op_helper.c 27.4 KB
Newer Older
M
Max Filippov 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the Open Source and Linux Lab nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "cpu.h"
29
#include "helper.h"
30
#include "qemu/host-utils.h"
M
Max Filippov 已提交
31

32 33
static void do_unaligned_access(CPUXtensaState *env,
        target_ulong addr, int is_write, int is_user, uintptr_t retaddr);
34 35

#define ALIGNED_ONLY
M
Max Filippov 已提交
36 37 38
#define MMUSUFFIX _mmu

#define SHIFT 0
39
#include "exec/softmmu_template.h"
M
Max Filippov 已提交
40 41

#define SHIFT 1
42
#include "exec/softmmu_template.h"
M
Max Filippov 已提交
43 44

#define SHIFT 2
45
#include "exec/softmmu_template.h"
M
Max Filippov 已提交
46 47

#define SHIFT 3
48
#include "exec/softmmu_template.h"
M
Max Filippov 已提交
49

50 51
static void do_unaligned_access(CPUXtensaState *env,
        target_ulong addr, int is_write, int is_user, uintptr_t retaddr)
52 53 54
{
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_UNALIGNED_EXCEPTION) &&
            !xtensa_option_enabled(env->config, XTENSA_OPTION_HW_ALIGNMENT)) {
B
Blue Swirl 已提交
55
        cpu_restore_state(env, retaddr);
56
        HELPER(exception_cause_vaddr)(env,
57 58 59 60
                env->pc, LOAD_STORE_ALIGNMENT_CAUSE, addr);
    }
}

61 62
void tlb_fill(CPUXtensaState *env,
        target_ulong vaddr, int is_write, int mmu_idx, uintptr_t retaddr)
M
Max Filippov 已提交
63
{
64 65 66 67 68
    uint32_t paddr;
    uint32_t page_size;
    unsigned access;
    int ret = xtensa_get_physical_addr(env, true, vaddr, is_write, mmu_idx,
            &paddr, &page_size, &access);
69

70 71
    qemu_log("%s(%08x, %d, %d) -> %08x, ret = %d\n", __func__,
            vaddr, is_write, mmu_idx, paddr, ret);
72

73 74 75 76 77 78
    if (ret == 0) {
        tlb_set_page(env,
                vaddr & TARGET_PAGE_MASK,
                paddr & TARGET_PAGE_MASK,
                access, mmu_idx, page_size);
    } else {
B
Blue Swirl 已提交
79
        cpu_restore_state(env, retaddr);
80
        HELPER(exception_cause_vaddr)(env, env->pc, ret, vaddr);
81
    }
M
Max Filippov 已提交
82
}
83

84 85 86 87 88
static void tb_invalidate_virtual_addr(CPUXtensaState *env, uint32_t vaddr)
{
    uint32_t paddr;
    uint32_t page_size;
    unsigned access;
89
    int ret = xtensa_get_physical_addr(env, false, vaddr, 2, 0,
90 91 92 93 94 95
            &paddr, &page_size, &access);
    if (ret == 0) {
        tb_invalidate_phys_addr(paddr);
    }
}

96
void HELPER(exception)(CPUXtensaState *env, uint32_t excp)
97 98
{
    env->exception_index = excp;
99 100 101
    if (excp == EXCP_DEBUG) {
        env->exception_taken = 0;
    }
102 103
    cpu_loop_exit(env);
}
104

105
void HELPER(exception_cause)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
{
    uint32_t vector;

    env->pc = pc;
    if (env->sregs[PS] & PS_EXCM) {
        if (env->config->ndepc) {
            env->sregs[DEPC] = pc;
        } else {
            env->sregs[EPC1] = pc;
        }
        vector = EXC_DOUBLE;
    } else {
        env->sregs[EPC1] = pc;
        vector = (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
    }

    env->sregs[EXCCAUSE] = cause;
    env->sregs[PS] |= PS_EXCM;

125
    HELPER(exception)(env, vector);
126 127
}

128 129
void HELPER(exception_cause_vaddr)(CPUXtensaState *env,
        uint32_t pc, uint32_t cause, uint32_t vaddr)
130 131
{
    env->sregs[EXCVADDR] = vaddr;
132
    HELPER(exception_cause)(env, pc, cause);
133 134
}

