ram_addr.h 14.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Declarations for cpu physical memory functions
 *
 * Copyright 2011 Red Hat, Inc. and/or its affiliates
 *
 * Authors:
 *  Avi Kivity <avi@redhat.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or
 * later.  See the COPYING file in the top-level directory.
 *
 */

/*
 * This header is for use by exec.c and memory.c ONLY.  Do not include it.
 * The functions declared here will be removed soon.
 */

#ifndef RAM_ADDR_H
#define RAM_ADDR_H

#ifndef CONFIG_USER_ONLY
#include "hw/xen/xen.h"

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
struct RAMBlock {
    struct rcu_head rcu;
    struct MemoryRegion *mr;
    uint8_t *host;
    ram_addr_t offset;
    ram_addr_t used_length;
    ram_addr_t max_length;
    void (*resized)(const char*, uint64_t length, void *host);
    uint32_t flags;
    /* Protected by iothread lock.  */
    char idstr[256];
    /* RCU-enabled, writes protected by the ramlist lock */
    QLIST_ENTRY(RAMBlock) next;
    int fd;
};

41 42 43 44 45
static inline bool offset_in_ramblock(RAMBlock *b, ram_addr_t offset)
{
    return (b && b->host && offset < b->used_length) ? true : false;
}

46 47
static inline void *ramblock_ptr(RAMBlock *block, ram_addr_t offset)
{
48
    assert(offset_in_ramblock(block, offset));
49 50 51
    return (char *)block->host + offset;
}

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
/* The dirty memory bitmap is split into fixed-size blocks to allow growth
 * under RCU.  The bitmap for a block can be accessed as follows:
 *
 *   rcu_read_lock();
 *
 *   DirtyMemoryBlocks *blocks =
 *       atomic_rcu_read(&ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION]);
 *
 *   ram_addr_t idx = (addr >> TARGET_PAGE_BITS) / DIRTY_MEMORY_BLOCK_SIZE;
 *   unsigned long *block = blocks.blocks[idx];
 *   ...access block bitmap...
 *
 *   rcu_read_unlock();
 *
 * Remember to check for the end of the block when accessing a range of
 * addresses.  Move on to the next block if you reach the end.
 *
 * Organization into blocks allows dirty memory to grow (but not shrink) under
 * RCU.  When adding new RAMBlocks requires the dirty memory to grow, a new
 * DirtyMemoryBlocks array is allocated with pointers to existing blocks kept
 * the same.  Other threads can safely access existing blocks while dirty
 * memory is being grown.  When no threads are using the old DirtyMemoryBlocks
 * anymore it is freed by RCU (but the underlying blocks stay because they are
 * pointed to from the new DirtyMemoryBlocks).
 */
#define DIRTY_MEMORY_BLOCK_SIZE ((ram_addr_t)256 * 1024 * 8)
typedef struct {
    struct rcu_head rcu;
    unsigned long *blocks[];
} DirtyMemoryBlocks;

83 84 85 86 87
typedef struct RAMList {
    QemuMutex mutex;
    RAMBlock *mru_block;
    /* RCU-enabled, writes protected by the ramlist lock. */
    QLIST_HEAD(, RAMBlock) blocks;
88
    DirtyMemoryBlocks *dirty_memory[DIRTY_MEMORY_NUM];
89 90 91 92 93 94 95 96
    uint32_t version;
} RAMList;
extern RAMList ram_list;

ram_addr_t last_ram_offset(void);
void qemu_mutex_lock_ramlist(void);
void qemu_mutex_unlock_ramlist(void);

97 98 99 100 101 102 103 104 105 106 107
RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
                                   bool share, const char *mem_path,
                                   Error **errp);
RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
                                  MemoryRegion *mr, Error **errp);
RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp);
RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t max_size,
                                    void (*resized)(const char*,
                                                    uint64_t length,
                                                    void *host),
                                    MemoryRegion *mr, Error **errp);
108
int qemu_get_ram_fd(ram_addr_t addr);
109
void qemu_set_ram_fd(ram_addr_t addr, int fd);
110
void *qemu_get_ram_block_host_ptr(ram_addr_t addr);
111 112
void qemu_ram_free(ram_addr_t addr);

