softfloat.h 36.7 KB
Newer Older
1 2 3
/*
 * QEMU float support
 *
4 5 6 7 8 9 10 11 12 13 14 15
 * The code in this source file is derived from release 2a of the SoftFloat
 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
 * some later contributions) are provided under that license, as detailed below.
 * It has subsequently been modified by contributors to the QEMU Project,
 * so some portions are provided under:
 *  the SoftFloat-2a license
 *  the BSD license
 *  GPL-v2-or-later
 *
 * Any future contributions to this file after December 1st 2014 will be
 * taken to be licensed under the Softfloat-2a license unless specifically
 * indicated otherwise.
16 17
 */

18 19 20 21
/*
===============================================================================
This C header file is part of the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2a.
B
bellard 已提交
22 23 24 25 26 27 28 29

Written by John R. Hauser.  This work was made possible in part by the
International Computer Science Institute, located at Suite 600, 1947 Center
Street, Berkeley, California 94704.  Funding was partially provided by the
National Science Foundation under grant MIP-9311980.  The original version
of this code was written as part of a project to build a fixed-point vector
processor in collaboration with the University of California at Berkeley,
overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
30
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
B
bellard 已提交
31 32
arithmetic/SoftFloat.html'.

33 34 35 36 37
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
B
bellard 已提交
38 39

Derivative works are acceptable, even for commercial purposes, so long as
40 41 42
(1) they include prominent notice that the work is derivative, and (2) they
include prominent notice akin to these four paragraphs for those parts of
this code that are retained.
B
bellard 已提交
43

44 45
===============================================================================
*/
B
bellard 已提交
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
/* BSD licensing:
 * Copyright (c) 2006, Fabrice Bellard
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * 3. Neither the name of the copyright holder nor the names of its contributors
 * may be used to endorse or promote products derived from this software without
 * specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */

/* Portions of this work are licensed under the terms of the GNU GPL,
 * version 2 or later. See the COPYING file in the top-level directory.
 */

B
bellard 已提交
82 83 84 85 86
#ifndef SOFTFLOAT_H
#define SOFTFLOAT_H

#define LIT64( a ) a##LL

B
bellard 已提交
87 88 89 90 91 92 93 94 95 96
/*----------------------------------------------------------------------------
| Software IEC/IEEE floating-point ordering relations
*----------------------------------------------------------------------------*/
enum {
    float_relation_less      = -1,
    float_relation_equal     =  0,
    float_relation_greater   =  1,
    float_relation_unordered =  2
};

97
#include "fpu/softfloat-types.h"
B
bellard 已提交
98

99
static inline void set_float_detect_tininess(int val, float_status *status)
100
{
101
    status->float_detect_tininess = val;
102
}
103
static inline void set_float_rounding_mode(int val, float_status *status)
104
{
105
    status->float_rounding_mode = val;
106
}
107
static inline void set_float_exception_flags(int val, float_status *status)
108
{
109
    status->float_exception_flags = val;
110
}
111 112
static inline void set_floatx80_rounding_precision(int val,
                                                   float_status *status)
113
{
114
    status->floatx80_rounding_precision = val;
115
}
116
static inline void set_flush_to_zero(flag val, float_status *status)
117
{
118
    status->flush_to_zero = val;
119
}
120
static inline void set_flush_inputs_to_zero(flag val, float_status *status)
121
{
122
    status->flush_inputs_to_zero = val;
123
}
124
static inline void set_default_nan_mode(flag val, float_status *status)
P
pbrook 已提交
125
{
126
    status->default_nan_mode = val;
P
pbrook 已提交
127
}
128 129 130 131
static inline void set_snan_bit_is_one(flag val, float_status *status)
{
    status->snan_bit_is_one = val;
}
132
static inline int get_float_detect_tininess(float_status *status)
133
{
134
    return status->float_detect_tininess;
135
}
136
static inline int get_float_rounding_mode(float_status *status)
137
{
138
    return status->float_rounding_mode;
139
}
140
static inline int get_float_exception_flags(float_status *status)
B
bellard 已提交
141
{
142
    return status->float_exception_flags;
B
bellard 已提交
143
}
144
static inline int get_floatx80_rounding_precision(float_status *status)
145
{
146
    return status->floatx80_rounding_precision;
147
}
148
static inline flag get_flush_to_zero(float_status *status)
149
{
150
    return status->flush_to_zero;
151
}
152
static inline flag get_flush_inputs_to_zero(float_status *status)
153
{
154
    return status->flush_inputs_to_zero;
155
}
156
static inline flag get_default_nan_mode(float_status *status)
157
{
158
    return status->default_nan_mode;
159
}
B
bellard 已提交
160 161 162 163 164

