
            DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
            dump_mmu(stdout, fprintf, env1);
#endif
        }
    }
}

static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
                                 uint64_t tlb_tag, uint64_t tlb_tte,
206
                                 const char *strmmu, CPUSPARCState *env1)
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
{
    unsigned int i, replace_used;

    /* Try replacing invalid entry */
    for (i = 0; i < 64; i++) {
        if (!TTE_IS_VALID(tlb[i].tte)) {
            replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
#ifdef DEBUG_MMU
            DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
            dump_mmu(stdout, fprintf, env1);
#endif
            return;
        }
    }

    /* All entries are valid, try replacing unlocked entry */

    for (replace_used = 0; replace_used < 2; ++replace_used) {

        /* Used entries are not replaced on first pass */

        for (i = 0; i < 64; i++) {
            if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {

                replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
#ifdef DEBUG_MMU
                DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
                            strmmu, (replace_used ? "used" : "unused"), i);
                dump_mmu(stdout, fprintf, env1);
#endif
                return;
            }
        }

        /* Now reset used bit and search for unused entries again */

        for (i = 0; i < 64; i++) {
            TTE_SET_UNUSED(tlb[i].tte);
        }
    }

#ifdef DEBUG_MMU
    DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu);
#endif
    /* error state? */
}

#endif

256
static inline target_ulong address_mask(CPUSPARCState *env1, target_ulong addr)
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
{
#ifdef TARGET_SPARC64
    if (AM_CHECK(env1)) {
        addr &= 0xffffffffULL;
    }
#endif
    return addr;
}

/* returns true if access using this ASI is to have address translated by MMU
   otherwise access is to raw physical address */
static inline int is_translating_asi(int asi)
{
#ifdef TARGET_SPARC64
    /* Ultrasparc IIi translating asi
       - note this list is defined by cpu implementation
    */
    switch (asi) {
    case 0x04 ... 0x11:
    case 0x16 ... 0x19:
    case 0x1E ... 0x1F:
    case 0x24 ... 0x2C:
    case 0x70 ... 0x73:
    case 0x78 ... 0x79:
    case 0x80 ... 0xFF:
        return 1;

    default:
        return 0;
    }
#else
    /* TODO: check sparc32 bits */
    return 0;
#endif
}

293
static inline target_ulong asi_address_mask(CPUSPARCState *env,
294 295 296 297 298 299 300 301 302
                                            int asi, target_ulong addr)
{
    if (is_translating_asi(asi)) {
        return address_mask(env, addr);
    } else {
        return addr;
    }
}

303
void helper_check_align(CPUSPARCState *env, target_ulong addr, uint32_t align)
304 305 306 307 308 309 310 311 312 313 314 315
{
    if (addr & align) {
#ifdef DEBUG_UNALIGNED
        printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
               "\n", addr, env->pc);
#endif
        helper_raise_exception(env, TT_UNALIGNED);
    }
}

#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) &&   \
    defined(DEBUG_MXCC)
316
static void dump_mxcc(CPUSPARCState *env)
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
{
    printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
           "\n",
           env->mxccdata[0], env->mxccdata[1],
           env->mxccdata[2], env->mxccdata[3]);
    printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
           "\n"
           "          %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
           "\n",
           env->mxccregs[0], env->mxccregs[1],
           env->mxccregs[2], env->mxccregs[3],
           env->mxccregs[4], env->mxccregs[5],
           env->mxccregs[6], env->mxccregs[7]);
}
#endif

#if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY))     \
    && defined(DEBUG_ASI)
static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
                     uint64_t r1)
{
    switch (size) {
    case 1:
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
                    addr, asi, r1 & 0xff);
        break;
    case 2:
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
                    addr, asi, r1 & 0xffff);
        break;
    case 4:
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
                    addr, asi, r1 & 0xffffffff);
        break;
    case 8:
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
                    addr, asi, r1);
        break;
    }
}
#endif

#ifndef TARGET_SPARC64
#ifndef CONFIG_USER_ONLY


/* Leon3 cache control */

365 366
static void leon3_cache_control_st(CPUSPARCState *env, target_ulong addr,
                                   uint64_t val, int size)
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
{
    DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
                          addr, val, size);

    if (size != 4) {
        DPRINTF_CACHE_CONTROL("32bits only\n");
        return;
    }

    switch (addr) {
    case 0x00:              /* Cache control */

        /* These values must always be read as zeros */
        val &= ~CACHE_CTRL_FD;
        val &= ~CACHE_CTRL_FI;
        val &= ~CACHE_CTRL_IB;
        val &= ~CACHE_CTRL_IP;
        val &= ~CACHE_CTRL_DP;

        env->cache_control = val;
        break;
    case 0x04:              /* Instruction cache configuration */
    case 0x08:              /* Data cache configuration */
        /* Read Only */
        break;
    default:
        DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
        break;
    };
}

398 399
static uint64_t leon3_cache_control_ld(CPUSPARCState *env, target_ulong addr,
                                       int size)
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
{
    uint64_t ret = 0;

    if (size != 4) {
        DPRINTF_CACHE_CONTROL("32bits only\n");
        return 0;
    }

    switch (addr) {
    case 0x00:              /* Cache control */
        ret = env->cache_control;
        break;

        /* Configuration registers are read and only always keep those
           predefined values */

    case 0x04:              /* Instruction cache configuration */
        ret = 0x10220000;
        break;
    case 0x08:              /* Data cache configuration */
        ret = 0x18220000;
        break;
    default:
        DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
        break;
    };
    DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
                          addr, ret, size);
    return ret;
}

431 432
uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
                       int sign)
433
{
434
    CPUState *cs = CPU(sparc_env_get_cpu(env));
435 436 437 438 439
    uint64_t ret = 0;
#if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
    uint32_t last_addr = addr;
#endif

440
    helper_check_align(env, addr, size - 1);
441 442 443 444 445 446 447
    switch (asi) {
    case 2: /* SuperSparc MXCC registers and Leon3 cache control */
        switch (addr) {
        case 0x00:          /* Leon3 Cache Control */
        case 0x08:          /* Leon3 Instruction Cache config */
        case 0x0C:          /* Leon3 Date Cache config */
            if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
448
                ret = leon3_cache_control_ld(env, addr, size);
449 450 451 452 453 454
            }
            break;
        case 0x01c00a00: /* MXCC control register */
            if (size == 8) {
                ret = env->mxccregs[3];
            } else {
455 456 457
                qemu_log_mask(LOG_UNIMP,
                              "%08x: unimplemented access size: %d\n", addr,
                              size);
458 459 460 461 462 463
            }
            break;
        case 0x01c00a04: /* MXCC control register */
            if (size == 4) {
                ret = env->mxccregs[3];
            } else {
464 465 466
                qemu_log_mask(LOG_UNIMP,
                              "%08x: unimplemented access size: %d\n", addr,
                              size);
467 468 469 470 471 472 473
            }
            break;
        case 0x01c00c00: /* Module reset register */
            if (size == 8) {
                ret = env->mxccregs[5];
                /* should we do something here? */
            } else {
474 475 476
                qemu_log_mask(LOG_UNIMP,
                              "%08x: unimplemented access size: %d\n", addr,
                              size);
477 478 479 480 481 482
            }
            break;
        case 0x01c00f00: /* MBus port address register */
            if (size == 8) {
                ret = env->mxccregs[7];
            } else {
483 484 485
                qemu_log_mask(LOG_UNIMP,
                              "%08x: unimplemented access size: %d\n", addr,
                              size);
486 487 488
            }
            break;
        default:
489 490 491
            qemu_log_mask(LOG_UNIMP,
                          "%08x: unimplemented address, size: %d\n", addr,
                          size);
492 493 494 495 496 497 498 499 500 501
            break;
        }
        DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
                     "addr = %08x -> ret = %" PRIx64 ","
                     "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
#ifdef DEBUG_MXCC
        dump_mxcc(env);
#endif
        break;
    case 3: /* MMU probe */
502
    case 0x18: /* LEON3 MMU probe */
503 504 505 506 507 508 509 510 511 512 513 514 515 516
        {
            int mmulev;

            mmulev = (addr >> 8) & 15;
            if (mmulev > 4) {
                ret = 0;
            } else {
                ret = mmu_probe(env, addr, mmulev);
            }
            DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
                        addr, mmulev, ret);
        }
        break;
    case 4: /* read MMU regs */
517
    case 0x19: /* LEON3 read MMU regs */
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
        {
            int reg = (addr >> 8) & 0x1f;