113 114
int qemu_ram_resize(ram_addr_t base, ram_addr_t newsize, Error **errp);

115 116 117
#define DIRTY_CLIENTS_ALL     ((1 << DIRTY_MEMORY_NUM) - 1)
#define DIRTY_CLIENTS_NOCODE  (DIRTY_CLIENTS_ALL & ~(1 << DIRTY_MEMORY_CODE))

118 119 120 121
static inline bool cpu_physical_memory_get_dirty(ram_addr_t start,
                                                 ram_addr_t length,
                                                 unsigned client)
{
122 123
    DirtyMemoryBlocks *blocks;
    unsigned long end, page;
124
    unsigned long idx, offset, base;
125
    bool dirty = false;
126 127 128 129 130 131

    assert(client < DIRTY_MEMORY_NUM);

    end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
    page = start >> TARGET_PAGE_BITS;

132 133 134 135
    rcu_read_lock();

    blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);

136 137 138
    idx = page / DIRTY_MEMORY_BLOCK_SIZE;
    offset = page % DIRTY_MEMORY_BLOCK_SIZE;
    base = page - offset;
139
    while (page < end) {
140 141 142 143
        unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
        unsigned long num = next - base;
        unsigned long found = find_next_bit(blocks->blocks[idx], num, offset);
        if (found < num) {
144 145 146 147
            dirty = true;
            break;
        }

148 149 150 151
        page = next;
        idx++;
        offset = 0;
        base += DIRTY_MEMORY_BLOCK_SIZE;
152 153 154 155 156
    }

    rcu_read_unlock();

    return dirty;
157 158
}

159
static inline bool cpu_physical_memory_all_dirty(ram_addr_t start,
160 161 162
                                                 ram_addr_t length,
                                                 unsigned client)
{
163 164
    DirtyMemoryBlocks *blocks;
    unsigned long end, page;
165
    unsigned long idx, offset, base;
166
    bool dirty = true;
167 168 169 170 171 172

    assert(client < DIRTY_MEMORY_NUM);

    end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
    page = start >> TARGET_PAGE_BITS;

173 174 175 176
    rcu_read_lock();

    blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);

177 178 179
    idx = page / DIRTY_MEMORY_BLOCK_SIZE;
    offset = page % DIRTY_MEMORY_BLOCK_SIZE;
    base = page - offset;
180
    while (page < end) {
181 182 183 184
        unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
        unsigned long num = next - base;
        unsigned long found = find_next_zero_bit(blocks->blocks[idx], num, offset);
        if (found < num) {
185 186 187 188
            dirty = false;
            break;
        }

189 190 191 192
        page = next;
        idx++;
        offset = 0;
        base += DIRTY_MEMORY_BLOCK_SIZE;
193 194 195 196 197
    }

    rcu_read_unlock();

    return dirty;
198 199
}

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
static inline bool cpu_physical_memory_get_dirty_flag(ram_addr_t addr,
                                                      unsigned client)
{
    return cpu_physical_memory_get_dirty(addr, 1, client);
}

static inline bool cpu_physical_memory_is_clean(ram_addr_t addr)
{
    bool vga = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_VGA);
    bool code = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_CODE);
    bool migration =
        cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_MIGRATION);
    return !(vga && code && migration);
}

215 216 217
static inline uint8_t cpu_physical_memory_range_includes_clean(ram_addr_t start,
                                                               ram_addr_t length,
                                                               uint8_t mask)
218
{
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
    uint8_t ret = 0;

    if (mask & (1 << DIRTY_MEMORY_VGA) &&
        !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_VGA)) {
        ret |= (1 << DIRTY_MEMORY_VGA);
    }
    if (mask & (1 << DIRTY_MEMORY_CODE) &&
        !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_CODE)) {
        ret |= (1 << DIRTY_MEMORY_CODE);
    }
    if (mask & (1 << DIRTY_MEMORY_MIGRATION) &&
        !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_MIGRATION)) {
        ret |= (1 << DIRTY_MEMORY_MIGRATION);
    }
    return ret;
234 235
}

