etraxfs_eth.c 13.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/*
 * QEMU ETRAX Ethernet Controller.
 *
 * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <stdio.h>
#include "hw.h"
#include "net.h"

#include "etraxfs_dma.h"

#define D(x)

33 34 35 36 37
/* 
 * The MDIO extensions in the TDK PHY model were reversed engineered from the 
 * linux driver (PHYID and Diagnostics reg).
 * TODO: Add friendly names for the register nums.
 */
38 39 40 41 42
struct qemu_phy
{
	uint32_t regs[32];

	unsigned int (*read)(struct qemu_phy *phy, unsigned int req);
43 44
	void (*write)(struct qemu_phy *phy, unsigned int req, 
		      unsigned int data);
45 46 47 48 49 50 51 52 53 54 55
};

static unsigned int tdk_read(struct qemu_phy *phy, unsigned int req)
{
	int regnum;
	unsigned r = 0;

	regnum = req & 0x1f;

	switch (regnum) {
		case 1:
56
			/* MR1.	 */
57 58 59 60
			/* Speeds and modes.  */
			r |= (1 << 13) | (1 << 14);
			r |= (1 << 11) | (1 << 12);
			r |= (1 << 5); /* Autoneg complete.  */
61 62
			r |= (1 << 3); /* Autoneg able.	 */
			r |= (1 << 2); /* Link.	 */
63
			break;
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
		case 5:
			/* Link partner ability.
			   We are kind; always agree with whatever best mode
			   the guest advertises.  */
			r = 1 << 14; /* Success.  */
			/* Copy advertised modes.  */
			r |= phy->regs[4] & (15 << 5);
			/* Autoneg support.  */
			r |= 1;
			break;
		case 18:
		{
			/* Diagnostics reg.  */
			int duplex = 0;
			int speed_100 = 0;

			/* Are we advertising 100 half or 100 duplex ? */
			speed_100 = !!(phy->regs[4] & 0x180);
			/* Are we advertising 10 duplex or 100 duplex ? */
			duplex = !!(phy->regs[4] & 0x180);
			r = (speed_100 << 10) | (duplex << 11);
		}
		break;

88 89 90 91
		default:
			r = phy->regs[regnum];
			break;
	}
92
	D(printf("\n%s %x = reg[%d]\n", __func__, r, regnum));
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
	return r;
}

static void 
tdk_write(struct qemu_phy *phy, unsigned int req, unsigned int data)
{
	int regnum;

	regnum = req & 0x1f;
	D(printf("%s reg[%d] = %x\n", __func__, regnum, data));
	switch (regnum) {
		default:
			phy->regs[regnum] = data;
			break;
	}
}

static void 
tdk_init(struct qemu_phy *phy)
{
113 114 115 116 117 118 119
	phy->regs[0] = 0x3100;
	/* PHY Id.  */
	phy->regs[2] = 0x0300;
	phy->regs[3] = 0xe400;
	/* Autonegotiation advertisement reg.  */
	phy->regs[4] = 0x01E1;

120 121 122 123 124 125
	phy->read = tdk_read;
	phy->write = tdk_write;
}

struct qemu_mdio
{
126
	/* bus.	 */
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
	int mdc;
	int mdio;

	/* decoder.  */
	enum {
		PREAMBLE,
		SOF,
		OPC,
		ADDR,
		REQ,
		TURNAROUND,
		DATA
	} state;
	unsigned int drive;

	unsigned int cnt;
	unsigned int addr;
	unsigned int opc;
	unsigned int req;
	unsigned int data;

	struct qemu_phy *devs[32];
};

static void 
mdio_attach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
{
	bus->devs[addr & 0x1f] = phy;
}

static void 
mdio_detach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
{
	bus->devs[addr & 0x1f] = NULL;	
}

static void mdio_read_req(struct qemu_mdio *bus)
{
	struct qemu_phy *phy;

	phy = bus->devs[bus->addr];
	if (phy && phy->read)
		bus->data = phy->read(phy, bus->req);
	else 
		bus->data = 0xffff;
}

static void mdio_write_req(struct qemu_mdio *bus)
{
	struct qemu_phy *phy;

	phy = bus->devs[bus->addr];
	if (phy && phy->write)
		phy->write(phy, bus->req, bus->data);
}

static void mdio_cycle(struct qemu_mdio *bus)
{
	bus->cnt++;