            ret = env->mmuregs[reg];
            if (reg == 3) { /* Fault status cleared on read */
                env->mmuregs[3] = 0;
            } else if (reg == 0x13) { /* Fault status read */
                ret = env->mmuregs[3];
            } else if (reg == 0x14) { /* Fault address read */
                ret = env->mmuregs[4];
            }
            DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
        }
        break;
    case 5: /* Turbosparc ITLB Diagnostic */
    case 6: /* Turbosparc DTLB Diagnostic */
    case 7: /* Turbosparc IOTLB Diagnostic */
        break;
    case 9: /* Supervisor code access */
        switch (size) {
        case 1:
539
            ret = cpu_ldub_code(env, addr);
540 541
            break;
        case 2:
542
            ret = cpu_lduw_code(env, addr);
543 544 545
            break;
        default:
        case 4:
546
            ret = cpu_ldl_code(env, addr);
547 548
            break;
        case 8:
549
            ret = cpu_ldq_code(env, addr);
550 551 552 553 554 555
            break;
        }
        break;
    case 0xa: /* User data access */
        switch (size) {
        case 1:
556
            ret = cpu_ldub_user(env, addr);
557 558
            break;
        case 2:
559
            ret = cpu_lduw_user(env, addr);
560 561 562
            break;
        default:
        case 4:
563
            ret = cpu_ldl_user(env, addr);
564 565
            break;
        case 8:
566
            ret = cpu_ldq_user(env, addr);
567 568 569 570
            break;
        }
        break;
    case 0xb: /* Supervisor data access */
571
    case 0x80:
572 573
        switch (size) {
        case 1:
574
            ret = cpu_ldub_kernel(env, addr);
575 576
            break;
        case 2:
577
            ret = cpu_lduw_kernel(env, addr);
578 579 580
            break;
        default:
        case 4:
581
            ret = cpu_ldl_kernel(env, addr);
582 583
            break;
        case 8:
584
            ret = cpu_ldq_kernel(env, addr);
585 586 587 588 589 590 591 592 593
            break;
        }
        break;
    case 0xc: /* I-cache tag */
    case 0xd: /* I-cache data */
    case 0xe: /* D-cache tag */
    case 0xf: /* D-cache data */
        break;
    case 0x20: /* MMU passthrough */
594
    case 0x1c: /* LEON MMU passthrough */
595 596
        switch (size) {
        case 1:
597
            ret = ldub_phys(cs->as, addr);
598 599
            break;
        case 2:
600
            ret = lduw_phys(cs->as, addr);
601 602 603
            break;
        default:
        case 4:
604
            ret = ldl_phys(cs->as, addr);
605 606
            break;
        case 8:
607
            ret = ldq_phys(cs->as, addr);
608 609 610 611 612 613
            break;
        }
        break;
    case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
        switch (size) {
        case 1:
614
            ret = ldub_phys(cs->as, (hwaddr)addr
A
Avi Kivity 已提交
615
                            | ((hwaddr)(asi & 0xf) << 32));
616 617
            break;
        case 2:
618
            ret = lduw_phys(cs->as, (hwaddr)addr
A
Avi Kivity 已提交
619
                            | ((hwaddr)(asi & 0xf) << 32));
620 621 622
            break;
        default:
        case 4:
623
            ret = ldl_phys(cs->as, (hwaddr)addr
A
Avi Kivity 已提交
624
                           | ((hwaddr)(asi & 0xf) << 32));
625 626
            break;
        case 8:
627
            ret = ldq_phys(cs->as, (hwaddr)addr
A
Avi Kivity 已提交
628
                           | ((hwaddr)(asi & 0xf) << 32));
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
            break;
        }
        break;
    case 0x30: /* Turbosparc secondary cache diagnostic */
    case 0x31: /* Turbosparc RAM snoop */
    case 0x32: /* Turbosparc page table descriptor diagnostic */
    case 0x39: /* data cache diagnostic register */
        ret = 0;
        break;
    case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
        {
            int reg = (addr >> 8) & 3;

            switch (reg) {
            case 0: /* Breakpoint Value (Addr) */
                ret = env->mmubpregs[reg];
                break;
            case 1: /* Breakpoint Mask */
                ret = env->mmubpregs[reg];
                break;
            case 2: /* Breakpoint Control */
                ret = env->mmubpregs[reg];
                break;
            case 3: /* Breakpoint Status */
                ret = env->mmubpregs[reg];
                env->mmubpregs[reg] = 0ULL;
                break;
            }
            DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
                        ret);
        }
        break;
    case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
        ret = env->mmubpctrv;
        break;
    case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
        ret = env->mmubpctrc;
        break;
    case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
        ret = env->mmubpctrs;
        break;
    case 0x4c: /* SuperSPARC MMU Breakpoint Action */
        ret = env->mmubpaction;
        break;
    case 8: /* User code access, XXX */
    default:
675
        cpu_unassigned_access(cs, addr, false, false, asi, size);
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
        ret = 0;
        break;
    }
    if (sign) {
        switch (size) {
        case 1:
            ret = (int8_t) ret;
            break;
        case 2:
            ret = (int16_t) ret;
            break;
        case 4:
            ret = (int32_t) ret;
            break;
        default:
            break;
        }
    }
#ifdef DEBUG_ASI
    dump_asi("read ", last_addr, asi, size, ret);
#endif
    return ret;
}

700 701
void helper_st_asi(CPUSPARCState *env, target_ulong addr, uint64_t val, int asi,
                   int size)
702
{
703 704 705
    SPARCCPU *cpu = sparc_env_get_cpu(env);
    CPUState *cs = CPU(cpu);

706
    helper_check_align(env, addr, size - 1);
707 708 709 710 711 712 713
    switch (asi) {
    case 2: /* SuperSparc MXCC registers and Leon3 cache control */
        switch (addr) {
        case 0x00:          /* Leon3 Cache Control */
        case 0x08:          /* Leon3 Instruction Cache config */
        case 0x0C:          /* Leon3 Date Cache config */
            if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
714
                leon3_cache_control_st(env, addr, val, size);
715 716 717 718 719 720 721
            }
            break;

        case 0x01c00000: /* MXCC stream data register 0 */
            if (size == 8) {
                env->mxccdata[0] = val;
            } else {
722 723 724
                qemu_log_mask(LOG_UNIMP,
                              "%08x: unimplemented access size: %d\n", addr,
                              size);
725 726 727 728 729 730
            }
            break;
        case 0x01c00008: /* MXCC stream data register 1 */
            if (size == 8) {
                env->mxccdata[1] = val;
            } else {
731 732 733
                qemu_log_mask(LOG_UNIMP,
                              "%08x: unimplemented access size: %d\n", addr,
                              size);
734 735 736 737 738 739
            }
            break;
        case 0x01c00010: /* MXCC stream data register 2 */
            if (size == 8) {
                env->mxccdata[2] = val;
            } else {
740 741 742
                qemu_log_mask(LOG_UNIMP,
                              "%08x: unimplemented access size: %d\n", addr,
                              size);
743 744 745 746 747 748
            }
            break;
        case 0x01c00018: /* MXCC stream data register 3 */
            if (size == 8) {
                env->mxccdata[3] = val;
            } else {
749 750 751
                qemu_log_mask(LOG_UNIMP,
                              "%08x: unimplemented access size: %d\n", addr,
                              size);
752 753 754 755 756 757
            }
            break;
        case 0x01c00100: /* MXCC stream source */
            if (size == 8) {
                env->mxccregs[0] = val;
            } else {
758 759 760
                qemu_log_mask(LOG_UNIMP,
                              "%08x: unimplemented access size: %d\n", addr,
                              size);
761
            }
762 763
            env->mxccdata[0] = ldq_phys(cs->as,
                                        (env->mxccregs[0] & 0xffffffffULL) +
764
                                        0);
765 766
            env->mxccdata[1] = ldq_phys(cs->as,
                                        (env->mxccregs[0] & 0xffffffffULL) +
767
                                        8);
768 769
            env->mxccdata[2] = ldq_phys(cs->as,
                                        (env->mxccregs[0] & 0xffffffffULL) +
770
                                        16);
771 772
            env->mxccdata[3] = ldq_phys(cs->as,
                                        (env->mxccregs[0] & 0xffffffffULL) +
773 774 775 776 777 778
                                        24);
            break;
        case 0x01c00200: /* MXCC stream destination */
            if (size == 8) {
                env->mxccregs[1] = val;
            } else {
779 780 781
                qemu_log_mask(LOG_UNIMP,
                              "%08x: unimplemented access size: %d\n", addr,
                              size);
782
            }
783
            stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) +  0,
784
                     env->mxccdata[0]);
785
            stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) +  8,
786
                     env->mxccdata[1]);
787
            stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 16,
788
                     env->mxccdata[2]);
789
            stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 24,
790 791 792 793 794 795
                     env->mxccdata[3]);
            break;
        case 0x01c00a00: /* MXCC control register */
            if (size == 8) {
                env->mxccregs[3] = val;
            } else {
796 797 798
                qemu_log_mask(LOG_UNIMP,
                              "%08x: unimplemented access size: %d\n", addr,
                              size);
799 800 801 802 803 804 805
            }
            break;
        case 0x01c00a04: /* MXCC control register */
            if (size == 4) {
                env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
                    | val;
            } else {
806 807 808
                qemu_log_mask(LOG_UNIMP,
                              "%08x: unimplemented access size: %d\n", addr,
                              size);
809 810 811 812 813 814 815
            }
            break;
        case 0x01c00e00: /* MXCC error register  */
            /* writing a 1 bit clears the error */
            if (size == 8) {
                env->mxccregs[6] &= ~val;
            } else {
816 817 818
                qemu_log_mask(LOG_UNIMP,
                              "%08x: unimplemented access size: %d\n", addr,
                              size);
819 820 821 822 823 824
            }
            break;
        case 0x01c00f00: /* MBus port address register */
            if (size == 8) {
                env->mxccregs[7] = val;
            } else {
825 826 827
                qemu_log_mask(LOG_UNIMP,
                              "%08x: unimplemented access size: %d\n", addr,
                              size);
828 829 830
            }
            break;
        default:
831 832 833
            qemu_log_mask(LOG_UNIMP,
                          "%08x: unimplemented address, size: %d\n", addr,
                          size);
834 835 836 837 838 839 840 841 842
            break;
        }
        DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
                     asi, size, addr, val);
#ifdef DEBUG_MXCC
        dump_mxcc(env);
#endif
        break;
    case 3: /* MMU flush */
843
    case 0x18: /* LEON3 MMU flush */
844 845 846 847 848 849 850
        {
            int mmulev;