/*----------------------------------------------------------------------------
| Routine to raise any or all of the software IEC/IEEE floating-point
| exception flags.
*----------------------------------------------------------------------------*/
165
void float_raise(uint8_t flags, float_status *status);
B
bellard 已提交
166

167 168 169 170
/*----------------------------------------------------------------------------
| If `a' is denormal and we are in flush-to-zero mode then set the
| input-denormal exception and return zero. Otherwise just return the value.
*----------------------------------------------------------------------------*/
171
float16 float16_squash_input_denormal(float16 a, float_status *status);
172 173
float32 float32_squash_input_denormal(float32 a, float_status *status);
float64 float64_squash_input_denormal(float64 a, float_status *status);
174

175 176 177 178 179
/*----------------------------------------------------------------------------
| Options to indicate which negations to perform in float*_muladd()
| Using these differs from negating an input or output before calling
| the muladd function in that this means that a NaN doesn't have its
| sign bit inverted before it is propagated.
180 181
| We also support halving the result before rounding, as a special
| case to support the ARM fused-sqrt-step instruction FRSQRTS.
182 183 184 185
*----------------------------------------------------------------------------*/
enum {
    float_muladd_negate_c = 1,
    float_muladd_negate_product = 2,
186
    float_muladd_negate_result = 4,
187
    float_muladd_halve_result = 8,
188 189
};

B
bellard 已提交
190 191 192
/*----------------------------------------------------------------------------
| Software IEC/IEEE integer-to-floating-point conversion routines.
*----------------------------------------------------------------------------*/
193
float32 int16_to_float32(int16_t, float_status *status);
194
float32 int32_to_float32(int32_t, float_status *status);
195
float64 int16_to_float64(int16_t, float_status *status);
196
float64 int32_to_float64(int32_t, float_status *status);
197
float32 uint16_to_float32(uint16_t, float_status *status);
198
float32 uint32_to_float32(uint32_t, float_status *status);
199
float64 uint16_to_float64(uint16_t, float_status *status);
200 201 202 203 204 205 206 207 208 209
float64 uint32_to_float64(uint32_t, float_status *status);
floatx80 int32_to_floatx80(int32_t, float_status *status);
float128 int32_to_float128(int32_t, float_status *status);
float32 int64_to_float32(int64_t, float_status *status);
float64 int64_to_float64(int64_t, float_status *status);
floatx80 int64_to_floatx80(int64_t, float_status *status);
float128 int64_to_float128(int64_t, float_status *status);
float32 uint64_to_float32(uint64_t, float_status *status);
float64 uint64_to_float64(uint64_t, float_status *status);
float128 uint64_to_float128(uint64_t, float_status *status);
B
bellard 已提交
210

P
Paul Brook 已提交
211 212 213
/*----------------------------------------------------------------------------
| Software half-precision conversion routines.
*----------------------------------------------------------------------------*/
214 215 216 217
float16 float32_to_float16(float32, flag, float_status *status);
float32 float16_to_float32(float16, flag, float_status *status);
float16 float64_to_float16(float64 a, flag ieee, float_status *status);
float64 float16_to_float64(float16 a, flag ieee, float_status *status);
218 219 220 221 222 223 224 225 226 227 228 229 230
int16_t float16_to_int16(float16, float_status *status);
uint16_t float16_to_uint16(float16 a, float_status *status);
int16_t float16_to_int16_round_to_zero(float16, float_status *status);
uint16_t float16_to_uint16_round_to_zero(float16 a, float_status *status);
int32_t float16_to_int32(float16, float_status *status);
uint32_t float16_to_uint32(float16 a, float_status *status);
int32_t float16_to_int32_round_to_zero(float16, float_status *status);
uint32_t float16_to_uint32_round_to_zero(float16 a, float_status *status);
int64_t float16_to_int64(float16, float_status *status);
uint64_t float16_to_uint64(float16 a, float_status *status);
int64_t float16_to_int64_round_to_zero(float16, float_status *status);
uint64_t float16_to_uint64_round_to_zero(float16 a, float_status *status);
float16 int16_to_float16(int16_t a, float_status *status);
231 232 233 234 235
float16 int32_to_float16(int32_t a, float_status *status);
float16 int64_to_float16(int64_t a, float_status *status);
float16 uint16_to_float16(uint16_t a, float_status *status);
float16 uint32_to_float16(uint32_t a, float_status *status);
float16 uint64_to_float16(uint64_t a, float_status *status);
236 237 238 239