135
void debug_exception_env(CPUXtensaState *env, uint32_t cause)
136
{
137 138
    if (xtensa_get_cintlevel(env) < env->config->debug_level) {
        HELPER(debug_exception)(env, env->pc, cause);
139 140 141
    }
}

142
void HELPER(debug_exception)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
143 144 145 146 147 148 149 150 151
{
    unsigned level = env->config->debug_level;

    env->pc = pc;
    env->sregs[DEBUGCAUSE] = cause;
    env->sregs[EPC1 + level - 1] = pc;
    env->sregs[EPS2 + level - 2] = env->sregs[PS];
    env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) | PS_EXCM |
        (level << PS_INTLEVEL_SHIFT);
152
    HELPER(exception)(env, EXC_DEBUG);
153 154
}

155 156 157 158 159 160 161 162 163 164 165 166
uint32_t HELPER(nsa)(uint32_t v)
{
    if (v & 0x80000000) {
        v = ~v;
    }
    return v ? clz32(v) - 1 : 31;
}

uint32_t HELPER(nsau)(uint32_t v)
{
    return v ? clz32(v) : 32;
}
167

168
static void copy_window_from_phys(CPUXtensaState *env,
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
        uint32_t window, uint32_t phys, uint32_t n)
{
    assert(phys < env->config->nareg);
    if (phys + n <= env->config->nareg) {
        memcpy(env->regs + window, env->phys_regs + phys,
                n * sizeof(uint32_t));
    } else {
        uint32_t n1 = env->config->nareg - phys;
        memcpy(env->regs + window, env->phys_regs + phys,
                n1 * sizeof(uint32_t));
        memcpy(env->regs + window + n1, env->phys_regs,
                (n - n1) * sizeof(uint32_t));
    }
}

184
static void copy_phys_from_window(CPUXtensaState *env,
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
        uint32_t phys, uint32_t window, uint32_t n)
{
    assert(phys < env->config->nareg);
    if (phys + n <= env->config->nareg) {
        memcpy(env->phys_regs + phys, env->regs + window,
                n * sizeof(uint32_t));
    } else {
        uint32_t n1 = env->config->nareg - phys;
        memcpy(env->phys_regs + phys, env->regs + window,
                n1 * sizeof(uint32_t));
        memcpy(env->phys_regs, env->regs + window + n1,
                (n - n1) * sizeof(uint32_t));
    }
}


201
static inline unsigned windowbase_bound(unsigned a, const CPUXtensaState *env)
202 203 204 205
{
    return a & (env->config->nareg / 4 - 1);
}

206
static inline unsigned windowstart_bit(unsigned a, const CPUXtensaState *env)
207 208 209 210
{
    return 1 << windowbase_bound(a, env);
}

211
void xtensa_sync_window_from_phys(CPUXtensaState *env)
212 213 214 215
{
    copy_window_from_phys(env, 0, env->sregs[WINDOW_BASE] * 4, 16);
}

216
void xtensa_sync_phys_from_window(CPUXtensaState *env)
217 218 219 220
{
    copy_phys_from_window(env, env->sregs[WINDOW_BASE] * 4, 0, 16);
}

221
static void rotate_window_abs(CPUXtensaState *env, uint32_t position)
222 223 224 225 226 227
{
    xtensa_sync_phys_from_window(env);
    env->sregs[WINDOW_BASE] = windowbase_bound(position, env);
    xtensa_sync_window_from_phys(env);
}

228
static void rotate_window(CPUXtensaState *env, uint32_t delta)
229
{
230
    rotate_window_abs(env, env->sregs[WINDOW_BASE] + delta);
231 232
}

233
void HELPER(wsr_windowbase)(CPUXtensaState *env, uint32_t v)
234
{
235
    rotate_window_abs(env, v);
236 237
}

238
void HELPER(entry)(CPUXtensaState *env, uint32_t pc, uint32_t s, uint32_t imm)
239 240 241 242 243
{
    int callinc = (env->sregs[PS] & PS_CALLINC) >> PS_CALLINC_SHIFT;
    if (s > 3 || ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
        qemu_log("Illegal entry instruction(pc = %08x), PS = %08x\n",
                pc, env->sregs[PS]);
244
        HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
245 246
    } else {
        env->regs[(callinc << 2) | (s & 3)] = env->regs[s] - (imm << 3);
247
        rotate_window(env, callinc);
248 249 250 251 252
        env->sregs[WINDOW_START] |=
            windowstart_bit(env->sregs[WINDOW_BASE], env);
    }
}