            mmulev = (addr >> 8) & 15;
            DPRINTF_MMU("mmu flush level %d\n", mmulev);
            switch (mmulev) {
            case 0: /* flush page */
851
                tlb_flush_page(CPU(cpu), addr & 0xfffff000);
852 853 854 855 856
                break;
            case 1: /* flush segment (256k) */
            case 2: /* flush region (16M) */
            case 3: /* flush context (4G) */
            case 4: /* flush entire */
857
                tlb_flush(CPU(cpu), 1);
858 859 860 861 862 863 864 865 866 867
                break;
            default:
                break;
            }
#ifdef DEBUG_MMU
            dump_mmu(stdout, fprintf, env);
#endif
        }
        break;
    case 4: /* write MMU regs */
868
    case 0x19: /* LEON3 write MMU regs */
869 870 871 872 873 874 875 876 877 878 879 880 881
        {
            int reg = (addr >> 8) & 0x1f;
            uint32_t oldreg;

            oldreg = env->mmuregs[reg];
            switch (reg) {
            case 0: /* Control Register */
                env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
                    (val & 0x00ffffff);
                /* Mappings generated during no-fault mode or MMU
                   disabled mode are invalid in normal mode */
                if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
                    (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm))) {
882
                    tlb_flush(CPU(cpu), 1);
883 884 885 886 887 888 889 890 891 892
                }
                break;
            case 1: /* Context Table Pointer Register */
                env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
                break;
            case 2: /* Context Register */
                env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
                if (oldreg != env->mmuregs[reg]) {
                    /* we flush when the MMU context changes because
                       QEMU has no MMU context support */
893
                    tlb_flush(CPU(cpu), 1);
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
                }
                break;
            case 3: /* Synchronous Fault Status Register with Clear */
            case 4: /* Synchronous Fault Address Register */
                break;
            case 0x10: /* TLB Replacement Control Register */
                env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
                break;
            case 0x13: /* Synchronous Fault Status Register with Read
                          and Clear */
                env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
                break;
            case 0x14: /* Synchronous Fault Address Register */
                env->mmuregs[4] = val;
                break;
            default:
                env->mmuregs[reg] = val;
                break;
            }
            if (oldreg != env->mmuregs[reg]) {
                DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
                            reg, oldreg, env->mmuregs[reg]);
            }
#ifdef DEBUG_MMU
            dump_mmu(stdout, fprintf, env);
#endif
        }
        break;
    case 5: /* Turbosparc ITLB Diagnostic */
    case 6: /* Turbosparc DTLB Diagnostic */
    case 7: /* Turbosparc IOTLB Diagnostic */
        break;
    case 0xa: /* User data access */
        switch (size) {
        case 1:
929
            cpu_stb_user(env, addr, val);
930 931
            break;
        case 2:
932
            cpu_stw_user(env, addr, val);
933 934 935
            break;
        default:
        case 4:
936
            cpu_stl_user(env, addr, val);
937 938
            break;
        case 8:
939
            cpu_stq_user(env, addr, val);
940 941 942 943
            break;
        }
        break;
    case 0xb: /* Supervisor data access */
944
    case 0x80:
945 946
        switch (size) {
        case 1:
947
            cpu_stb_kernel(env, addr, val);
948 949
            break;
        case 2:
950
            cpu_stw_kernel(env, addr, val);
951 952 953
            break;
        default:
        case 4:
954
            cpu_stl_kernel(env, addr, val);
955 956
            break;
        case 8:
957
            cpu_stq_kernel(env, addr, val);
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
            break;
        }
        break;
    case 0xc: /* I-cache tag */
    case 0xd: /* I-cache data */
    case 0xe: /* D-cache tag */
    case 0xf: /* D-cache data */
    case 0x10: /* I/D-cache flush page */
    case 0x11: /* I/D-cache flush segment */
    case 0x12: /* I/D-cache flush region */
    case 0x13: /* I/D-cache flush context */
    case 0x14: /* I/D-cache flush user */
        break;
    case 0x17: /* Block copy, sta access */
        {
            /* val = src
               addr = dst
               copy 32 bytes */
            unsigned int i;
            uint32_t src = val & ~3, dst = addr & ~3, temp;

            for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
980 981
                temp = cpu_ldl_kernel(env, src);
                cpu_stl_kernel(env, dst, temp);
982 983 984 985 986 987 988 989 990 991 992
            }
        }
        break;
    case 0x1f: /* Block fill, stda access */
        {
            /* addr = dst
               fill 32 bytes with val */
            unsigned int i;
            uint32_t dst = addr & 7;

            for (i = 0; i < 32; i += 8, dst += 8) {
993
                cpu_stq_kernel(env, dst, val);
994 995 996 997
            }
        }
        break;
    case 0x20: /* MMU passthrough */
998
    case 0x1c: /* LEON MMU passthrough */
999 1000 1001
        {
            switch (size) {
            case 1:
1002
                stb_phys(cs->as, addr, val);
1003 1004
                break;
            case 2:
1005
                stw_phys(cs->as, addr, val);
1006 1007 1008
                break;
            case 4:
            default:
1009
                stl_phys(cs->as, addr, val);
1010 1011
                break;
            case 8:
1012
                stq_phys(cs->as, addr, val);
1013 1014 1015 1016 1017 1018 1019 1020
                break;
            }
        }
        break;
    case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
        {
            switch (size) {
            case 1:
1021
                stb_phys(cs->as, (hwaddr)addr
A
Avi Kivity 已提交
1022
                         | ((hwaddr)(asi & 0xf) << 32), val);
1023 1024
                break;
            case 2:
1025
                stw_phys(cs->as, (hwaddr)addr
A
Avi Kivity 已提交
1026
                         | ((hwaddr)(asi & 0xf) << 32), val);
1027 1028 1029
                break;
            case 4:
            default:
1030
                stl_phys(cs->as, (hwaddr)addr
A
Avi Kivity 已提交
1031
                         | ((hwaddr)(asi & 0xf) << 32), val);
1032 1033
                break;
            case 8:
1034
                stq_phys(cs->as, (hwaddr)addr
A
Avi Kivity 已提交
1035
                         | ((hwaddr)(asi & 0xf) << 32), val);
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
                break;
            }
        }
        break;
    case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
    case 0x31: /* store buffer data, Ross RT620 I-cache flush or
                  Turbosparc snoop RAM */
    case 0x32: /* store buffer control or Turbosparc page table
                  descriptor diagnostic */
    case 0x36: /* I-cache flash clear */
    case 0x37: /* D-cache flash clear */
        break;
    case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
        {
            int reg = (addr >> 8) & 3;

            switch (reg) {
            case 0: /* Breakpoint Value (Addr) */
                env->mmubpregs[reg] = (val & 0xfffffffffULL);
                break;
            case 1: /* Breakpoint Mask */
                env->mmubpregs[reg] = (val & 0xfffffffffULL);
                break;
            case 2: /* Breakpoint Control */
                env->mmubpregs[reg] = (val & 0x7fULL);
                break;
            case 3: /* Breakpoint Status */
                env->mmubpregs[reg] = (val & 0xfULL);
                break;
            }
            DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
                        env->mmuregs[reg]);
        }
        break;
    case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
        env->mmubpctrv = val & 0xffffffff;
        break;
    case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
        env->mmubpctrc = val & 0x3;
        break;
    case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
        env->mmubpctrs = val & 0x3;
        break;
    case 0x4c: /* SuperSPARC MMU Breakpoint Action */
        env->mmubpaction = val & 0x1fff;
        break;
    case 8: /* User code access, XXX */
    case 9: /* Supervisor code access, XXX */
    default:
1085 1086
        cpu_unassigned_access(CPU(sparc_env_get_cpu(env)),
                              addr, true, false, asi, size);
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
        break;
    }
#ifdef DEBUG_ASI
    dump_asi("write", addr, asi, size, val);
#endif
}