/*----------------------------------------------------------------------------
| Software half-precision operations.
*----------------------------------------------------------------------------*/
A
Alex Bennée 已提交
240

241
float16 float16_round_to_int(float16, float_status *status);
A
Alex Bennée 已提交
242 243
float16 float16_add(float16, float16, float_status *status);
float16 float16_sub(float16, float16, float_status *status);
A
Alex Bennée 已提交
244
float16 float16_mul(float16, float16, float_status *status);
A
Alex Bennée 已提交
245
float16 float16_muladd(float16, float16, float16, int, float_status *status);
A
Alex Bennée 已提交
246
float16 float16_div(float16, float16, float_status *status);
A
Alex Bennée 已提交
247
float16 float16_scalbn(float16, int, float_status *status);
A
Alex Bennée 已提交
248 249 250 251 252 253
float16 float16_min(float16, float16, float_status *status);
float16 float16_max(float16, float16, float_status *status);
float16 float16_minnum(float16, float16, float_status *status);
float16 float16_maxnum(float16, float16, float_status *status);
float16 float16_minnummag(float16, float16, float_status *status);
float16 float16_maxnummag(float16, float16, float_status *status);
A
Alex Bennée 已提交
254
float16 float16_sqrt(float16, float_status *status);
A
Alex Bennée 已提交
255 256
int float16_compare(float16, float16, float_status *status);
int float16_compare_quiet(float16, float16, float_status *status);
A
Alex Bennée 已提交
257

258 259 260
int float16_is_quiet_nan(float16, float_status *status);
int float16_is_signaling_nan(float16, float_status *status);
float16 float16_maybe_silence_nan(float16, float_status *status);
P
Paul Brook 已提交
261

262
static inline int float16_is_any_nan(float16 a)
M
Max Filippov 已提交
263 264 265 266
{
    return ((float16_val(a) & ~0x8000) > 0x7c00);
}

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
static inline int float16_is_neg(float16 a)
{
    return float16_val(a) >> 15;
}

static inline int float16_is_infinity(float16 a)
{
    return (float16_val(a) & 0x7fff) == 0x7c00;
}

static inline int float16_is_zero(float16 a)
{
    return (float16_val(a) & 0x7fff) == 0;
}

static inline int float16_is_zero_or_denormal(float16 a)
{
    return (float16_val(a) & 0x7c00) == 0;
}

287 288 289 290 291 292 293
static inline float16 float16_abs(float16 a)
{
    /* Note that abs does *not* handle NaN specially, nor does
     * it flush denormal inputs to zero.
     */
    return make_float16(float16_val(a) & 0x7fff);
}
294 295 296 297 298 299 300 301 302

static inline float16 float16_chs(float16 a)
{
    /* Note that chs does *not* handle NaN specially, nor does
     * it flush denormal inputs to zero.
     */
    return make_float16(float16_val(a) ^ 0x8000);
}

303 304 305 306 307
static inline float16 float16_set_sign(float16 a, int sign)
{
    return make_float16((float16_val(a) & 0x7fff) | (sign << 15));
}

308 309
#define float16_zero make_float16(0)
#define float16_half make_float16(0x3800)
310 311 312 313
#define float16_one make_float16(0x3c00)
#define float16_one_point_five make_float16(0x3e00)
#define float16_two make_float16(0x4000)
#define float16_three make_float16(0x4200)
314 315
#define float16_infinity make_float16(0x7c00)

316 317 318
/*----------------------------------------------------------------------------
| The pattern for a default generated half-precision NaN.
*----------------------------------------------------------------------------*/
319
float16 float16_default_nan(float_status *status);
320