	D(printf("mdc=%d mdio=%d state=%d cnt=%d drv=%d\n",
		bus->mdc, bus->mdio, bus->state, bus->cnt, bus->drive));
#if 0
	if (bus->mdc)
		printf("%d", bus->mdio);
#endif
	switch (bus->state)
	{
		case PREAMBLE:
			if (bus->mdc) {
				if (bus->cnt >= (32 * 2) && !bus->mdio) {
					bus->cnt = 0;
					bus->state = SOF;
					bus->data = 0;
				}
			}
			break;
		case SOF:
			if (bus->mdc) {
				if (bus->mdio != 1)
					printf("WARNING: no SOF\n");
				if (bus->cnt == 1*2) {
					bus->cnt = 0;
					bus->opc = 0;
					bus->state = OPC;
				}
			}
			break;
		case OPC:
			if (bus->mdc) {
				bus->opc <<= 1;
				bus->opc |= bus->mdio & 1;
				if (bus->cnt == 2*2) {
					bus->cnt = 0;
					bus->addr = 0;
					bus->state = ADDR;
				}
			}
			break;
		case ADDR:
			if (bus->mdc) {
				bus->addr <<= 1;
				bus->addr |= bus->mdio & 1;

				if (bus->cnt == 5*2) {
					bus->cnt = 0;
					bus->req = 0;
					bus->state = REQ;
				}
			}
			break;
		case REQ:
			if (bus->mdc) {
				bus->req <<= 1;
				bus->req |= bus->mdio & 1;
				if (bus->cnt == 5*2) {
					bus->cnt = 0;
					bus->state = TURNAROUND;
				}
			}
			break;
		case TURNAROUND:
			if (bus->mdc && bus->cnt == 2*2) {
				bus->mdio = 0;
				bus->cnt = 0;

				if (bus->opc == 2) {
					bus->drive = 1;
					mdio_read_req(bus);
					bus->mdio = bus->data & 1;
				}
				bus->state = DATA;
			}
			break;
		case DATA:			
			if (!bus->mdc) {
				if (bus->drive) {
264 265
					bus->mdio = !!(bus->data & (1 << 15));
					bus->data <<= 1;
266 267 268 269 270 271 272 273 274
				}
			} else {
				if (!bus->drive) {
					bus->data <<= 1;
					bus->data |= bus->mdio;
				}
				if (bus->cnt == 16 * 2) {
					bus->cnt = 0;
					bus->state = PREAMBLE;
275 276 277
					if (!bus->drive)
						mdio_write_req(bus);
					bus->drive = 0;
278 279 280 281 282 283 284 285
				}
			}
			break;
		default:
			break;
	}
}

286 287
/* ETRAX-FS Ethernet MAC block starts here.  */

288 289 290 291 292 293 294 295 296 297 298 299 300
#define RW_MA0_LO	  0x00
#define RW_MA0_HI	  0x04
#define RW_MA1_LO	  0x08
#define RW_MA1_HI	  0x0c
#define RW_GA_LO	  0x10
#define RW_GA_HI	  0x14
#define RW_GEN_CTRL	  0x18
#define RW_REC_CTRL	  0x1c
#define RW_TR_CTRL	  0x20
#define RW_CLR_ERR	  0x24
#define RW_MGM_CTRL	  0x28
#define R_STAT		  0x2c
#define FS_ETH_MAX_REGS	  0x5c
301 302 303

struct fs_eth
{
304
	CPUState *env;
305
	qemu_irq *irq;
306
	target_phys_addr_t base;
307 308 309
	VLANClientState *vc;
	int ethregs;

310 311
	/* Two addrs in the filter.  */
	uint8_t macaddr[2][6];
312 313 314 315 316 317 318 319 320 321 322
	uint32_t regs[FS_ETH_MAX_REGS];

	unsigned char rx_fifo[1536];
	int rx_fifo_len;
	int rx_fifo_pos;

	struct etraxfs_dma_client *dma_out;
	struct etraxfs_dma_client *dma_in;

	/* MDIO bus.  */
	struct qemu_mdio mdio_bus;
323
	/* PHY.	 */
324 325 326 327 328
	struct qemu_phy phy;
};

static uint32_t eth_rinvalid (void *opaque, target_phys_addr_t addr)
{
329 330 331 332 333
	struct fs_eth *eth = opaque;
	CPUState *env = eth->env;
	cpu_abort(env, "Unsupported short access. reg=%x pc=%x.\n", 
		  addr, env->pc);
	return 0;
334 335 336 337
}

static uint32_t eth_readl (void *opaque, target_phys_addr_t addr)
{
338 339 340
	struct fs_eth *eth = opaque;
	D(CPUState *env = eth->env);
	uint32_t r = 0;
341