#endif /* CONFIG_USER_ONLY */
#else /* TARGET_SPARC64 */

#ifdef CONFIG_USER_ONLY
1098 1099
uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
                       int sign)
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
{
    uint64_t ret = 0;
#if defined(DEBUG_ASI)
    target_ulong last_addr = addr;
#endif

    if (asi < 0x80) {
        helper_raise_exception(env, TT_PRIV_ACT);
    }

1110
    helper_check_align(env, addr, size - 1);
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
    addr = asi_address_mask(env, asi, addr);

    switch (asi) {
    case 0x82: /* Primary no-fault */
    case 0x8a: /* Primary no-fault LE */
        if (page_check_range(addr, size, PAGE_READ) == -1) {
#ifdef DEBUG_ASI
            dump_asi("read ", last_addr, asi, size, ret);
#endif
            return 0;
        }
        /* Fall through */
    case 0x80: /* Primary */
    case 0x88: /* Primary LE */
        {
            switch (size) {
            case 1:
                ret = ldub_raw(addr);
                break;
            case 2:
                ret = lduw_raw(addr);
                break;
            case 4:
                ret = ldl_raw(addr);
                break;
            default:
            case 8:
                ret = ldq_raw(addr);
                break;
            }
        }
        break;
    case 0x83: /* Secondary no-fault */
    case 0x8b: /* Secondary no-fault LE */
        if (page_check_range(addr, size, PAGE_READ) == -1) {
#ifdef DEBUG_ASI
            dump_asi("read ", last_addr, asi, size, ret);
#endif
            return 0;
        }
        /* Fall through */
    case 0x81: /* Secondary */
    case 0x89: /* Secondary LE */
        /* XXX */
        break;
    default:
        break;
    }

    /* Convert from little endian */
    switch (asi) {
    case 0x88: /* Primary LE */
    case 0x89: /* Secondary LE */
    case 0x8a: /* Primary no-fault LE */
    case 0x8b: /* Secondary no-fault LE */
        switch (size) {
        case 2:
            ret = bswap16(ret);
            break;
        case 4:
            ret = bswap32(ret);
            break;
        case 8:
            ret = bswap64(ret);
            break;
        default:
            break;
        }
    default:
        break;
    }

    /* Convert to signed number */
    if (sign) {
        switch (size) {
        case 1:
            ret = (int8_t) ret;
            break;
        case 2:
            ret = (int16_t) ret;
            break;
        case 4:
            ret = (int32_t) ret;
            break;
        default:
            break;
        }
    }
#ifdef DEBUG_ASI
    dump_asi("read ", last_addr, asi, size, ret);
#endif
    return ret;
}

1205 1206
void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
                   int asi, int size)
1207 1208 1209 1210 1211 1212 1213 1214
{
#ifdef DEBUG_ASI
    dump_asi("write", addr, asi, size, val);
#endif
    if (asi < 0x80) {
        helper_raise_exception(env, TT_PRIV_ACT);
    }

1215
    helper_check_align(env, addr, size - 1);
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
    addr = asi_address_mask(env, asi, addr);

    /* Convert to little endian */
    switch (asi) {
    case 0x88: /* Primary LE */
    case 0x89: /* Secondary LE */
        switch (size) {
        case 2:
            val = bswap16(val);
            break;
        case 4:
            val = bswap32(val);
            break;
        case 8:
            val = bswap64(val);
            break;
        default:
            break;
        }
    default:
        break;
    }

    switch (asi) {
    case 0x80: /* Primary */
    case 0x88: /* Primary LE */
        {
            switch (size) {
            case 1:
                stb_raw(addr, val);
                break;
            case 2:
                stw_raw(addr, val);
                break;
            case 4:
                stl_raw(addr, val);
                break;
            case 8:
            default:
                stq_raw(addr, val);
                break;
            }
        }
        break;
    case 0x81: /* Secondary */
    case 0x89: /* Secondary LE */
        /* XXX */
        return;

    case 0x82: /* Primary no-fault, RO */
    case 0x83: /* Secondary no-fault, RO */
    case 0x8a: /* Primary no-fault LE, RO */
    case 0x8b: /* Secondary no-fault LE, RO */
    default:
1270
        helper_raise_exception(env, TT_DATA_ACCESS);
1271 1272 1273 1274 1275 1276
        return;
    }
}

#else /* CONFIG_USER_ONLY */

1277 1278
uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
                       int sign)
1279
{
1280
    CPUState *cs = CPU(sparc_env_get_cpu(env));
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
    uint64_t ret = 0;
#if defined(DEBUG_ASI)
    target_ulong last_addr = addr;
#endif

    asi &= 0xff;

    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
        || (cpu_has_hypervisor(env)
            && asi >= 0x30 && asi < 0x80
            && !(env->hpstate & HS_PRIV))) {
        helper_raise_exception(env, TT_PRIV_ACT);
    }

1295
    helper_check_align(env, addr, size - 1);
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
    addr = asi_address_mask(env, asi, addr);

    /* process nonfaulting loads first */
    if ((asi & 0xf6) == 0x82) {
        int mmu_idx;

        /* secondary space access has lowest asi bit equal to 1 */
        if (env->pstate & PS_PRIV) {
            mmu_idx = (asi & 1) ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX;
        } else {
            mmu_idx = (asi & 1) ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX;
        }

        if (cpu_get_phys_page_nofault(env, addr, mmu_idx) == -1ULL) {
#ifdef DEBUG_ASI
            dump_asi("read ", last_addr, asi, size, ret);
#endif
            /* env->exception_index is set in get_physical_address_data(). */
1314
            helper_raise_exception(env, cs->exception_index);
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
        }

        /* convert nonfaulting load ASIs to normal load ASIs */
        asi &= ~0x02;
    }

    switch (asi) {
    case 0x10: /* As if user primary */
    case 0x11: /* As if user secondary */
    case 0x18: /* As if user primary LE */
    case 0x19: /* As if user secondary LE */
    case 0x80: /* Primary */
    case 0x81: /* Secondary */
    case 0x88: /* Primary LE */
    case 0x89: /* Secondary LE */
    case 0xe2: /* UA2007 Primary block init */
    case 0xe3: /* UA2007 Secondary block init */
        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
            if (cpu_hypervisor_mode(env)) {
                switch (size) {
                case 1:
1336
                    ret = cpu_ldub_hypv(env, addr);
1337 1338
                    break;
                case 2:
1339
                    ret = cpu_lduw_hypv(env, addr);
1340 1341
                    break;
                case 4:
1342
                    ret = cpu_ldl_hypv(env, addr);
1343 1344 1345
                    break;
                default:
                case 8:
1346
                    ret = cpu_ldq_hypv(env, addr);
1347 1348 1349 1350 1351 1352 1353
                    break;
                }
            } else {
                /* secondary space access has lowest asi bit equal to 1 */
                if (asi & 1) {
                    switch (size) {
                    case 1:
1354
                        ret = cpu_ldub_kernel_secondary(env, addr);
1355 1356
                        break;
                    case 2:
1357
                        ret = cpu_lduw_kernel_secondary(env, addr);
1358 1359
                        break;
                    case 4:
1360
                        ret = cpu_ldl_kernel_secondary(env, addr);
1361 1362 1363
                        break;
                    default:
                    case 8:
1364
                        ret = cpu_ldq_kernel_secondary(env, addr);
1365 1366 1367 1368 1369
                        break;
                    }
                } else {
                    switch (size) {
                    case 1:
1370
                        ret = cpu_ldub_kernel(env, addr);
1371 1372
                        break;
                    case 2:
1373
                        ret = cpu_lduw_kernel(env, addr);
1374 1375
                        break;
                    case 4:
1376
                        ret = cpu_ldl_kernel(env, addr);
1377 1378 1379
                        break;
                    default:
                    case 8:
1380
                        ret = cpu_ldq_kernel(env, addr);
1381 1382 1383 1384 1385 1386 1387 1388 1389
                        break;
                    }
                }
            }
        } else {
            /* secondary space access has lowest asi bit equal to 1 */
            if (asi & 1) {
                switch (size) {
                case 1:
1390
                    ret = cpu_ldub_user_secondary(env, addr);
1391 1392
                    break;
                case 2:
1393
                    ret = cpu_lduw_user_secondary(env, addr);
1394 1395
                    break;
                case 4:
1396
                    ret = cpu_ldl_user_secondary(env, addr);
1397 1398 1399
                    break;
                default:
                case 8:
1400
                    ret = cpu_ldq_user_secondary(env, addr);
1401 1402 1403 1404 1405
                    break;
                }
            } else {
                switch (size) {
                case 1:
1406
                    ret = cpu_ldub_user(env, addr);
1407 1408
                    break;
                case 2:
1409
                    ret = cpu_lduw_user(env, addr);
1410 1411
                    break;
                case 4:
1412
                    ret = cpu_ldl_user(env, addr);
1413 1414 1415
                    break;
                default:
                case 8:
1416
                    ret = cpu_ldq_user(env, addr);
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
                    break;
                }
            }
        }
        break;
    case 0x14: /* Bypass */
    case 0x15: /* Bypass, non-cacheable */
    case 0x1c: /* Bypass LE */
    case 0x1d: /* Bypass, non-cacheable LE */
        {
            switch (size) {
            case 1:
1429
                ret = ldub_phys(cs->as, addr);
1430 1431
                break;
            case 2:
1432
                ret = lduw_phys(cs->as, addr);
1433 1434
                break;
            case 4:
1435
                ret = ldl_phys(cs->as, addr);
1436 1437 1438
                break;
            default:
            case 8:
1439
                ret = ldq_phys(cs->as, addr);
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
                break;
            }
            break;
        }
    case 0x24: /* Nucleus quad LDD 128 bit atomic */
    case 0x2c: /* Nucleus quad LDD 128 bit atomic LE
                  Only ldda allowed */
        helper_raise_exception(env, TT_ILL_INSN);
        return 0;
    case 0x04: /* Nucleus */
    case 0x0c: /* Nucleus Little Endian (LE) */
        {
            switch (size) {
            case 1:
1454
                ret = cpu_ldub_nucleus(env, addr);
1455 1456
                break;
            case 2:
1457
                ret = cpu_lduw_nucleus(env, addr);
1458 1459
                break;
            case 4:
1460
                ret = cpu_ldl_nucleus(env, addr);
1461 1462 1463
                break;
            default:
            case 8:
1464
                ret = cpu_ldq_nucleus(env, addr);
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
                break;
            }
            break;
        }
    case 0x4a: /* UPA config */
        /* XXX */
        break;
    case 0x45: /* LSU */
        ret = env->lsu;
        break;
    case 0x50: /* I-MMU regs */
        {
            int reg = (addr >> 3) & 0xf;