B
bellard 已提交
321 322 323
/*----------------------------------------------------------------------------
| Software IEC/IEEE single-precision conversion routines.
*----------------------------------------------------------------------------*/
324 325 326 327
int16_t float32_to_int16(float32, float_status *status);
uint16_t float32_to_uint16(float32, float_status *status);
int16_t float32_to_int16_round_to_zero(float32, float_status *status);
uint16_t float32_to_uint16_round_to_zero(float32, float_status *status);
328 329
int32_t float32_to_int32(float32, float_status *status);
int32_t float32_to_int32_round_to_zero(float32, float_status *status);
330 331
uint32_t float32_to_uint32(float32, float_status *status);
uint32_t float32_to_uint32_round_to_zero(float32, float_status *status);
332
int64_t float32_to_int64(float32, float_status *status);
333 334
uint64_t float32_to_uint64(float32, float_status *status);
uint64_t float32_to_uint64_round_to_zero(float32, float_status *status);
335
int64_t float32_to_int64_round_to_zero(float32, float_status *status);
336 337 338
float64 float32_to_float64(float32, float_status *status);
floatx80 float32_to_floatx80(float32, float_status *status);
float128 float32_to_float128(float32, float_status *status);
B
bellard 已提交
339 340 341 342

/*----------------------------------------------------------------------------
| Software IEC/IEEE single-precision operations.
*----------------------------------------------------------------------------*/
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
float32 float32_round_to_int(float32, float_status *status);
float32 float32_add(float32, float32, float_status *status);
float32 float32_sub(float32, float32, float_status *status);
float32 float32_mul(float32, float32, float_status *status);
float32 float32_div(float32, float32, float_status *status);
float32 float32_rem(float32, float32, float_status *status);
float32 float32_muladd(float32, float32, float32, int, float_status *status);
float32 float32_sqrt(float32, float_status *status);
float32 float32_exp2(float32, float_status *status);
float32 float32_log2(float32, float_status *status);
int float32_eq(float32, float32, float_status *status);
int float32_le(float32, float32, float_status *status);
int float32_lt(float32, float32, float_status *status);
int float32_unordered(float32, float32, float_status *status);
int float32_eq_quiet(float32, float32, float_status *status);
int float32_le_quiet(float32, float32, float_status *status);
int float32_lt_quiet(float32, float32, float_status *status);
int float32_unordered_quiet(float32, float32, float_status *status);
int float32_compare(float32, float32, float_status *status);
int float32_compare_quiet(float32, float32, float_status *status);
float32 float32_min(float32, float32, float_status *status);
float32 float32_max(float32, float32, float_status *status);
float32 float32_minnum(float32, float32, float_status *status);
float32 float32_maxnum(float32, float32, float_status *status);
float32 float32_minnummag(float32, float32, float_status *status);
float32 float32_maxnummag(float32, float32, float_status *status);
369 370 371
int float32_is_quiet_nan(float32, float_status *status);
int float32_is_signaling_nan(float32, float_status *status);
float32 float32_maybe_silence_nan(float32, float_status *status);
372
float32 float32_scalbn(float32, int, float_status *status);
B
bellard 已提交
373

374
static inline float32 float32_abs(float32 a)
B
bellard 已提交
375
{
376 377 378
    /* Note that abs does *not* handle NaN specially, nor does
     * it flush denormal inputs to zero.
     */
P
pbrook 已提交
379
    return make_float32(float32_val(a) & 0x7fffffff);
B
bellard 已提交
380 381
}

382
static inline float32 float32_chs(float32 a)
B
bellard 已提交
383
{
384 385 386
    /* Note that chs does *not* handle NaN specially, nor does
     * it flush denormal inputs to zero.
     */
P
pbrook 已提交
387
    return make_float32(float32_val(a) ^ 0x80000000);
B
bellard 已提交
388 389
}

390
static inline int float32_is_infinity(float32 a)
391
{
A
aurel32 已提交
392
    return (float32_val(a) & 0x7fffffff) == 0x7f800000;
393 394
}

395
static inline int float32_is_neg(float32 a)
396 397 398 399
{
    return float32_val(a) >> 31;
}

400
static inline int float32_is_zero(float32 a)
401 402 403 404
{
    return (float32_val(a) & 0x7fffffff) == 0;
}

405
static inline int float32_is_any_nan(float32 a)
406 407 408 409
{
    return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
}

410
static inline int float32_is_zero_or_denormal(float32 a)
411 412 413 414
{
    return (float32_val(a) & 0x7f800000) == 0;
}

415
static inline float32 float32_set_sign(float32 a, int sign)
416 417 418 419
{
    return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
}