236 237 238
static inline void cpu_physical_memory_set_dirty_flag(ram_addr_t addr,
                                                      unsigned client)
{
239 240 241
    unsigned long page, idx, offset;
    DirtyMemoryBlocks *blocks;

242
    assert(client < DIRTY_MEMORY_NUM);
243 244 245 246 247 248 249 250 251 252 253 254

    page = addr >> TARGET_PAGE_BITS;
    idx = page / DIRTY_MEMORY_BLOCK_SIZE;
    offset = page % DIRTY_MEMORY_BLOCK_SIZE;

    rcu_read_lock();

    blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);

    set_bit_atomic(offset, blocks->blocks[idx]);

    rcu_read_unlock();
255 256 257
}

static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start,
258 259
                                                       ram_addr_t length,
                                                       uint8_t mask)
260
{
261
    DirtyMemoryBlocks *blocks[DIRTY_MEMORY_NUM];
262
    unsigned long end, page;
263
    unsigned long idx, offset, base;
264
    int i;
265

266 267 268 269
    if (!mask && !xen_enabled()) {
        return;
    }

270 271
    end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
    page = start >> TARGET_PAGE_BITS;
272 273 274 275 276

    rcu_read_lock();

    for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
        blocks[i] = atomic_rcu_read(&ram_list.dirty_memory[i]);
277
    }
278

279 280 281
    idx = page / DIRTY_MEMORY_BLOCK_SIZE;
    offset = page % DIRTY_MEMORY_BLOCK_SIZE;
    base = page - offset;
282
    while (page < end) {
283
        unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
284 285 286

        if (likely(mask & (1 << DIRTY_MEMORY_MIGRATION))) {
            bitmap_set_atomic(blocks[DIRTY_MEMORY_MIGRATION]->blocks[idx],
287
                              offset, next - page);
288 289 290
        }
        if (unlikely(mask & (1 << DIRTY_MEMORY_VGA))) {
            bitmap_set_atomic(blocks[DIRTY_MEMORY_VGA]->blocks[idx],
291
                              offset, next - page);
292 293 294
        }
        if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) {
            bitmap_set_atomic(blocks[DIRTY_MEMORY_CODE]->blocks[idx],
295
                              offset, next - page);
296 297
        }

298 299 300 301
        page = next;
        idx++;
        offset = 0;
        base += DIRTY_MEMORY_BLOCK_SIZE;
302
    }
303 304 305

    rcu_read_unlock();

306 307 308
    xen_modified_memory(start, length);
}

309
#if !defined(_WIN32)
310 311 312 313
static inline void cpu_physical_memory_set_dirty_lebitmap(unsigned long *bitmap,
                                                          ram_addr_t start,
                                                          ram_addr_t pages)
{
314
    unsigned long i, j;
315 316 317
    unsigned long page_number, c;
    hwaddr addr;
    ram_addr_t ram_addr;
318
    unsigned long len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
319
    unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
320
    unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
321

322
    /* start address is aligned at the start of a word? */
323 324
    if ((((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) &&
        (hpratio == 1)) {
325 326 327
        unsigned long **blocks[DIRTY_MEMORY_NUM];
        unsigned long idx;
        unsigned long offset;
328 329 330
        long k;
        long nr = BITS_TO_LONGS(pages);

331 332 333 334 335 336 337 338 339 340
        idx = (start >> TARGET_PAGE_BITS) / DIRTY_MEMORY_BLOCK_SIZE;
        offset = BIT_WORD((start >> TARGET_PAGE_BITS) %
                          DIRTY_MEMORY_BLOCK_SIZE);

        rcu_read_lock();

        for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
            blocks[i] = atomic_rcu_read(&ram_list.dirty_memory[i])->blocks;
        }

341 342 343 344
        for (k = 0; k < nr; k++) {
            if (bitmap[k]) {
                unsigned long temp = leul_to_cpu(bitmap[k]);