            if (reg == 0) {
                /* I-TSB Tag Target register */
                ret = ultrasparc_tag_target(env->immu.tag_access);
            } else {
                ret = env->immuregs[reg];
            }

            break;
        }
    case 0x51: /* I-MMU 8k TSB pointer */
        {
            /* env->immuregs[5] holds I-MMU TSB register value
               env->immuregs[6] holds I-MMU Tag Access register value */
            ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
                                         8*1024);
            break;
        }
    case 0x52: /* I-MMU 64k TSB pointer */
        {
            /* env->immuregs[5] holds I-MMU TSB register value
               env->immuregs[6] holds I-MMU Tag Access register value */
            ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
                                         64*1024);
            break;
        }
    case 0x55: /* I-MMU data access */
        {
            int reg = (addr >> 3) & 0x3f;

            ret = env->itlb[reg].tte;
            break;
        }
    case 0x56: /* I-MMU tag read */
        {
            int reg = (addr >> 3) & 0x3f;

            ret = env->itlb[reg].tag;
            break;
        }
    case 0x58: /* D-MMU regs */
        {
            int reg = (addr >> 3) & 0xf;

            if (reg == 0) {
                /* D-TSB Tag Target register */
                ret = ultrasparc_tag_target(env->dmmu.tag_access);
            } else {
                ret = env->dmmuregs[reg];
            }
            break;
        }
    case 0x59: /* D-MMU 8k TSB pointer */
        {
            /* env->dmmuregs[5] holds D-MMU TSB register value
               env->dmmuregs[6] holds D-MMU Tag Access register value */
            ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
                                         8*1024);
            break;
        }
    case 0x5a: /* D-MMU 64k TSB pointer */
        {
            /* env->dmmuregs[5] holds D-MMU TSB register value
               env->dmmuregs[6] holds D-MMU Tag Access register value */
            ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
                                         64*1024);
            break;
        }
    case 0x5d: /* D-MMU data access */
        {
            int reg = (addr >> 3) & 0x3f;

            ret = env->dtlb[reg].tte;
            break;
        }
    case 0x5e: /* D-MMU tag read */
        {
            int reg = (addr >> 3) & 0x3f;

            ret = env->dtlb[reg].tag;
            break;
        }
B
Blue Swirl 已提交
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
    case 0x48: /* Interrupt dispatch, RO */
        break;
    case 0x49: /* Interrupt data receive */
        ret = env->ivec_status;
        break;
    case 0x7f: /* Incoming interrupt vector, RO */
        {
            int reg = (addr >> 4) & 0x3;
            if (reg < 3) {
                ret = env->ivec_data[reg];
            }
            break;
        }
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
    case 0x46: /* D-cache data */
    case 0x47: /* D-cache tag access */
    case 0x4b: /* E-cache error enable */
    case 0x4c: /* E-cache asynchronous fault status */
    case 0x4d: /* E-cache asynchronous fault address */
    case 0x4e: /* E-cache tag data */
    case 0x66: /* I-cache instruction access */
    case 0x67: /* I-cache tag access */
    case 0x6e: /* I-cache predecode */
    case 0x6f: /* I-cache LRU etc. */
    case 0x76: /* E-cache tag */
    case 0x7e: /* E-cache tag */
        break;
    case 0x5b: /* D-MMU data pointer */
    case 0x54: /* I-MMU data in, WO */
    case 0x57: /* I-MMU demap, WO */
    case 0x5c: /* D-MMU data in, WO */
    case 0x5f: /* D-MMU demap, WO */
    case 0x77: /* Interrupt vector, WO */
    default:
1593
        cpu_unassigned_access(cs, addr, false, false, 1, size);
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
        ret = 0;
        break;
    }

    /* Convert from little endian */
    switch (asi) {
    case 0x0c: /* Nucleus Little Endian (LE) */
    case 0x18: /* As if user primary LE */
    case 0x19: /* As if user secondary LE */
    case 0x1c: /* Bypass LE */
    case 0x1d: /* Bypass, non-cacheable LE */
    case 0x88: /* Primary LE */
    case 0x89: /* Secondary LE */
        switch(size) {
        case 2:
            ret = bswap16(ret);
            break;
        case 4:
            ret = bswap32(ret);
            break;
        case 8:
            ret = bswap64(ret);
            break;
        default:
            break;
        }
    default:
        break;
    }

    /* Convert to signed number */
    if (sign) {
        switch (size) {
        case 1:
            ret = (int8_t) ret;
            break;
        case 2:
            ret = (int16_t) ret;
            break;
        case 4:
            ret = (int32_t) ret;
            break;
        default:
            break;
        }
    }
#ifdef DEBUG_ASI
    dump_asi("read ", last_addr, asi, size, ret);
#endif
    return ret;
}

1646 1647
void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
                   int asi, int size)
1648
{
1649 1650 1651
    SPARCCPU *cpu = sparc_env_get_cpu(env);
    CPUState *cs = CPU(cpu);

1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
#ifdef DEBUG_ASI
    dump_asi("write", addr, asi, size, val);
#endif

    asi &= 0xff;

    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
        || (cpu_has_hypervisor(env)
            && asi >= 0x30 && asi < 0x80
            && !(env->hpstate & HS_PRIV))) {
        helper_raise_exception(env, TT_PRIV_ACT);
    }

1665
    helper_check_align(env, addr, size - 1);
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
    addr = asi_address_mask(env, asi, addr);