P
pbrook 已提交
420
#define float32_zero make_float32(0)
421
#define float32_half make_float32(0x3f000000)
422 423 424 425
#define float32_one make_float32(0x3f800000)
#define float32_one_point_five make_float32(0x3fc00000)
#define float32_two make_float32(0x40000000)
#define float32_three make_float32(0x40400000)
426
#define float32_infinity make_float32(0x7f800000)
P
pbrook 已提交
427

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
/*----------------------------------------------------------------------------
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
| single-precision floating-point value, returning the result.  After being
| shifted into the proper positions, the three fields are simply added
| together to form the result.  This means that any integer portion of `zSig'
| will be added into the exponent.  Since a properly normalized significand
| will have an integer portion equal to 1, the `zExp' input should be 1 less
| than the desired result exponent whenever `zSig' is a complete, normalized
| significand.
*----------------------------------------------------------------------------*/

static inline float32 packFloat32(flag zSign, int zExp, uint32_t zSig)
{
    return make_float32(
          (((uint32_t)zSign) << 31) + (((uint32_t)zExp) << 23) + zSig);
}

445 446 447
/*----------------------------------------------------------------------------
| The pattern for a default generated single-precision NaN.
*----------------------------------------------------------------------------*/
448
float32 float32_default_nan(float_status *status);
449

B
bellard 已提交
450 451 452
/*----------------------------------------------------------------------------
| Software IEC/IEEE double-precision conversion routines.
*----------------------------------------------------------------------------*/
453 454 455 456
int16_t float64_to_int16(float64, float_status *status);
uint16_t float64_to_uint16(float64, float_status *status);
int16_t float64_to_int16_round_to_zero(float64, float_status *status);
uint16_t float64_to_uint16_round_to_zero(float64, float_status *status);
457 458
int32_t float64_to_int32(float64, float_status *status);
int32_t float64_to_int32_round_to_zero(float64, float_status *status);
459 460
uint32_t float64_to_uint32(float64, float_status *status);
uint32_t float64_to_uint32_round_to_zero(float64, float_status *status);
461 462
int64_t float64_to_int64(float64, float_status *status);
int64_t float64_to_int64_round_to_zero(float64, float_status *status);
463 464
uint64_t float64_to_uint64(float64 a, float_status *status);
uint64_t float64_to_uint64_round_to_zero(float64 a, float_status *status);
465 466 467
float32 float64_to_float32(float64, float_status *status);
floatx80 float64_to_floatx80(float64, float_status *status);
float128 float64_to_float128(float64, float_status *status);
B
bellard 已提交
468 469 470 471

/*----------------------------------------------------------------------------
| Software IEC/IEEE double-precision operations.
*----------------------------------------------------------------------------*/
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
float64 float64_round_to_int(float64, float_status *status);
float64 float64_trunc_to_int(float64, float_status *status);
float64 float64_add(float64, float64, float_status *status);
float64 float64_sub(float64, float64, float_status *status);
float64 float64_mul(float64, float64, float_status *status);
float64 float64_div(float64, float64, float_status *status);
float64 float64_rem(float64, float64, float_status *status);
float64 float64_muladd(float64, float64, float64, int, float_status *status);
float64 float64_sqrt(float64, float_status *status);
float64 float64_log2(float64, float_status *status);
int float64_eq(float64, float64, float_status *status);
int float64_le(float64, float64, float_status *status);
int float64_lt(float64, float64, float_status *status);
int float64_unordered(float64, float64, float_status *status);
int float64_eq_quiet(float64, float64, float_status *status);
int float64_le_quiet(float64, float64, float_status *status);
int float64_lt_quiet(float64, float64, float_status *status);
int float64_unordered_quiet(float64, float64, float_status *status);
int float64_compare(float64, float64, float_status *status);
int float64_compare_quiet(float64, float64, float_status *status);
float64 float64_min(float64, float64, float_status *status);
float64 float64_max(float64, float64, float_status *status);
float64 float64_minnum(float64, float64, float_status *status);
float64 float64_maxnum(float64, float64, float_status *status);
float64 float64_minnummag(float64, float64, float_status *status);
float64 float64_maxnummag(float64, float64, float_status *status);
498 499 500
int float64_is_quiet_nan(float64 a, float_status *status);
int float64_is_signaling_nan(float64, float_status *status);
float64 float64_maybe_silence_nan(float64, float_status *status);
501
float64 float64_scalbn(float64, int, float_status *status);
B
bellard 已提交
502