342 343 344
	/* Make addr relative to this instances base.  */
	addr -= eth->base;
	switch (addr) {
345 346 347 348
		case R_STAT:
			/* Attach an MDIO/PHY abstraction.  */
			r = eth->mdio_bus.mdio & 1;
			break;
349
	default:
350
		r = eth->regs[addr];
351 352 353 354
		D(printf ("%s %x p=%x\n", __func__, addr, env->pc));
		break;
	}
	return r;
355 356 357 358 359
}

static void
eth_winvalid (void *opaque, target_phys_addr_t addr, uint32_t value)
{
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
	struct fs_eth *eth = opaque;
	CPUState *env = eth->env;
	cpu_abort(env, "Unsupported short access. reg=%x pc=%x.\n", 
		  addr, env->pc);
}

static void eth_update_ma(struct fs_eth *eth, int ma)
{
	int reg;
	int i = 0;

	ma &= 1;

	reg = RW_MA0_LO;
	if (ma)
		reg = RW_MA1_LO;

	eth->macaddr[ma][i++] = eth->regs[reg];
	eth->macaddr[ma][i++] = eth->regs[reg] >> 8;
	eth->macaddr[ma][i++] = eth->regs[reg] >> 16;
	eth->macaddr[ma][i++] = eth->regs[reg] >> 24;
	eth->macaddr[ma][i++] = eth->regs[reg + 4];
	eth->macaddr[ma][i++] = eth->regs[reg + 4] >> 8;

	D(printf("set mac%d=%x.%x.%x.%x.%x.%x\n", ma,
		 eth->macaddr[ma][0], eth->macaddr[ma][1],
		 eth->macaddr[ma][2], eth->macaddr[ma][3],
		 eth->macaddr[ma][4], eth->macaddr[ma][5]));
388 389 390 391 392
}

static void
eth_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
{
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
	struct fs_eth *eth = opaque;
	CPUState *env = eth->env;

	/* Make addr relative to this instances base.  */
	addr -= eth->base;
	switch (addr)
	{
		case RW_MA0_LO:
			eth->regs[addr] = value;
			eth_update_ma(eth, 0);
			break;
		case RW_MA0_HI:
			eth->regs[addr] = value;
			eth_update_ma(eth, 0);
			break;
		case RW_MA1_LO:
			eth->regs[addr] = value;
			eth_update_ma(eth, 1);
			break;
		case RW_MA1_HI:
			eth->regs[addr] = value;
			eth_update_ma(eth, 1);
			break;
416 417 418 419 420 421 422 423 424 425

		case RW_MGM_CTRL:
			/* Attach an MDIO/PHY abstraction.  */
			if (value & 2)
				eth->mdio_bus.mdio = value & 1;
			if (eth->mdio_bus.mdc != (value & 4))
				mdio_cycle(&eth->mdio_bus);
			eth->mdio_bus.mdc = !!(value & 4);
			break;

426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
		default:
			eth->regs[addr] = value;
			printf ("%s %x %x pc=%x\n",
				__func__, addr, value, env->pc);
			break;
	}
}

/* The ETRAX FS has a groupt address table (GAT) which works like a k=1 bloom
   filter dropping group addresses we have not joined.	The filter has 64
   bits (m). The has function is a simple nible xor of the group addr.	*/
static int eth_match_groupaddr(struct fs_eth *eth, const unsigned char *sa)
{
	unsigned int hsh;
	int m_individual = eth->regs[RW_REC_CTRL] & 4;
	int match;

	/* First bit on the wire of a MAC address signals multicast or
	   physical address.  */
	if (!m_individual && !sa[0] & 1)
		return 0;

	/* Calculate the hash index for the GA registers. */
	hsh = 0;
	hsh ^= (*sa) & 0x3f;
	hsh ^= ((*sa) >> 6) & 0x03;
	++sa;
	hsh ^= ((*sa) << 2) & 0x03c;
	hsh ^= ((*sa) >> 4) & 0xf;
	++sa;
	hsh ^= ((*sa) << 4) & 0x30;
	hsh ^= ((*sa) >> 2) & 0x3f;
	++sa;
	hsh ^= (*sa) & 0x3f;
	hsh ^= ((*sa) >> 6) & 0x03;
	++sa;
	hsh ^= ((*sa) << 2) & 0x03c;
	hsh ^= ((*sa) >> 4) & 0xf;
	++sa;
	hsh ^= ((*sa) << 4) & 0x30;
	hsh ^= ((*sa) >> 2) & 0x3f;