    /* Convert to little endian */
    switch (asi) {
    case 0x0c: /* Nucleus Little Endian (LE) */
    case 0x18: /* As if user primary LE */
    case 0x19: /* As if user secondary LE */
    case 0x1c: /* Bypass LE */
    case 0x1d: /* Bypass, non-cacheable LE */
    case 0x88: /* Primary LE */
    case 0x89: /* Secondary LE */
        switch (size) {
        case 2:
            val = bswap16(val);
            break;
        case 4:
            val = bswap32(val);
            break;
        case 8:
            val = bswap64(val);
            break;
        default:
            break;
        }
    default:
        break;
    }

    switch (asi) {
    case 0x10: /* As if user primary */
    case 0x11: /* As if user secondary */
    case 0x18: /* As if user primary LE */
    case 0x19: /* As if user secondary LE */
    case 0x80: /* Primary */
    case 0x81: /* Secondary */
    case 0x88: /* Primary LE */
    case 0x89: /* Secondary LE */
    case 0xe2: /* UA2007 Primary block init */
    case 0xe3: /* UA2007 Secondary block init */
        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
            if (cpu_hypervisor_mode(env)) {
                switch (size) {
                case 1:
1709
                    cpu_stb_hypv(env, addr, val);
1710 1711
                    break;
                case 2:
1712
                    cpu_stw_hypv(env, addr, val);
1713 1714
                    break;
                case 4:
1715
                    cpu_stl_hypv(env, addr, val);
1716 1717 1718
                    break;
                case 8:
                default:
1719
                    cpu_stq_hypv(env, addr, val);
1720 1721 1722 1723 1724 1725 1726
                    break;
                }
            } else {
                /* secondary space access has lowest asi bit equal to 1 */
                if (asi & 1) {
                    switch (size) {
                    case 1:
1727
                        cpu_stb_kernel_secondary(env, addr, val);
1728 1729
                        break;
                    case 2:
1730
                        cpu_stw_kernel_secondary(env, addr, val);
1731 1732
                        break;
                    case 4:
1733
                        cpu_stl_kernel_secondary(env, addr, val);
1734 1735 1736
                        break;
                    case 8:
                    default:
1737
                        cpu_stq_kernel_secondary(env, addr, val);
1738 1739 1740 1741 1742
                        break;
                    }
                } else {
                    switch (size) {
                    case 1:
1743
                        cpu_stb_kernel(env, addr, val);
1744 1745
                        break;
                    case 2:
1746
                        cpu_stw_kernel(env, addr, val);
1747 1748
                        break;
                    case 4:
1749
                        cpu_stl_kernel(env, addr, val);
1750 1751 1752
                        break;
                    case 8:
                    default:
1753
                        cpu_stq_kernel(env, addr, val);
1754 1755 1756 1757 1758 1759 1760 1761 1762
                        break;
                    }
                }
            }
        } else {
            /* secondary space access has lowest asi bit equal to 1 */
            if (asi & 1) {
                switch (size) {
                case 1:
1763
                    cpu_stb_user_secondary(env, addr, val);
1764 1765
                    break;
                case 2:
1766
                    cpu_stw_user_secondary(env, addr, val);
1767 1768
                    break;
                case 4:
1769
                    cpu_stl_user_secondary(env, addr, val);
1770 1771 1772
                    break;
                case 8:
                default:
1773
                    cpu_stq_user_secondary(env, addr, val);
1774 1775 1776 1777 1778
                    break;
                }
            } else {
                switch (size) {
                case 1:
1779
                    cpu_stb_user(env, addr, val);
1780 1781
                    break;
                case 2:
1782
                    cpu_stw_user(env, addr, val);
1783 1784
                    break;
                case 4:
1785
                    cpu_stl_user(env, addr, val);
1786 1787 1788
                    break;
                case 8:
                default:
1789
                    cpu_stq_user(env, addr, val);
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
                    break;
                }
            }
        }
        break;
    case 0x14: /* Bypass */
    case 0x15: /* Bypass, non-cacheable */
    case 0x1c: /* Bypass LE */
    case 0x1d: /* Bypass, non-cacheable LE */
        {
            switch (size) {
            case 1:
1802
                stb_phys(cs->as, addr, val);
1803 1804
                break;
            case 2:
1805
                stw_phys(cs->as, addr, val);
1806 1807
                break;
            case 4:
1808
                stl_phys(cs->as, addr, val);
1809 1810 1811
                break;
            case 8:
            default:
1812
                stq_phys(cs->as, addr, val);
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
                break;
            }
        }
        return;
    case 0x24: /* Nucleus quad LDD 128 bit atomic */
    case 0x2c: /* Nucleus quad LDD 128 bit atomic LE
                  Only ldda allowed */
        helper_raise_exception(env, TT_ILL_INSN);
        return;
    case 0x04: /* Nucleus */
    case 0x0c: /* Nucleus Little Endian (LE) */
        {
            switch (size) {
            case 1:
1827
                cpu_stb_nucleus(env, addr, val);
1828 1829
                break;
            case 2:
1830
                cpu_stw_nucleus(env, addr, val);
1831 1832
                break;
            case 4:
1833
                cpu_stl_nucleus(env, addr, val);
1834 1835 1836
                break;
            default:
            case 8:
1837
                cpu_stq_nucleus(env, addr, val);
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
                break;
            }
            break;
        }

    case 0x4a: /* UPA config */
        /* XXX */
        return;
    case 0x45: /* LSU */
        {
            uint64_t oldreg;

            oldreg = env->lsu;
            env->lsu = val & (DMMU_E | IMMU_E);
            /* Mappings generated during D/I MMU disabled mode are
               invalid in normal mode */
            if (oldreg != env->lsu) {
                DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
                            oldreg, env->lsu);
#ifdef DEBUG_MMU
1858
                dump_mmu(stdout, fprintf, env);
1859
#endif
1860
                tlb_flush(CPU(cpu), 1);
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
            }
            return;
        }
    case 0x50: /* I-MMU regs */
        {
            int reg = (addr >> 3) & 0xf;
            uint64_t oldreg;

            oldreg = env->immuregs[reg];
            switch (reg) {
            case 0: /* RO */
                return;
            case 1: /* Not in I-MMU */
            case 2:
                return;
            case 3: /* SFSR */
                if ((val & 1) == 0) {
                    val = 0; /* Clear SFSR */
                }
                env->immu.sfsr = val;
                break;
            case 4: /* RO */
                return;
            case 5: /* TSB access */
                DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
                            PRIx64 "\n", env->immu.tsb, val);
                env->immu.tsb = val;
                break;
            case 6: /* Tag access */
                env->immu.tag_access = val;
                break;
            case 7:
            case 8:
                return;
            default:
                break;
            }

            if (oldreg != env->immuregs[reg]) {
                DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
                            PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
            }
#ifdef DEBUG_MMU
            dump_mmu(stdout, fprintf, env);
#endif
            return;
        }
    case 0x54: /* I-MMU data in */
        replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env);
        return;
    case 0x55: /* I-MMU data access */
        {
            /* TODO: auto demap */

            unsigned int i = (addr >> 3) & 0x3f;

            replace_tlb_entry(&env->itlb[i], env->immu.tag_access, val, env);

#ifdef DEBUG_MMU
            DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
            dump_mmu(stdout, fprintf, env);
#endif
            return;
        }
    case 0x57: /* I-MMU demap */
        demap_tlb(env->itlb, addr, "immu", env);
        return;
    case 0x58: /* D-MMU regs */
        {
            int reg = (addr >> 3) & 0xf;
            uint64_t oldreg;

            oldreg = env->dmmuregs[reg];
            switch (reg) {
            case 0: /* RO */
            case 4:
                return;
            case 3: /* SFSR */
                if ((val & 1) == 0) {
                    val = 0; /* Clear SFSR, Fault address */
                    env->dmmu.sfar = 0;
                }
                env->dmmu.sfsr = val;
                break;
            case 1: /* Primary context */
                env->dmmu.mmu_primary_context = val;
                /* can be optimized to only flush MMU_USER_IDX
                   and MMU_KERNEL_IDX entries */
1949
                tlb_flush(CPU(cpu), 1);
1950 1951 1952 1953 1954
                break;
            case 2: /* Secondary context */
                env->dmmu.mmu_secondary_context = val;
                /* can be optimized to only flush MMU_USER_SECONDARY_IDX
                   and MMU_KERNEL_SECONDARY_IDX entries */
1955
                tlb_flush(CPU(cpu), 1);
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
                break;
            case 5: /* TSB access */
                DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
                            PRIx64 "\n", env->dmmu.tsb, val);
                env->dmmu.tsb = val;
                break;
            case 6: /* Tag access */
                env->dmmu.tag_access = val;
                break;
            case 7: /* Virtual Watchpoint */
            case 8: /* Physical Watchpoint */
            default:
                env->dmmuregs[reg] = val;
                break;
            }

            if (oldreg != env->dmmuregs[reg]) {
                DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
                            PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
            }
#ifdef DEBUG_MMU
            dump_mmu(stdout, fprintf, env);
#endif
            return;
        }
    case 0x5c: /* D-MMU data in */
        replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env);
        return;
    case 0x5d: /* D-MMU data access */
        {
            unsigned int i = (addr >> 3) & 0x3f;

            replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, val, env);