253
void HELPER(window_check)(CPUXtensaState *env, uint32_t pc, uint32_t w)
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
{
    uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
    uint32_t windowstart = env->sregs[WINDOW_START];
    uint32_t m, n;

    if ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) {
        return;
    }

    for (n = 1; ; ++n) {
        if (n > w) {
            return;
        }
        if (windowstart & windowstart_bit(windowbase + n, env)) {
            break;
        }
    }

    m = windowbase_bound(windowbase + n, env);
273
    rotate_window(env, n);
274 275 276 277 278
    env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
        (windowbase << PS_OWB_SHIFT) | PS_EXCM;
    env->sregs[EPC1] = env->pc = pc;

    if (windowstart & windowstart_bit(m + 1, env)) {
279
        HELPER(exception)(env, EXC_WINDOW_OVERFLOW4);
280
    } else if (windowstart & windowstart_bit(m + 2, env)) {
281
        HELPER(exception)(env, EXC_WINDOW_OVERFLOW8);
282
    } else {
283
        HELPER(exception)(env, EXC_WINDOW_OVERFLOW12);
284 285 286
    }
}

287
uint32_t HELPER(retw)(CPUXtensaState *env, uint32_t pc)
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
{
    int n = (env->regs[0] >> 30) & 0x3;
    int m = 0;
    uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
    uint32_t windowstart = env->sregs[WINDOW_START];
    uint32_t ret_pc = 0;

    if (windowstart & windowstart_bit(windowbase - 1, env)) {
        m = 1;
    } else if (windowstart & windowstart_bit(windowbase - 2, env)) {
        m = 2;
    } else if (windowstart & windowstart_bit(windowbase - 3, env)) {
        m = 3;
    }

    if (n == 0 || (m != 0 && m != n) ||
            ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
        qemu_log("Illegal retw instruction(pc = %08x), "
                "PS = %08x, m = %d, n = %d\n",
                pc, env->sregs[PS], m, n);
308
        HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
309 310 311 312 313
    } else {
        int owb = windowbase;

        ret_pc = (pc & 0xc0000000) | (env->regs[0] & 0x3fffffff);

314
        rotate_window(env, -n);
315 316 317 318 319 320 321 322 323
        if (windowstart & windowstart_bit(env->sregs[WINDOW_BASE], env)) {
            env->sregs[WINDOW_START] &= ~windowstart_bit(owb, env);
        } else {
            /* window underflow */
            env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
                (windowbase << PS_OWB_SHIFT) | PS_EXCM;
            env->sregs[EPC1] = env->pc = pc;

            if (n == 1) {
324
                HELPER(exception)(env, EXC_WINDOW_UNDERFLOW4);
325
            } else if (n == 2) {
326
                HELPER(exception)(env, EXC_WINDOW_UNDERFLOW8);
327
            } else if (n == 3) {
328
                HELPER(exception)(env, EXC_WINDOW_UNDERFLOW12);
329 330 331 332 333 334
            }
        }
    }
    return ret_pc;
}

335
void HELPER(rotw)(CPUXtensaState *env, uint32_t imm4)
336
{
337
    rotate_window(env, imm4);
338 339
}

340
void HELPER(restore_owb)(CPUXtensaState *env)
341
{
342
    rotate_window_abs(env, (env->sregs[PS] & PS_OWB) >> PS_OWB_SHIFT);
343 344
}

345
void HELPER(movsp)(CPUXtensaState *env, uint32_t pc)
346 347 348 349 350
{
    if ((env->sregs[WINDOW_START] &
            (windowstart_bit(env->sregs[WINDOW_BASE] - 3, env) |
             windowstart_bit(env->sregs[WINDOW_BASE] - 2, env) |
             windowstart_bit(env->sregs[WINDOW_BASE] - 1, env))) == 0) {
351
        HELPER(exception_cause)(env, pc, ALLOCA_CAUSE);
352 353 354
    }
}

355
void HELPER(wsr_lbeg)(CPUXtensaState *env, uint32_t v)
356 357
{
    if (env->sregs[LBEG] != v) {
358
        tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
359 360 361 362
        env->sregs[LBEG] = v;
    }
}