	hsh &= 63;
	if (hsh > 31)
		match = eth->regs[RW_GA_HI] & (1 << (hsh - 32));
	else
		match = eth->regs[RW_GA_LO] & (1 << hsh);
	D(printf("hsh=%x ga=%x.%x mtch=%d\n", hsh,
		 eth->regs[RW_GA_HI], eth->regs[RW_GA_LO], match));
	return match;
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
}

static int eth_can_receive(void *opaque)
{
	struct fs_eth *eth = opaque;
	int r;

	r = eth->rx_fifo_len == 0;
	if (!r) {
		/* TODO: signal fifo overrun.  */
		printf("PACKET LOSS!\n");
	}
	return r;
}

static void eth_receive(void *opaque, const uint8_t *buf, int size)
{
493
	unsigned char sa_bcast[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
494
	struct fs_eth *eth = opaque;
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
	int use_ma0 = eth->regs[RW_REC_CTRL] & 1;
	int use_ma1 = eth->regs[RW_REC_CTRL] & 2;
	int r_bcast = eth->regs[RW_REC_CTRL] & 8;

	if (size < 12)
		return;

	D(printf("%x.%x.%x.%x.%x.%x ma=%d %d bc=%d\n",
		 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
		 use_ma0, use_ma1, r_bcast));
	       
	/* Does the frame get through the address filters?  */
	if ((!use_ma0 || memcmp(buf, eth->macaddr[0], 6))
	    && (!use_ma1 || memcmp(buf, eth->macaddr[1], 6))
	    && (!r_bcast || memcmp(buf, sa_bcast, 6))
	    && !eth_match_groupaddr(eth, buf))
		return;

513
	if (size > sizeof(eth->rx_fifo)) {
514 515 516
		/* TODO: signal error.	*/
	} else if (eth->rx_fifo_len) {
		/* FIFO overrun.  */
517 518
	} else {
		memcpy(eth->rx_fifo, buf, size);
519
		/* +4, HW passes the CRC to sw.	 */
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
		eth->rx_fifo_len = size + 4;
		eth->rx_fifo_pos = 0;
	}
}

static void eth_rx_pull(void *opaque)
{
	struct fs_eth *eth = opaque;
	int len;
	if (eth->rx_fifo_len) {		
		D(printf("%s %d\n", __func__, eth->rx_fifo_len));
#if 0
		{
			int i;
			for (i = 0; i < 32; i++)
				printf("%2.2x", eth->rx_fifo[i]);
			printf("\n");
		}
#endif
		len = etraxfs_dmac_input(eth->dma_in,
					 eth->rx_fifo + eth->rx_fifo_pos, 
					 eth->rx_fifo_len, 1);
		eth->rx_fifo_len -= len;
		eth->rx_fifo_pos += len;
	}
}

static int eth_tx_push(void *opaque, unsigned char *buf, int len)
{
	struct fs_eth *eth = opaque;

	D(printf("%s buf=%p len=%d\n", __func__, buf, len));
	qemu_send_packet(eth->vc, buf, len);
	return len;
}

static CPUReadMemoryFunc *eth_read[] = {
557 558 559
	&eth_rinvalid,
	&eth_rinvalid,
	&eth_readl,
560 561 562
};

static CPUWriteMemoryFunc *eth_write[] = {
563 564 565
	&eth_winvalid,
	&eth_winvalid,
	&eth_writel,
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
};

void *etraxfs_eth_init(NICInfo *nd, CPUState *env, 
		       qemu_irq *irq, target_phys_addr_t base)
{
	struct etraxfs_dma_client *dma = NULL;	
	struct fs_eth *eth = NULL;

	dma = qemu_mallocz(sizeof *dma * 2);
	if (!dma)
		return NULL;

	eth = qemu_mallocz(sizeof *eth);
	if (!eth)
		goto err;

	dma[0].client.push = eth_tx_push;
	dma[0].client.opaque = eth;
	dma[1].client.opaque = eth;
	dma[1].client.pull = eth_rx_pull;

	eth->env = env;
	eth->base = base;
	eth->irq = irq;
	eth->dma_out = dma;
	eth->dma_in = dma + 1;

	/* Connect the phy.  */
	tdk_init(&eth->phy);
	mdio_attach(&eth->mdio_bus, &eth->phy, 0x1);

	eth->ethregs = cpu_register_io_memory(0, eth_read, eth_write, eth);
	cpu_register_physical_memory (base, 0x5c, eth->ethregs);

	eth->vc = qemu_new_vlan_client(nd->vlan, 
				       eth_receive, eth_can_receive, eth);

	return dma;
  err:
	qemu_free(eth);
	qemu_free(dma);
	return NULL;
}