#ifdef DEBUG_MMU
            DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
            dump_mmu(stdout, fprintf, env);
#endif
            return;
        }
    case 0x5f: /* D-MMU demap */
        demap_tlb(env->dtlb, addr, "dmmu", env);
        return;
    case 0x49: /* Interrupt data receive */
B
Blue Swirl 已提交
2000
        env->ivec_status = val & 0x20;
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
        return;
    case 0x46: /* D-cache data */
    case 0x47: /* D-cache tag access */
    case 0x4b: /* E-cache error enable */
    case 0x4c: /* E-cache asynchronous fault status */
    case 0x4d: /* E-cache asynchronous fault address */
    case 0x4e: /* E-cache tag data */
    case 0x66: /* I-cache instruction access */
    case 0x67: /* I-cache tag access */
    case 0x6e: /* I-cache predecode */
    case 0x6f: /* I-cache LRU etc. */
    case 0x76: /* E-cache tag */
    case 0x7e: /* E-cache tag */
        return;
    case 0x51: /* I-MMU 8k TSB pointer, RO */
    case 0x52: /* I-MMU 64k TSB pointer, RO */
    case 0x56: /* I-MMU tag read, RO */
    case 0x59: /* D-MMU 8k TSB pointer, RO */
    case 0x5a: /* D-MMU 64k TSB pointer, RO */
    case 0x5b: /* D-MMU data pointer, RO */
    case 0x5e: /* D-MMU tag read, RO */
    case 0x48: /* Interrupt dispatch, RO */
    case 0x7f: /* Incoming interrupt vector, RO */
    case 0x82: /* Primary no-fault, RO */
    case 0x83: /* Secondary no-fault, RO */
    case 0x8a: /* Primary no-fault LE, RO */
    case 0x8b: /* Secondary no-fault LE, RO */
    default:
2029
        cpu_unassigned_access(cs, addr, true, false, 1, size);
2030 2031 2032 2033 2034
        return;
    }
}
#endif /* CONFIG_USER_ONLY */

2035
void helper_ldda_asi(CPUSPARCState *env, target_ulong addr, int asi, int rd)
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
{
    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
        || (cpu_has_hypervisor(env)
            && asi >= 0x30 && asi < 0x80
            && !(env->hpstate & HS_PRIV))) {
        helper_raise_exception(env, TT_PRIV_ACT);
    }

    addr = asi_address_mask(env, asi, addr);

    switch (asi) {
#if !defined(CONFIG_USER_ONLY)
    case 0x24: /* Nucleus quad LDD 128 bit atomic */
    case 0x2c: /* Nucleus quad LDD 128 bit atomic LE */
2050
        helper_check_align(env, addr, 0xf);
2051
        if (rd == 0) {
2052
            env->gregs[1] = cpu_ldq_nucleus(env, addr + 8);
2053 2054 2055 2056
            if (asi == 0x2c) {
                bswap64s(&env->gregs[1]);
            }
        } else if (rd < 8) {
2057 2058
            env->gregs[rd] = cpu_ldq_nucleus(env, addr);
            env->gregs[rd + 1] = cpu_ldq_nucleus(env, addr + 8);
2059 2060 2061 2062 2063
            if (asi == 0x2c) {
                bswap64s(&env->gregs[rd]);
                bswap64s(&env->gregs[rd + 1]);
            }
        } else {
2064 2065
            env->regwptr[rd] = cpu_ldq_nucleus(env, addr);
            env->regwptr[rd + 1] = cpu_ldq_nucleus(env, addr + 8);
2066 2067 2068 2069 2070 2071 2072 2073
            if (asi == 0x2c) {
                bswap64s(&env->regwptr[rd]);
                bswap64s(&env->regwptr[rd + 1]);
            }
        }
        break;
#endif
    default:
2074
        helper_check_align(env, addr, 0x3);
2075
        if (rd == 0) {
2076
            env->gregs[1] = helper_ld_asi(env, addr + 4, asi, 4, 0);
2077
        } else if (rd < 8) {
2078 2079
            env->gregs[rd] = helper_ld_asi(env, addr, asi, 4, 0);
            env->gregs[rd + 1] = helper_ld_asi(env, addr + 4, asi, 4, 0);
2080
        } else {
2081 2082
            env->regwptr[rd] = helper_ld_asi(env, addr, asi, 4, 0);
            env->regwptr[rd + 1] = helper_ld_asi(env, addr + 4, asi, 4, 0);
2083 2084 2085 2086 2087
        }
        break;
    }
}

2088 2089
void helper_ldf_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
                    int rd)
2090 2091
{
    unsigned int i;
2092
    target_ulong val;
2093

2094
    helper_check_align(env, addr, 3);
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
    addr = asi_address_mask(env, asi, addr);

    switch (asi) {
    case 0xf0: /* UA2007/JPS1 Block load primary */
    case 0xf1: /* UA2007/JPS1 Block load secondary */
    case 0xf8: /* UA2007/JPS1 Block load primary LE */
    case 0xf9: /* UA2007/JPS1 Block load secondary LE */
        if (rd & 7) {
            helper_raise_exception(env, TT_ILL_INSN);
            return;
        }
2106
        helper_check_align(env, addr, 0x3f);
2107
        for (i = 0; i < 8; i++, rd += 2, addr += 8) {
2108
            env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi & 0x8f, 8, 0);
2109 2110
        }
        return;
2111

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
    case 0x16: /* UA2007 Block load primary, user privilege */
    case 0x17: /* UA2007 Block load secondary, user privilege */
    case 0x1e: /* UA2007 Block load primary LE, user privilege */
    case 0x1f: /* UA2007 Block load secondary LE, user privilege */
    case 0x70: /* JPS1 Block load primary, user privilege */
    case 0x71: /* JPS1 Block load secondary, user privilege */
    case 0x78: /* JPS1 Block load primary LE, user privilege */
    case 0x79: /* JPS1 Block load secondary LE, user privilege */
        if (rd & 7) {
            helper_raise_exception(env, TT_ILL_INSN);
            return;
        }
2124
        helper_check_align(env, addr, 0x3f);
2125
        for (i = 0; i < 8; i++, rd += 2, addr += 8) {
2126
            env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi & 0x19, 8, 0);
2127 2128
        }
        return;
2129

2130 2131 2132 2133 2134 2135 2136
    default:
        break;
    }

    switch (size) {
    default:
    case 4:
2137
        val = helper_ld_asi(env, addr, asi, size, 0);
2138
        if (rd & 1) {
2139
            env->fpr[rd / 2].l.lower = val;
2140
        } else {
2141
            env->fpr[rd / 2].l.upper = val;
2142
        }
2143 2144
        break;
    case 8:
2145
        env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi, size, 0);
2146 2147
        break;
    case 16:
2148 2149
        env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi, 8, 0);
        env->fpr[rd / 2 + 1].ll = helper_ld_asi(env, addr + 8, asi, 8, 0);
2150 2151 2152 2153
        break;
    }
}

2154 2155
void helper_stf_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
                    int rd)
2156 2157
{
    unsigned int i;
2158
    target_ulong val;
2159

2160
    helper_check_align(env, addr, 3);
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
    addr = asi_address_mask(env, asi, addr);

    switch (asi) {
    case 0xe0: /* UA2007/JPS1 Block commit store primary (cache flush) */
    case 0xe1: /* UA2007/JPS1 Block commit store secondary (cache flush) */
    case 0xf0: /* UA2007/JPS1 Block store primary */
    case 0xf1: /* UA2007/JPS1 Block store secondary */
    case 0xf8: /* UA2007/JPS1 Block store primary LE */
    case 0xf9: /* UA2007/JPS1 Block store secondary LE */
        if (rd & 7) {
            helper_raise_exception(env, TT_ILL_INSN);
            return;
        }
2174
        helper_check_align(env, addr, 0x3f);
2175
        for (i = 0; i < 8; i++, rd += 2, addr += 8) {
2176
            helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi & 0x8f, 8);
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
        }

        return;
    case 0x16: /* UA2007 Block load primary, user privilege */
    case 0x17: /* UA2007 Block load secondary, user privilege */
    case 0x1e: /* UA2007 Block load primary LE, user privilege */
    case 0x1f: /* UA2007 Block load secondary LE, user privilege */
    case 0x70: /* JPS1 Block store primary, user privilege */
    case 0x71: /* JPS1 Block store secondary, user privilege */
    case 0x78: /* JPS1 Block load primary LE, user privilege */
    case 0x79: /* JPS1 Block load secondary LE, user privilege */
        if (rd & 7) {
            helper_raise_exception(env, TT_ILL_INSN);
            return;
        }
2192
        helper_check_align(env, addr, 0x3f);
2193
        for (i = 0; i < 8; i++, rd += 2, addr += 8) {
2194
            helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi & 0x19, 8);
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
        }

        return;
    default:
        break;
    }

    switch (size) {
    default:
    case 4:
2205
        if (rd & 1) {
2206
            val = env->fpr[rd / 2].l.lower;
2207
        } else {
2208
            val = env->fpr[rd / 2].l.upper;
2209
        }
2210
        helper_st_asi(env, addr, val, asi, size);
2211 2212
        break;
    case 8:
2213
        helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi, size);
2214 2215
        break;
    case 16:
2216 2217
        helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi, 8);
        helper_st_asi(env, addr + 8, env->fpr[rd / 2 + 1].ll, asi, 8);
2218 2219 2220 2221
        break;
    }
}