503
static inline float64 float64_abs(float64 a)
B
bellard 已提交
504
{
505 506 507
    /* Note that abs does *not* handle NaN specially, nor does
     * it flush denormal inputs to zero.
     */
P
pbrook 已提交
508
    return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
B
bellard 已提交
509 510
}

511
static inline float64 float64_chs(float64 a)
B
bellard 已提交
512
{
513 514 515
    /* Note that chs does *not* handle NaN specially, nor does
     * it flush denormal inputs to zero.
     */
P
pbrook 已提交
516
    return make_float64(float64_val(a) ^ 0x8000000000000000LL);
B
bellard 已提交
517 518
}

519
static inline int float64_is_infinity(float64 a)
520 521 522 523
{
    return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
}

524
static inline int float64_is_neg(float64 a)
525 526 527 528
{
    return float64_val(a) >> 63;
}

529
static inline int float64_is_zero(float64 a)
530 531 532 533
{
    return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
}

534
static inline int float64_is_any_nan(float64 a)
535 536 537 538
{
    return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
}

539
static inline int float64_is_zero_or_denormal(float64 a)
540 541 542 543
{
    return (float64_val(a) & 0x7ff0000000000000LL) == 0;
}

544
static inline float64 float64_set_sign(float64 a, int sign)
545 546 547 548 549
{
    return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
                        | ((int64_t)sign << 63));
}

P
pbrook 已提交
550
#define float64_zero make_float64(0)
551
#define float64_half make_float64(0x3fe0000000000000LL)
552
#define float64_one make_float64(0x3ff0000000000000LL)
553 554 555
#define float64_one_point_five make_float64(0x3FF8000000000000ULL)
#define float64_two make_float64(0x4000000000000000ULL)
#define float64_three make_float64(0x4008000000000000ULL)
A
Aurelien Jarno 已提交
556
#define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
557
#define float64_infinity make_float64(0x7ff0000000000000LL)
P
pbrook 已提交
558

559 560 561
/*----------------------------------------------------------------------------
| The pattern for a default generated double-precision NaN.
*----------------------------------------------------------------------------*/
562
float64 float64_default_nan(float_status *status);
563

B
bellard 已提交
564 565 566
/*----------------------------------------------------------------------------
| Software IEC/IEEE extended double-precision conversion routines.
*----------------------------------------------------------------------------*/
567 568
int32_t floatx80_to_int32(floatx80, float_status *status);
int32_t floatx80_to_int32_round_to_zero(floatx80, float_status *status);
569 570
int64_t floatx80_to_int64(floatx80, float_status *status);
int64_t floatx80_to_int64_round_to_zero(floatx80, float_status *status);
571 572 573
float32 floatx80_to_float32(floatx80, float_status *status);
float64 floatx80_to_float64(floatx80, float_status *status);
float128 floatx80_to_float128(floatx80, float_status *status);
B
bellard 已提交
574 575 576 577

/*----------------------------------------------------------------------------
| Software IEC/IEEE extended double-precision operations.
*----------------------------------------------------------------------------*/
578
floatx80 floatx80_round(floatx80 a, float_status *status);
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
floatx80 floatx80_round_to_int(floatx80, float_status *status);
floatx80 floatx80_add(floatx80, floatx80, float_status *status);
floatx80 floatx80_sub(floatx80, floatx80, float_status *status);
floatx80 floatx80_mul(floatx80, floatx80, float_status *status);
floatx80 floatx80_div(floatx80, floatx80, float_status *status);
floatx80 floatx80_rem(floatx80, floatx80, float_status *status);
floatx80 floatx80_sqrt(floatx80, float_status *status);
int floatx80_eq(floatx80, floatx80, float_status *status);
int floatx80_le(floatx80, floatx80, float_status *status);
int floatx80_lt(floatx80, floatx80, float_status *status);
int floatx80_unordered(floatx80, floatx80, float_status *status);
int floatx80_eq_quiet(floatx80, floatx80, float_status *status);
int floatx80_le_quiet(floatx80, floatx80, float_status *status);
int floatx80_lt_quiet(floatx80, floatx80, float_status *status);
int floatx80_unordered_quiet(floatx80, floatx80, float_status *status);
int floatx80_compare(floatx80, floatx80, float_status *status);
int floatx80_compare_quiet(floatx80, floatx80, float_status *status);
596 597 598
int floatx80_is_quiet_nan(floatx80, float_status *status);
int floatx80_is_signaling_nan(floatx80, float_status *status);
floatx80 floatx80_maybe_silence_nan(floatx80, float_status *status);
599
floatx80 floatx80_scalbn(floatx80, int, float_status *status);
B
bellard 已提交
600

