etraxfs_eth.c 13.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * QEMU ETRAX Ethernet Controller.
 *
 * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <stdio.h>
#include "hw.h"
#include "net.h"
E
edgar_igl 已提交
28
#include "etraxfs.h"
29 30 31

#define D(x)

32 33 34 35 36 37
/* Advertisement control register. */
#define ADVERTISE_10HALF        0x0020  /* Try for 10mbps half-duplex  */
#define ADVERTISE_10FULL        0x0040  /* Try for 10mbps full-duplex  */
#define ADVERTISE_100HALF       0x0080  /* Try for 100mbps half-duplex */
#define ADVERTISE_100FULL       0x0100  /* Try for 100mbps full-duplex */

38 39 40 41 42
/* 
 * The MDIO extensions in the TDK PHY model were reversed engineered from the 
 * linux driver (PHYID and Diagnostics reg).
 * TODO: Add friendly names for the register nums.
 */
43 44 45 46
struct qemu_phy
{
	uint32_t regs[32];

47 48
	int link;

49
	unsigned int (*read)(struct qemu_phy *phy, unsigned int req);
50 51
	void (*write)(struct qemu_phy *phy, unsigned int req, 
		      unsigned int data);
52 53 54 55 56 57 58 59 60 61 62
};

static unsigned int tdk_read(struct qemu_phy *phy, unsigned int req)
{
	int regnum;
	unsigned r = 0;

	regnum = req & 0x1f;

	switch (regnum) {
		case 1:
63 64
			if (!phy->link)
				break;
65
			/* MR1.	 */
66 67 68 69
			/* Speeds and modes.  */
			r |= (1 << 13) | (1 << 14);
			r |= (1 << 11) | (1 << 12);
			r |= (1 << 5); /* Autoneg complete.  */
70
			r |= (1 << 3); /* Autoneg able.	 */
71
			r |= (1 << 2); /* link.	 */
72
			break;
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
		case 5:
			/* Link partner ability.
			   We are kind; always agree with whatever best mode
			   the guest advertises.  */
			r = 1 << 14; /* Success.  */
			/* Copy advertised modes.  */
			r |= phy->regs[4] & (15 << 5);
			/* Autoneg support.  */
			r |= 1;
			break;
		case 18:
		{
			/* Diagnostics reg.  */
			int duplex = 0;
			int speed_100 = 0;

89 90 91
			if (!phy->link)
				break;

92
			/* Are we advertising 100 half or 100 duplex ? */
93 94 95
			speed_100 = !!(phy->regs[4] & ADVERTISE_100HALF);
			speed_100 |= !!(phy->regs[4] & ADVERTISE_100FULL);

96
			/* Are we advertising 10 duplex or 100 duplex ? */
97 98
			duplex = !!(phy->regs[4] & ADVERTISE_100FULL);
			duplex |= !!(phy->regs[4] & ADVERTISE_10FULL);
99 100 101 102
			r = (speed_100 << 10) | (duplex << 11);
		}
		break;

103 104 105 106
		default:
			r = phy->regs[regnum];
			break;
	}
107
	D(printf("\n%s %x = reg[%d]\n", __func__, r, regnum));
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
	return r;
}

static void 
tdk_write(struct qemu_phy *phy, unsigned int req, unsigned int data)
{
	int regnum;

	regnum = req & 0x1f;
	D(printf("%s reg[%d] = %x\n", __func__, regnum, data));
	switch (regnum) {
		default:
			phy->regs[regnum] = data;
			break;
	}
}

static void 
tdk_init(struct qemu_phy *phy)
{
128 129 130 131 132 133
	phy->regs[0] = 0x3100;
	/* PHY Id.  */
	phy->regs[2] = 0x0300;
	phy->regs[3] = 0xe400;
	/* Autonegotiation advertisement reg.  */
	phy->regs[4] = 0x01E1;
134
	phy->link = 1;
135

136 137 138 139 140 141
	phy->read = tdk_read;
	phy->write = tdk_write;
}

struct qemu_mdio
{
142
	/* bus.	 */
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
	int mdc;
	int mdio;

	/* decoder.  */
	enum {
		PREAMBLE,
		SOF,
		OPC,
		ADDR,
		REQ,
		TURNAROUND,
		DATA
	} state;
	unsigned int drive;

	unsigned int cnt;
	unsigned int addr;
	unsigned int opc;
	unsigned int req;
	unsigned int data;

	struct qemu_phy *devs[32];
};

static void 
mdio_attach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
{
	bus->devs[addr & 0x1f] = phy;
}