363
void HELPER(wsr_lend)(CPUXtensaState *env, uint32_t v)
364 365
{
    if (env->sregs[LEND] != v) {
366
        tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
367
        env->sregs[LEND] = v;
368
        tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
369 370 371
    }
}

372
void HELPER(dump_state)(CPUXtensaState *env)
373
{
374 375 376
    XtensaCPU *cpu = xtensa_env_get_cpu(env);

    cpu_dump_state(CPU(cpu), stderr, fprintf, 0);
377
}
378

379
void HELPER(waiti)(CPUXtensaState *env, uint32_t pc, uint32_t intlevel)
380
{
381 382
    CPUState *cpu;

383 384 385 386 387 388 389 390 391
    env->pc = pc;
    env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) |
        (intlevel << PS_INTLEVEL_SHIFT);
    check_interrupts(env);
    if (env->pending_irq_level) {
        cpu_loop_exit(env);
        return;
    }

392
    cpu = CPU(xtensa_env_get_cpu(env));
393
    env->halt_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
394
    cpu->halted = 1;
395 396 397
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_TIMER_INTERRUPT)) {
        xtensa_rearm_ccompare_timer(env);
    }
398
    HELPER(exception)(env, EXCP_HLT);
399 400
}

401
void HELPER(timer_irq)(CPUXtensaState *env, uint32_t id, uint32_t active)
402 403 404 405
{
    xtensa_timer_irq(env, id, active);
}

406
void HELPER(advance_ccount)(CPUXtensaState *env, uint32_t d)
407 408 409 410
{
    xtensa_advance_ccount(env, d);
}

411
void HELPER(check_interrupts)(CPUXtensaState *env)
412 413 414
{
    check_interrupts(env);
}
415

M
Max Filippov 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
/*!
 * Check vaddr accessibility/cache attributes and raise an exception if
 * specified by the ATOMCTL SR.
 *
 * Note: local memory exclusion is not implemented
 */
void HELPER(check_atomctl)(CPUXtensaState *env, uint32_t pc, uint32_t vaddr)
{
    uint32_t paddr, page_size, access;
    uint32_t atomctl = env->sregs[ATOMCTL];
    int rc = xtensa_get_physical_addr(env, true, vaddr, 1,
            xtensa_get_cring(env), &paddr, &page_size, &access);

    /*
     * s32c1i never causes LOAD_PROHIBITED_CAUSE exceptions,
     * see opcode description in the ISA
     */
    if (rc == 0 &&
            (access & (PAGE_READ | PAGE_WRITE)) != (PAGE_READ | PAGE_WRITE)) {
        rc = STORE_PROHIBITED_CAUSE;
    }

    if (rc) {
        HELPER(exception_cause_vaddr)(env, pc, rc, vaddr);
    }

    /*
     * When data cache is not configured use ATOMCTL bypass field.
     * See ISA, 4.3.12.4 The Atomic Operation Control Register (ATOMCTL)
     * under the Conditional Store Option.
     */
    if (!xtensa_option_enabled(env->config, XTENSA_OPTION_DCACHE)) {
        access = PAGE_CACHE_BYPASS;
    }

    switch (access & PAGE_CACHE_MASK) {
    case PAGE_CACHE_WB:
        atomctl >>= 2;
454
        /* fall through */
M
Max Filippov 已提交
455 456
    case PAGE_CACHE_WT:
        atomctl >>= 2;
457
        /* fall through */
M
Max Filippov 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
    case PAGE_CACHE_BYPASS:
        if ((atomctl & 0x3) == 0) {
            HELPER(exception_cause_vaddr)(env, pc,
                    LOAD_STORE_ERROR_CAUSE, vaddr);
        }
        break;

    case PAGE_CACHE_ISOLATE:
        HELPER(exception_cause_vaddr)(env, pc,
                LOAD_STORE_ERROR_CAUSE, vaddr);
        break;

    default:
        break;
    }
}

475
void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
476 477 478 479 480 481 482 483
{
    v = (v & 0xffffff00) | 0x1;
    if (v != env->sregs[RASID]) {
        env->sregs[RASID] = v;
        tlb_flush(env, 1);
    }
}