601
static inline floatx80 floatx80_abs(floatx80 a)
B
bellard 已提交
602 603 604 605 606
{
    a.high &= 0x7fff;
    return a;
}

607
static inline floatx80 floatx80_chs(floatx80 a)
B
bellard 已提交
608 609 610 611 612
{
    a.high ^= 0x8000;
    return a;
}

613
static inline int floatx80_is_infinity(floatx80 a)
614
{
615
    return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
616 617
}

618
static inline int floatx80_is_neg(floatx80 a)
619 620 621 622
{
    return a.high >> 15;
}

623
static inline int floatx80_is_zero(floatx80 a)
624 625 626 627
{
    return (a.high & 0x7fff) == 0 && a.low == 0;
}

628
static inline int floatx80_is_zero_or_denormal(floatx80 a)
629 630 631 632
{
    return (a.high & 0x7fff) == 0;
}

633
static inline int floatx80_is_any_nan(floatx80 a)
634 635 636 637
{
    return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
}

638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
/*----------------------------------------------------------------------------
| Return whether the given value is an invalid floatx80 encoding.
| Invalid floatx80 encodings arise when the integer bit is not set, but
| the exponent is not zero. The only times the integer bit is permitted to
| be zero is in subnormal numbers and the value zero.
| This includes what the Intel software developer's manual calls pseudo-NaNs,
| pseudo-infinities and un-normal numbers. It does not include
| pseudo-denormals, which must still be correctly handled as inputs even
| if they are never generated as outputs.
*----------------------------------------------------------------------------*/
static inline bool floatx80_invalid_encoding(floatx80 a)
{
    return (a.low & (1ULL << 63)) == 0 && (a.high & 0x7FFF) != 0;
}

653 654 655
#define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
#define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
#define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
A
Aurelien Jarno 已提交
656
#define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
657 658 659
#define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
#define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)

660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
/*----------------------------------------------------------------------------
| Returns the fraction bits of the extended double-precision floating-point
| value `a'.
*----------------------------------------------------------------------------*/

static inline uint64_t extractFloatx80Frac(floatx80 a)
{
    return a.low;
}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the extended double-precision floating-point
| value `a'.
*----------------------------------------------------------------------------*/

static inline int32_t extractFloatx80Exp(floatx80 a)
{
    return a.high & 0x7FFF;
}

/*----------------------------------------------------------------------------
| Returns the sign bit of the extended double-precision floating-point value
| `a'.
*----------------------------------------------------------------------------*/

static inline flag extractFloatx80Sign(floatx80 a)
{
    return a.high >> 15;
}

/*----------------------------------------------------------------------------
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into an
| extended double-precision floating-point value, returning the result.
*----------------------------------------------------------------------------*/

static inline floatx80 packFloatx80(flag zSign, int32_t zExp, uint64_t zSig)
{
    floatx80 z;

    z.low = zSig;
    z.high = (((uint16_t)zSign) << 15) + zExp;
    return z;
}

/*----------------------------------------------------------------------------
| Normalizes the subnormal extended double-precision floating-point value
| represented by the denormalized significand `aSig'.  The normalized exponent
| and significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/

void normalizeFloatx80Subnormal(uint64_t aSig, int32_t *zExpPtr,
                                uint64_t *zSigPtr);

/*----------------------------------------------------------------------------
| Takes two extended double-precision floating-point values `a' and `b', one
| of which is a NaN, and returns the appropriate NaN result.  If either `a' or
| `b' is a signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/

floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b, float_status *status);

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and extended significand formed by the concatenation of `zSig0' and `zSig1',
| and returns the proper extended double-precision floating-point value
| corresponding to the abstract input.  Ordinarily, the abstract value is
| rounded and packed into the extended double-precision format, with the
| inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal extended
| double-precision floating-point number.
|     If `roundingPrecision' is 32 or 64, the result is rounded to the same
| number of bits as single or double precision, respectively.  Otherwise, the
| result is rounded to the full precision of the extended double-precision
| format.
|     The input significand must be normalized or smaller.  If the input
| significand is not normalized, `zExp' must be 0; in that case, the result
| returned is a subnormal number, and it must not require rounding.  The
| handling of underflow and overflow follows the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

floatx80 roundAndPackFloatx80(int8_t roundingPrecision, flag zSign,
                              int32_t zExp, uint64_t zSig0, uint64_t zSig1,
                              float_status *status);