2222 2223 2224
target_ulong helper_casx_asi(CPUSPARCState *env, target_ulong addr,
                             target_ulong val1, target_ulong val2,
                             uint32_t asi)
2225 2226 2227
{
    target_ulong ret;

2228
    ret = helper_ld_asi(env, addr, asi, 8, 0);
2229
    if (val2 == ret) {
2230
        helper_st_asi(env, addr, val1, asi, 8);
2231 2232 2233
    }
    return ret;
}
2234
#endif /* TARGET_SPARC64 */
2235

2236 2237 2238
#if !defined(CONFIG_USER_ONLY) || defined(TARGET_SPARC64)
target_ulong helper_cas_asi(CPUSPARCState *env, target_ulong addr,
                            target_ulong val1, target_ulong val2, uint32_t asi)
2239 2240 2241
{
    target_ulong ret;

2242 2243 2244
    val2 &= 0xffffffffUL;
    ret = helper_ld_asi(env, addr, asi, 4, 0);
    ret &= 0xffffffffUL;
2245
    if (val2 == ret) {
2246
        helper_st_asi(env, addr, val1 & 0xffffffffUL, asi, 4);
2247 2248 2249
    }
    return ret;
}
2250
#endif /* !defined(CONFIG_USER_ONLY) || defined(TARGET_SPARC64) */
2251

2252
void helper_ldqf(CPUSPARCState *env, target_ulong addr, int mem_idx)
2253 2254 2255 2256
{
    /* XXX add 128 bit load */
    CPU_QuadU u;

2257
    helper_check_align(env, addr, 7);
2258 2259 2260
#if !defined(CONFIG_USER_ONLY)
    switch (mem_idx) {
    case MMU_USER_IDX:
2261 2262
        u.ll.upper = cpu_ldq_user(env, addr);
        u.ll.lower = cpu_ldq_user(env, addr + 8);
2263 2264 2265
        QT0 = u.q;
        break;
    case MMU_KERNEL_IDX:
2266 2267
        u.ll.upper = cpu_ldq_kernel(env, addr);
        u.ll.lower = cpu_ldq_kernel(env, addr + 8);
2268 2269 2270 2271
        QT0 = u.q;
        break;
#ifdef TARGET_SPARC64
    case MMU_HYPV_IDX:
2272 2273
        u.ll.upper = cpu_ldq_hypv(env, addr);
        u.ll.lower = cpu_ldq_hypv(env, addr + 8);
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
        QT0 = u.q;
        break;
#endif
    default:
        DPRINTF_MMU("helper_ldqf: need to check MMU idx %d\n", mem_idx);
        break;
    }
#else
    u.ll.upper = ldq_raw(address_mask(env, addr));
    u.ll.lower = ldq_raw(address_mask(env, addr + 8));
    QT0 = u.q;
#endif
}

2288
void helper_stqf(CPUSPARCState *env, target_ulong addr, int mem_idx)
2289 2290 2291 2292
{
    /* XXX add 128 bit store */
    CPU_QuadU u;

2293
    helper_check_align(env, addr, 7);
2294 2295 2296 2297
#if !defined(CONFIG_USER_ONLY)
    switch (mem_idx) {
    case MMU_USER_IDX:
        u.q = QT0;
2298 2299
        cpu_stq_user(env, addr, u.ll.upper);
        cpu_stq_user(env, addr + 8, u.ll.lower);
2300 2301 2302
        break;
    case MMU_KERNEL_IDX:
        u.q = QT0;
2303 2304
        cpu_stq_kernel(env, addr, u.ll.upper);
        cpu_stq_kernel(env, addr + 8, u.ll.lower);
2305 2306 2307 2308
        break;
#ifdef TARGET_SPARC64
    case MMU_HYPV_IDX:
        u.q = QT0;
2309 2310
        cpu_stq_hypv(env, addr, u.ll.upper);
        cpu_stq_hypv(env, addr + 8, u.ll.lower);
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
        break;
#endif
    default:
        DPRINTF_MMU("helper_stqf: need to check MMU idx %d\n", mem_idx);
        break;
    }
#else
    u.q = QT0;
    stq_raw(address_mask(env, addr), u.ll.upper);
    stq_raw(address_mask(env, addr + 8), u.ll.lower);
#endif
}

#if !defined(CONFIG_USER_ONLY)
2325
#ifndef TARGET_SPARC64
2326 2327 2328
void sparc_cpu_unassigned_access(CPUState *cs, hwaddr addr,
                                 bool is_write, bool is_exec, int is_asi,
                                 unsigned size)
2329
{
2330 2331
    SPARCCPU *cpu = SPARC_CPU(cs);
    CPUSPARCState *env = &cpu->env;
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
    int fault_type;

#ifdef DEBUG_UNASSIGNED
    if (is_asi) {
        printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
               " asi 0x%02x from " TARGET_FMT_lx "\n",
               is_exec ? "exec" : is_write ? "write" : "read", size,
               size == 1 ? "" : "s", addr, is_asi, env->pc);
    } else {
        printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
               " from " TARGET_FMT_lx "\n",
               is_exec ? "exec" : is_write ? "write" : "read", size,
               size == 1 ? "" : "s", addr, env->pc);
    }
#endif
    /* Don't overwrite translation and access faults */
    fault_type = (env->mmuregs[3] & 0x1c) >> 2;
    if ((fault_type > 4) || (fault_type == 0)) {
        env->mmuregs[3] = 0; /* Fault status register */
        if (is_asi) {
            env->mmuregs[3] |= 1 << 16;
        }
        if (env->psrs) {
            env->mmuregs[3] |= 1 << 5;
        }
        if (is_exec) {
            env->mmuregs[3] |= 1 << 6;
        }
        if (is_write) {
            env->mmuregs[3] |= 1 << 7;
        }
        env->mmuregs[3] |= (5 << 2) | 2;
        /* SuperSPARC will never place instruction fault addresses in the FAR */
        if (!is_exec) {
            env->mmuregs[4] = addr; /* Fault address register */
        }
    }
    /* overflow (same type fault was not read before another fault) */
    if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
        env->mmuregs[3] |= 1;
    }

    if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
        if (is_exec) {
            helper_raise_exception(env, TT_CODE_ACCESS);
        } else {
            helper_raise_exception(env, TT_DATA_ACCESS);
        }
    }

    /* flush neverland mappings created during no-fault mode,
       so the sequential MMU faults report proper fault types */
    if (env->mmuregs[0] & MMU_NF) {
2385
        tlb_flush(cs, 1);
2386 2387 2388
    }
}
#else
2389 2390 2391
void sparc_cpu_unassigned_access(CPUState *cs, hwaddr addr,
                                 bool is_write, bool is_exec, int is_asi,
                                 unsigned size)
2392
{
2393 2394 2395
    SPARCCPU *cpu = SPARC_CPU(cs);
    CPUSPARCState *env = &cpu->env;

2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
#ifdef DEBUG_UNASSIGNED
    printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
           "\n", addr, env->pc);
#endif

    if (is_exec) {
        helper_raise_exception(env, TT_CODE_ACCESS);
    } else {
        helper_raise_exception(env, TT_DATA_ACCESS);
    }
}
#endif
#endif
2409

2410
#if !defined(CONFIG_USER_ONLY)
2411 2412 2413
void QEMU_NORETURN sparc_cpu_do_unaligned_access(CPUState *cs,
                                                 vaddr addr, int is_write,
                                                 int is_user, uintptr_t retaddr)
2414
{
2415 2416 2417
    SPARCCPU *cpu = SPARC_CPU(cs);
    CPUSPARCState *env = &cpu->env;

2418 2419 2420 2421
#ifdef DEBUG_UNALIGNED
    printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
           "\n", addr, env->pc);
#endif
B
Blue Swirl 已提交
2422
    if (retaddr) {
2423
        cpu_restore_state(CPU(cpu), retaddr);
B
Blue Swirl 已提交
2424
    }
2425 2426 2427 2428 2429 2430 2431
    helper_raise_exception(env, TT_UNALIGNED);
}

/* try to fill the TLB and return an exception if error. If retaddr is
   NULL, it means that the function was called in C code (i.e. not
   from generated code or from helper.c) */
/* XXX: fix it to restore all registers */
2432
void tlb_fill(CPUState *cs, target_ulong addr, int is_write, int mmu_idx,
2433
              uintptr_t retaddr)
2434 2435 2436
{
    int ret;

2437
    ret = sparc_cpu_handle_mmu_fault(cs, addr, is_write, mmu_idx);
2438
    if (ret) {
B
Blue Swirl 已提交
2439
        if (retaddr) {
2440
            cpu_restore_state(cs, retaddr);
B
Blue Swirl 已提交
2441
        }
2442
        cpu_loop_exit(cs);
2443 2444 2445
    }
}
#endif