484
static uint32_t get_page_size(const CPUXtensaState *env, bool dtlb, uint32_t way)
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
{
    uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];

    switch (way) {
    case 4:
        return (tlbcfg >> 16) & 0x3;

    case 5:
        return (tlbcfg >> 20) & 0x1;

    case 6:
        return (tlbcfg >> 24) & 0x1;

    default:
        return 0;
    }
}

/*!
 * Get bit mask for the virtual address bits translated by the TLB way
 */
506
uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
{
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        bool varway56 = dtlb ?
            env->config->dtlb.varway56 :
            env->config->itlb.varway56;

        switch (way) {
        case 4:
            return 0xfff00000 << get_page_size(env, dtlb, way) * 2;

        case 5:
            if (varway56) {
                return 0xf8000000 << get_page_size(env, dtlb, way);
            } else {
                return 0xf8000000;
            }

        case 6:
            if (varway56) {
                return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
            } else {
                return 0xf0000000;
            }

        default:
            return 0xfffff000;
        }
    } else {
        return REGION_PAGE_MASK;
    }
}

/*!
 * Get bit mask for the 'VPN without index' field.
 * See ISA, 4.6.5.6, data format for RxTLB0
 */
543
static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
{
    if (way < 4) {
        bool is32 = (dtlb ?
                env->config->dtlb.nrefillentries :
                env->config->itlb.nrefillentries) == 32;
        return is32 ? 0xffff8000 : 0xffffc000;
    } else if (way == 4) {
        return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
    } else if (way <= 6) {
        uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
        bool varway56 = dtlb ?
            env->config->dtlb.varway56 :
            env->config->itlb.varway56;

        if (varway56) {
            return mask << (way == 5 ? 2 : 3);
        } else {
            return mask << 1;
        }
    } else {
        return 0xfffff000;
    }
}

/*!
 * Split virtual address into VPN (with index) and entry index
 * for the given TLB way
 */
572
void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v, bool dtlb,
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
        uint32_t *vpn, uint32_t wi, uint32_t *ei)
{
    bool varway56 = dtlb ?
        env->config->dtlb.varway56 :
        env->config->itlb.varway56;

    if (!dtlb) {
        wi &= 7;
    }

    if (wi < 4) {
        bool is32 = (dtlb ?
                env->config->dtlb.nrefillentries :
                env->config->itlb.nrefillentries) == 32;
        *ei = (v >> 12) & (is32 ? 0x7 : 0x3);
    } else {
        switch (wi) {
        case 4:
            {
                uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
                *ei = (v >> eibase) & 0x3;
            }
            break;

        case 5:
            if (varway56) {
                uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
                *ei = (v >> eibase) & 0x3;
            } else {
                *ei = (v >> 27) & 0x1;
            }
            break;

        case 6:
            if (varway56) {
                uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
                *ei = (v >> eibase) & 0x7;
            } else {
                *ei = (v >> 28) & 0x1;
            }
            break;

        default:
            *ei = 0;
            break;
        }
    }
    *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
}

/*!
 * Split TLB address into TLB way, entry index and VPN (with index).
 * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
 */
627
static void split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
628 629 630 631 632 633 634 635 636 637 638 639
        uint32_t *vpn, uint32_t *wi, uint32_t *ei)
{
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        *wi = v & (dtlb ? 0xf : 0x7);
        split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
    } else {
        *vpn = v & REGION_PAGE_MASK;
        *wi = 0;
        *ei = (v >> 29) & 0x7;
    }
}

640 641
static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
        uint32_t v, bool dtlb, uint32_t *pwi)
642 643 644 645 646
{
    uint32_t vpn;
    uint32_t wi;
    uint32_t ei;

647
    split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
648 649 650 651 652 653
    if (pwi) {
        *pwi = wi;
    }
    return xtensa_tlb_get_entry(env, dtlb, wi, ei);
}

654
uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
655 656 657
{
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        uint32_t wi;
658
        const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
659 660 661 662 663 664
        return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
    } else {
        return v & REGION_PAGE_MASK;
    }
}

665
uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
666
{
667
    const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
668 669 670
    return entry->paddr | entry->attr;
}

671
void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
672 673 674
{
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        uint32_t wi;
675
        xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
676 677 678 679 680 681 682
        if (entry->variable && entry->asid) {
            tlb_flush_page(env, entry->vaddr);
            entry->asid = 0;
        }
    }
}