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent
| `zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
| and returns the proper extended double-precision floating-point value
| corresponding to the abstract input.  This routine is just like
| `roundAndPackFloatx80' except that the input significand does not have to be
| normalized.
*----------------------------------------------------------------------------*/

floatx80 normalizeRoundAndPackFloatx80(int8_t roundingPrecision,
                                       flag zSign, int32_t zExp,
                                       uint64_t zSig0, uint64_t zSig1,
                                       float_status *status);

764
/*----------------------------------------------------------------------------
765
| The pattern for a default generated extended double-precision NaN.
766
*----------------------------------------------------------------------------*/
767
floatx80 floatx80_default_nan(float_status *status);
768

B
bellard 已提交
769 770 771
/*----------------------------------------------------------------------------
| Software IEC/IEEE quadruple-precision conversion routines.
*----------------------------------------------------------------------------*/
772 773
int32_t float128_to_int32(float128, float_status *status);
int32_t float128_to_int32_round_to_zero(float128, float_status *status);
774 775
int64_t float128_to_int64(float128, float_status *status);
int64_t float128_to_int64_round_to_zero(float128, float_status *status);
776 777
uint64_t float128_to_uint64(float128, float_status *status);
uint64_t float128_to_uint64_round_to_zero(float128, float_status *status);
778
uint32_t float128_to_uint32_round_to_zero(float128, float_status *status);
779 780 781
float32 float128_to_float32(float128, float_status *status);
float64 float128_to_float64(float128, float_status *status);
floatx80 float128_to_floatx80(float128, float_status *status);
B
bellard 已提交
782 783 784 785

/*----------------------------------------------------------------------------
| Software IEC/IEEE quadruple-precision operations.
*----------------------------------------------------------------------------*/
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
float128 float128_round_to_int(float128, float_status *status);
float128 float128_add(float128, float128, float_status *status);
float128 float128_sub(float128, float128, float_status *status);
float128 float128_mul(float128, float128, float_status *status);
float128 float128_div(float128, float128, float_status *status);
float128 float128_rem(float128, float128, float_status *status);
float128 float128_sqrt(float128, float_status *status);
int float128_eq(float128, float128, float_status *status);
int float128_le(float128, float128, float_status *status);
int float128_lt(float128, float128, float_status *status);
int float128_unordered(float128, float128, float_status *status);
int float128_eq_quiet(float128, float128, float_status *status);
int float128_le_quiet(float128, float128, float_status *status);
int float128_lt_quiet(float128, float128, float_status *status);
int float128_unordered_quiet(float128, float128, float_status *status);
int float128_compare(float128, float128, float_status *status);
int float128_compare_quiet(float128, float128, float_status *status);
803 804 805
int float128_is_quiet_nan(float128, float_status *status);
int float128_is_signaling_nan(float128, float_status *status);
float128 float128_maybe_silence_nan(float128, float_status *status);
806
float128 float128_scalbn(float128, int, float_status *status);
B
bellard 已提交
807

808
static inline float128 float128_abs(float128 a)
B
bellard 已提交
809 810 811 812 813
{
    a.high &= 0x7fffffffffffffffLL;
    return a;
}

814
static inline float128 float128_chs(float128 a)
B
bellard 已提交
815 816 817 818 819
{
    a.high ^= 0x8000000000000000LL;
    return a;
}

820
static inline int float128_is_infinity(float128 a)
821 822 823 824
{
    return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
}

825
static inline int float128_is_neg(float128 a)
826 827 828 829
{
    return a.high >> 63;
}

830
static inline int float128_is_zero(float128 a)
831 832 833 834
{
    return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
}

835
static inline int float128_is_zero_or_denormal(float128 a)
836 837 838 839
{
    return (a.high & 0x7fff000000000000LL) == 0;
}

840
static inline int float128_is_any_nan(float128 a)
841 842 843 844 845
{
    return ((a.high >> 48) & 0x7fff) == 0x7fff &&
        ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
}

846 847
#define float128_zero make_float128(0, 0)

848
/*----------------------------------------------------------------------------
849
| The pattern for a default generated quadruple-precision NaN.
850
*----------------------------------------------------------------------------*/
851
float128 float128_default_nan(float_status *status);
852

853
#endif /* SOFTFLOAT_H */