345 346
                atomic_or(&blocks[DIRTY_MEMORY_MIGRATION][idx][offset], temp);
                atomic_or(&blocks[DIRTY_MEMORY_VGA][idx][offset], temp);
347
                if (tcg_enabled()) {
348
                    atomic_or(&blocks[DIRTY_MEMORY_CODE][idx][offset], temp);
349
                }
350
            }
351 352 353 354 355

            if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
                offset = 0;
                idx++;
            }
356
        }
357 358 359

        rcu_read_unlock();

360
        xen_modified_memory(start, pages << TARGET_PAGE_BITS);
361
    } else {
362
        uint8_t clients = tcg_enabled() ? DIRTY_CLIENTS_ALL : DIRTY_CLIENTS_NOCODE;
363 364 365 366 367 368 369 370
        /*
         * bitmap-traveling is faster than memory-traveling (for addr...)
         * especially when most of the memory is not dirty.
         */
        for (i = 0; i < len; i++) {
            if (bitmap[i] != 0) {
                c = leul_to_cpu(bitmap[i]);
                do {
N
Natanael Copa 已提交
371
                    j = ctzl(c);
372 373 374 375 376
                    c &= ~(1ul << j);
                    page_number = (i * HOST_LONG_BITS + j) * hpratio;
                    addr = page_number * TARGET_PAGE_SIZE;
                    ram_addr = start + addr;
                    cpu_physical_memory_set_dirty_range(ram_addr,
377
                                       TARGET_PAGE_SIZE * hpratio, clients);
378 379
                } while (c != 0);
            }
380 381 382
        }
    }
}
383
#endif /* not _WIN32 */
384

385 386 387
bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
                                              ram_addr_t length,
                                              unsigned client);
388

389 390 391
static inline void cpu_physical_memory_clear_dirty_range(ram_addr_t start,
                                                         ram_addr_t length)
{
392 393 394
    cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_MIGRATION);
    cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_VGA);
    cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_CODE);
395 396 397
}


398 399 400 401 402 403 404 405 406 407 408 409 410
static inline
uint64_t cpu_physical_memory_sync_dirty_bitmap(unsigned long *dest,
                                               ram_addr_t start,
                                               ram_addr_t length)
{
    ram_addr_t addr;
    unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
    uint64_t num_dirty = 0;

    /* start address is aligned at the start of a word? */
    if (((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) {
        int k;
        int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
411 412 413 414 415 416 417 418 419
        unsigned long * const *src;
        unsigned long idx = (page * BITS_PER_LONG) / DIRTY_MEMORY_BLOCK_SIZE;
        unsigned long offset = BIT_WORD((page * BITS_PER_LONG) %
                                        DIRTY_MEMORY_BLOCK_SIZE);

        rcu_read_lock();

        src = atomic_rcu_read(
                &ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION])->blocks;
420 421

        for (k = page; k < page + nr; k++) {
422 423
            if (src[idx][offset]) {
                unsigned long bits = atomic_xchg(&src[idx][offset], 0);
424 425
                unsigned long new_dirty;
                new_dirty = ~dest[k];
426 427
                dest[k] |= bits;
                new_dirty &= bits;
428 429
                num_dirty += ctpopl(new_dirty);
            }
430 431 432 433 434

            if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
                offset = 0;
                idx++;
            }
435
        }
436 437

        rcu_read_unlock();
438 439
    } else {
        for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
440 441 442 443
            if (cpu_physical_memory_test_and_clear_dirty(
                        start + addr,
                        TARGET_PAGE_SIZE,
                        DIRTY_MEMORY_MIGRATION)) {
444 445 446 447 448 449 450 451 452 453 454
                long k = (start + addr) >> TARGET_PAGE_BITS;
                if (!test_and_set_bit(k, dest)) {
                    num_dirty++;
                }
            }
        }
    }

    return num_dirty;
}

455
void migration_bitmap_extend(ram_addr_t old, ram_addr_t new);
456 457
#endif
#endif