683
uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
{
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        uint32_t wi;
        uint32_t ei;
        uint8_t ring;
        int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);

        switch (res) {
        case 0:
            if (ring >= xtensa_get_ring(env)) {
                return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
            }
            break;

        case INST_TLB_MULTI_HIT_CAUSE:
        case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
700
            HELPER(exception_cause_vaddr)(env, env->pc, res, v);
701 702 703 704 705 706 707 708
            break;
        }
        return 0;
    } else {
        return (v & REGION_PAGE_MASK) | 0x1;
    }
}

709 710 711 712 713 714 715 716 717 718
void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
        xtensa_tlb_entry *entry, bool dtlb,
        unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
{
    entry->vaddr = vpn;
    entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
    entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
    entry->attr = pte & 0xf;
}

719
void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
720 721 722 723 724 725 726 727 728
        unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
{
    xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);

    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        if (entry->variable) {
            if (entry->asid) {
                tlb_flush_page(env, entry->vaddr);
            }
729
            xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
730
            tlb_flush_page(env, entry->vaddr);
731 732 733 734 735 736 737 738 739 740 741 742 743 744
        } else {
            qemu_log("%s %d, %d, %d trying to set immutable entry\n",
                    __func__, dtlb, wi, ei);
        }
    } else {
        tlb_flush_page(env, entry->vaddr);
        if (xtensa_option_enabled(env->config,
                    XTENSA_OPTION_REGION_TRANSLATION)) {
            entry->paddr = pte & REGION_PAGE_MASK;
        }
        entry->attr = pte & 0xf;
    }
}

745
void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
746 747 748 749
{
    uint32_t vpn;
    uint32_t wi;
    uint32_t ei;
750
    split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
751 752
    xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
}
753 754


755
void HELPER(wsr_ibreakenable)(CPUXtensaState *env, uint32_t v)
756 757 758 759 760 761
{
    uint32_t change = v ^ env->sregs[IBREAKENABLE];
    unsigned i;

    for (i = 0; i < env->config->nibreak; ++i) {
        if (change & (1 << i)) {
762
            tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
763 764 765 766 767
        }
    }
    env->sregs[IBREAKENABLE] = v & ((1 << env->config->nibreak) - 1);
}

768
void HELPER(wsr_ibreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
769 770
{
    if (env->sregs[IBREAKENABLE] & (1 << i) && env->sregs[IBREAKA + i] != v) {
771 772
        tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
        tb_invalidate_virtual_addr(env, v);
773 774 775
    }
    env->sregs[IBREAKA + i] = v;
}
776

777 778
static void set_dbreak(CPUXtensaState *env, unsigned i, uint32_t dbreaka,
        uint32_t dbreakc)
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
{
    int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
    uint32_t mask = dbreakc | ~DBREAKC_MASK;

    if (env->cpu_watchpoint[i]) {
        cpu_watchpoint_remove_by_ref(env, env->cpu_watchpoint[i]);
    }
    if (dbreakc & DBREAKC_SB) {
        flags |= BP_MEM_WRITE;
    }
    if (dbreakc & DBREAKC_LB) {
        flags |= BP_MEM_READ;
    }
    /* contiguous mask after inversion is one less than some power of 2 */
    if ((~mask + 1) & ~mask) {
        qemu_log("DBREAKC mask is not contiguous: 0x%08x\n", dbreakc);
        /* cut mask after the first zero bit */
        mask = 0xffffffff << (32 - clo32(mask));
    }
    if (cpu_watchpoint_insert(env, dbreaka & mask, ~mask + 1,
            flags, &env->cpu_watchpoint[i])) {
        env->cpu_watchpoint[i] = NULL;
        qemu_log("Failed to set data breakpoint at 0x%08x/%d\n",
                dbreaka & mask, ~mask + 1);
    }
}

806
void HELPER(wsr_dbreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
807 808 809 810 811
{
    uint32_t dbreakc = env->sregs[DBREAKC + i];

    if ((dbreakc & DBREAKC_SB_LB) &&
            env->sregs[DBREAKA + i] != v) {
812
        set_dbreak(env, i, v, dbreakc);
813 814 815 816
    }
    env->sregs[DBREAKA + i] = v;
}