173
#ifdef USE_THIS_DEAD_CODE
174 175 176 177 178
static void 
mdio_detach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
{
	bus->devs[addr & 0x1f] = NULL;	
}
179
#endif
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281

static void mdio_read_req(struct qemu_mdio *bus)
{
	struct qemu_phy *phy;

	phy = bus->devs[bus->addr];
	if (phy && phy->read)
		bus->data = phy->read(phy, bus->req);
	else 
		bus->data = 0xffff;
}

static void mdio_write_req(struct qemu_mdio *bus)
{
	struct qemu_phy *phy;

	phy = bus->devs[bus->addr];
	if (phy && phy->write)
		phy->write(phy, bus->req, bus->data);
}

static void mdio_cycle(struct qemu_mdio *bus)
{
	bus->cnt++;

	D(printf("mdc=%d mdio=%d state=%d cnt=%d drv=%d\n",
		bus->mdc, bus->mdio, bus->state, bus->cnt, bus->drive));
#if 0
	if (bus->mdc)
		printf("%d", bus->mdio);
#endif
	switch (bus->state)
	{
		case PREAMBLE:
			if (bus->mdc) {
				if (bus->cnt >= (32 * 2) && !bus->mdio) {
					bus->cnt = 0;
					bus->state = SOF;
					bus->data = 0;
				}
			}
			break;
		case SOF:
			if (bus->mdc) {
				if (bus->mdio != 1)
					printf("WARNING: no SOF\n");
				if (bus->cnt == 1*2) {
					bus->cnt = 0;
					bus->opc = 0;
					bus->state = OPC;
				}
			}
			break;
		case OPC:
			if (bus->mdc) {
				bus->opc <<= 1;
				bus->opc |= bus->mdio & 1;
				if (bus->cnt == 2*2) {
					bus->cnt = 0;
					bus->addr = 0;
					bus->state = ADDR;
				}
			}
			break;
		case ADDR:
			if (bus->mdc) {
				bus->addr <<= 1;
				bus->addr |= bus->mdio & 1;

				if (bus->cnt == 5*2) {
					bus->cnt = 0;
					bus->req = 0;
					bus->state = REQ;
				}
			}
			break;
		case REQ:
			if (bus->mdc) {
				bus->req <<= 1;
				bus->req |= bus->mdio & 1;
				if (bus->cnt == 5*2) {
					bus->cnt = 0;
					bus->state = TURNAROUND;
				}
			}
			break;
		case TURNAROUND:
			if (bus->mdc && bus->cnt == 2*2) {
				bus->mdio = 0;
				bus->cnt = 0;

				if (bus->opc == 2) {
					bus->drive = 1;
					mdio_read_req(bus);
					bus->mdio = bus->data & 1;
				}
				bus->state = DATA;
			}
			break;
		case DATA:			
			if (!bus->mdc) {
				if (bus->drive) {
282 283
					bus->mdio = !!(bus->data & (1 << 15));
					bus->data <<= 1;
284 285 286 287 288 289 290 291 292
				}
			} else {
				if (!bus->drive) {
					bus->data <<= 1;
					bus->data |= bus->mdio;
				}
				if (bus->cnt == 16 * 2) {
					bus->cnt = 0;
					bus->state = PREAMBLE;
293 294 295
					if (!bus->drive)
						mdio_write_req(bus);
					bus->drive = 0;
296 297 298 299 300 301 302 303
				}
			}
			break;
		default:
			break;
	}
}

304 305
/* ETRAX-FS Ethernet MAC block starts here.  */

306
#define RW_MA0_LO	  0x00
307 308 309 310 311 312 313 314 315 316 317 318
#define RW_MA0_HI	  0x01
#define RW_MA1_LO	  0x02
#define RW_MA1_HI	  0x03
#define RW_GA_LO	  0x04
#define RW_GA_HI	  0x05
#define RW_GEN_CTRL	  0x06
#define RW_REC_CTRL	  0x07
#define RW_TR_CTRL	  0x08
#define RW_CLR_ERR	  0x09
#define RW_MGM_CTRL	  0x0a
#define R_STAT		  0x0b
#define FS_ETH_MAX_REGS	  0x17
319 320 321

struct fs_eth
{
322
	CPUState *env;
323 324 325 326
	qemu_irq *irq;
	VLANClientState *vc;
	int ethregs;

327 328
	/* Two addrs in the filter.  */
	uint8_t macaddr[2][6];
329 330 331 332 333 334 335
	uint32_t regs[FS_ETH_MAX_REGS];

	struct etraxfs_dma_client *dma_out;
	struct etraxfs_dma_client *dma_in;

	/* MDIO bus.  */
	struct qemu_mdio mdio_bus;
336 337 338
	unsigned int phyaddr;
	int duplex_mismatch;

339
	/* PHY.	 */
340 341 342
	struct qemu_phy phy;
};