817
void HELPER(wsr_dbreakc)(CPUXtensaState *env, uint32_t i, uint32_t v)
818 819 820
{
    if ((env->sregs[DBREAKC + i] ^ v) & (DBREAKC_SB_LB | DBREAKC_MASK)) {
        if (v & DBREAKC_SB_LB) {
821
            set_dbreak(env, i, env->sregs[DBREAKA + i], v);
822 823 824 825 826 827 828 829 830
        } else {
            if (env->cpu_watchpoint[i]) {
                cpu_watchpoint_remove_by_ref(env, env->cpu_watchpoint[i]);
                env->cpu_watchpoint[i] = NULL;
            }
        }
    }
    env->sregs[DBREAKC + i] = v;
}
M
Max Filippov 已提交
831 832 833 834 835 836 837 838 839 840 841 842 843

void HELPER(wur_fcr)(CPUXtensaState *env, uint32_t v)
{
    static const int rounding_mode[] = {
        float_round_nearest_even,
        float_round_to_zero,
        float_round_up,
        float_round_down,
    };

    env->uregs[FCR] = v & 0xfffff07f;
    set_float_rounding_mode(rounding_mode[v & 3], &env->fp_status);
}
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880

float32 HELPER(abs_s)(float32 v)
{
    return float32_abs(v);
}

float32 HELPER(neg_s)(float32 v)
{
    return float32_chs(v);
}

float32 HELPER(add_s)(CPUXtensaState *env, float32 a, float32 b)
{
    return float32_add(a, b, &env->fp_status);
}

float32 HELPER(sub_s)(CPUXtensaState *env, float32 a, float32 b)
{
    return float32_sub(a, b, &env->fp_status);
}

float32 HELPER(mul_s)(CPUXtensaState *env, float32 a, float32 b)
{
    return float32_mul(a, b, &env->fp_status);
}

float32 HELPER(madd_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
{
    return float32_muladd(b, c, a, 0,
            &env->fp_status);
}

float32 HELPER(msub_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
{
    return float32_muladd(b, c, a, float_muladd_negate_product,
            &env->fp_status);
}
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917

uint32_t HELPER(ftoi)(float32 v, uint32_t rounding_mode, uint32_t scale)
{
    float_status fp_status = {0};

    set_float_rounding_mode(rounding_mode, &fp_status);
    return float32_to_int32(
            float32_scalbn(v, scale, &fp_status), &fp_status);
}

uint32_t HELPER(ftoui)(float32 v, uint32_t rounding_mode, uint32_t scale)
{
    float_status fp_status = {0};
    float32 res;

    set_float_rounding_mode(rounding_mode, &fp_status);

    res = float32_scalbn(v, scale, &fp_status);

    if (float32_is_neg(v) && !float32_is_any_nan(v)) {
        return float32_to_int32(res, &fp_status);
    } else {
        return float32_to_uint32(res, &fp_status);
    }
}

float32 HELPER(itof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
{
    return float32_scalbn(int32_to_float32(v, &env->fp_status),
            (int32_t)scale, &env->fp_status);
}

float32 HELPER(uitof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
{
    return float32_scalbn(uint32_to_float32(v, &env->fp_status),
            (int32_t)scale, &env->fp_status);
}
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964

static inline void set_br(CPUXtensaState *env, bool v, uint32_t br)
{
    if (v) {
        env->sregs[BR] |= br;
    } else {
        env->sregs[BR] &= ~br;
    }
}

void HELPER(un_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
    set_br(env, float32_unordered_quiet(a, b, &env->fp_status), br);
}

void HELPER(oeq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
    set_br(env, float32_eq_quiet(a, b, &env->fp_status), br);
}

void HELPER(ueq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
    int v = float32_compare_quiet(a, b, &env->fp_status);
    set_br(env, v == float_relation_equal || v == float_relation_unordered, br);
}

void HELPER(olt_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
    set_br(env, float32_lt_quiet(a, b, &env->fp_status), br);
}

void HELPER(ult_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
    int v = float32_compare_quiet(a, b, &env->fp_status);
    set_br(env, v == float_relation_less || v == float_relation_unordered, br);
}

void HELPER(ole_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
    set_br(env, float32_le_quiet(a, b, &env->fp_status), br);
}

void HELPER(ule_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
    int v = float32_compare_quiet(a, b, &env->fp_status);
    set_br(env, v != float_relation_greater, br);
}