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
static void eth_validate_duplex(struct fs_eth *eth)
{
	struct qemu_phy *phy;
	unsigned int phy_duplex;
	unsigned int mac_duplex;
	int new_mm = 0;

	phy = eth->mdio_bus.devs[eth->phyaddr];
	phy_duplex = !!(phy->read(phy, 18) & (1 << 11));
	mac_duplex = !!(eth->regs[RW_REC_CTRL] & 128);

	if (mac_duplex != phy_duplex)
		new_mm = 1;

	if (eth->regs[RW_GEN_CTRL] & 1) {
		if (new_mm != eth->duplex_mismatch) {
			if (new_mm)
				printf("HW: WARNING "
				       "ETH duplex mismatch MAC=%d PHY=%d\n",
				       mac_duplex, phy_duplex);
			else
				printf("HW: ETH duplex ok.\n");
		}
		eth->duplex_mismatch = new_mm;
	}
}

370 371
static uint32_t eth_readl (void *opaque, target_phys_addr_t addr)
{
372 373
	struct fs_eth *eth = opaque;
	uint32_t r = 0;
374

375 376
	addr >>= 2;

377
	switch (addr) {
378 379 380
		case R_STAT:
			r = eth->mdio_bus.mdio & 1;
			break;
381
	default:
382
		r = eth->regs[addr];
383
		D(printf ("%s %x\n", __func__, addr * 4));
384 385 386
		break;
	}
	return r;
387 388
}

389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
static void eth_update_ma(struct fs_eth *eth, int ma)
{
	int reg;
	int i = 0;

	ma &= 1;

	reg = RW_MA0_LO;
	if (ma)
		reg = RW_MA1_LO;

	eth->macaddr[ma][i++] = eth->regs[reg];
	eth->macaddr[ma][i++] = eth->regs[reg] >> 8;
	eth->macaddr[ma][i++] = eth->regs[reg] >> 16;
	eth->macaddr[ma][i++] = eth->regs[reg] >> 24;
	eth->macaddr[ma][i++] = eth->regs[reg + 4];
	eth->macaddr[ma][i++] = eth->regs[reg + 4] >> 8;

	D(printf("set mac%d=%x.%x.%x.%x.%x.%x\n", ma,
		 eth->macaddr[ma][0], eth->macaddr[ma][1],
		 eth->macaddr[ma][2], eth->macaddr[ma][3],
		 eth->macaddr[ma][4], eth->macaddr[ma][5]));
411 412 413 414 415
}

static void
eth_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
{
416 417
	struct fs_eth *eth = opaque;

418
	addr >>= 2;
419 420 421 422 423 424 425 426 427 428 429 430
	switch (addr)
	{
		case RW_MA0_LO:
		case RW_MA0_HI:
			eth->regs[addr] = value;
			eth_update_ma(eth, 0);
			break;
		case RW_MA1_LO:
		case RW_MA1_HI:
			eth->regs[addr] = value;
			eth_update_ma(eth, 1);
			break;
431 432 433 434 435

		case RW_MGM_CTRL:
			/* Attach an MDIO/PHY abstraction.  */
			if (value & 2)
				eth->mdio_bus.mdio = value & 1;
436
			if (eth->mdio_bus.mdc != (value & 4)) {
437
				mdio_cycle(&eth->mdio_bus);
438 439
				eth_validate_duplex(eth);
			}
440 441 442
			eth->mdio_bus.mdc = !!(value & 4);
			break;

443 444 445 446 447
		case RW_REC_CTRL:
			eth->regs[addr] = value;
			eth_validate_duplex(eth);
			break;

448 449
		default:
			eth->regs[addr] = value;
E
edgar_igl 已提交
450 451
			D(printf ("%s %x %x\n",
				  __func__, addr, value));
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
			break;
	}
}

/* The ETRAX FS has a groupt address table (GAT) which works like a k=1 bloom
   filter dropping group addresses we have not joined.	The filter has 64
   bits (m). The has function is a simple nible xor of the group addr.	*/
static int eth_match_groupaddr(struct fs_eth *eth, const unsigned char *sa)
{
	unsigned int hsh;
	int m_individual = eth->regs[RW_REC_CTRL] & 4;
	int match;

	/* First bit on the wire of a MAC address signals multicast or
	   physical address.  */
	if (!m_individual && !sa[0] & 1)
		return 0;

	/* Calculate the hash index for the GA registers. */
	hsh = 0;
	hsh ^= (*sa) & 0x3f;
	hsh ^= ((*sa) >> 6) & 0x03;
	++sa;
	hsh ^= ((*sa) << 2) & 0x03c;
	hsh ^= ((*sa) >> 4) & 0xf;
	++sa;
	hsh ^= ((*sa) << 4) & 0x30;
	hsh ^= ((*sa) >> 2) & 0x3f;
	++sa;
	hsh ^= (*sa) & 0x3f;
	hsh ^= ((*sa) >> 6) & 0x03;
	++sa;
	hsh ^= ((*sa) << 2) & 0x03c;
	hsh ^= ((*sa) >> 4) & 0xf;
	++sa;
	hsh ^= ((*sa) << 4) & 0x30;
	hsh ^= ((*sa) >> 2) & 0x3f;

	hsh &= 63;
	if (hsh > 31)
		match = eth->regs[RW_GA_HI] & (1 << (hsh - 32));
	else
		match = eth->regs[RW_GA_LO] & (1 << hsh);
	D(printf("hsh=%x ga=%x.%x mtch=%d\n", hsh,
		 eth->regs[RW_GA_HI], eth->regs[RW_GA_LO], match));
	return match;
498 499 500 501
}

static int eth_can_receive(void *opaque)
{
502
	return 1;
503 504 505 506
}

static void eth_receive(void *opaque, const uint8_t *buf, int size)
{
507
	unsigned char sa_bcast[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
508
	struct fs_eth *eth = opaque;
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
	int use_ma0 = eth->regs[RW_REC_CTRL] & 1;
	int use_ma1 = eth->regs[RW_REC_CTRL] & 2;
	int r_bcast = eth->regs[RW_REC_CTRL] & 8;

	if (size < 12)
		return;

	D(printf("%x.%x.%x.%x.%x.%x ma=%d %d bc=%d\n",
		 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
		 use_ma0, use_ma1, r_bcast));
	       
	/* Does the frame get through the address filters?  */
	if ((!use_ma0 || memcmp(buf, eth->macaddr[0], 6))
	    && (!use_ma1 || memcmp(buf, eth->macaddr[1], 6))
	    && (!r_bcast || memcmp(buf, sa_bcast, 6))
	    && !eth_match_groupaddr(eth, buf))
		return;

527 528
	/* FIXME: Find another way to pass on the fake csum.  */
	etraxfs_dmac_input(eth->dma_in, (void *)buf, size + 4, 1);
529 530 531 532 533 534 535 536 537 538 539
}

static int eth_tx_push(void *opaque, unsigned char *buf, int len)
{
	struct fs_eth *eth = opaque;

	D(printf("%s buf=%p len=%d\n", __func__, buf, len));
	qemu_send_packet(eth->vc, buf, len);
	return len;
}

540 541 542 543 544 545 546
static void eth_set_link(VLANClientState *vc)
{
	struct fs_eth *eth = vc->opaque;
	D(printf("%s %d\n", __func__, vc->link_down));
	eth->phy.link = !vc->link_down;
}

547
static CPUReadMemoryFunc *eth_read[] = {
548
	NULL, NULL,
549
	&eth_readl,
550 551 552
};

static CPUWriteMemoryFunc *eth_write[] = {
553
	NULL, NULL,
554
	&eth_writel,
555 556
};

557 558 559 560 561 562 563 564 565 566
static void eth_cleanup(VLANClientState *vc)
{
        struct fs_eth *eth = vc->opaque;

        cpu_unregister_io_memory(eth->ethregs);

        qemu_free(eth->dma_out);
        qemu_free(eth);
}

567
void *etraxfs_eth_init(NICInfo *nd, CPUState *env, 
568
		       qemu_irq *irq, target_phys_addr_t base, int phyaddr)
569 570 571 572
{
	struct etraxfs_dma_client *dma = NULL;	
	struct fs_eth *eth = NULL;

573 574
	qemu_check_nic_model(nd, "fseth");

575 576 577 578 579 580 581
	dma = qemu_mallocz(sizeof *dma * 2);

	eth = qemu_mallocz(sizeof *eth);

	dma[0].client.push = eth_tx_push;
	dma[0].client.opaque = eth;
	dma[1].client.opaque = eth;
582
	dma[1].client.pull = NULL;
583 584 585 586 587 588 589

	eth->env = env;
	eth->irq = irq;
	eth->dma_out = dma;
	eth->dma_in = dma + 1;

	/* Connect the phy.  */
590
	eth->phyaddr = phyaddr & 0x1f;
591
	tdk_init(&eth->phy);
592
	mdio_attach(&eth->mdio_bus, &eth->phy, eth->phyaddr);
593 594 595 596

	eth->ethregs = cpu_register_io_memory(0, eth_read, eth_write, eth);
	cpu_register_physical_memory (base, 0x5c, eth->ethregs);

597
	eth->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name,
598 599
				       eth_receive, eth_can_receive,
				       eth_cleanup, eth);
600 601
	eth->vc->opaque = eth;
	eth->vc->link_status_changed = eth_set_link;
602 603 604

	return dma;
}