/* * Declarations for cpu physical memory functions * * Copyright 2011 Red Hat, Inc. and/or its affiliates * * Authors: * Avi Kivity * * This work is licensed under the terms of the GNU GPL, version 2 or * later. See the COPYING file in the top-level directory. * */ /* * This header is for use by exec.c and memory.c ONLY. Do not include it. * The functions declared here will be removed soon. */ #ifndef RAM_ADDR_H #define RAM_ADDR_H #ifndef CONFIG_USER_ONLY #include "hw/xen/xen.h" struct RAMBlock { struct rcu_head rcu; struct MemoryRegion *mr; uint8_t *host; ram_addr_t offset; ram_addr_t used_length; ram_addr_t max_length; void (*resized)(const char*, uint64_t length, void *host); uint32_t flags; /* Protected by iothread lock. */ char idstr[256]; /* RCU-enabled, writes protected by the ramlist lock */ QLIST_ENTRY(RAMBlock) next; int fd; }; static inline bool offset_in_ramblock(RAMBlock *b, ram_addr_t offset) { return (b && b->host && offset < b->used_length) ? true : false; } static inline void *ramblock_ptr(RAMBlock *block, ram_addr_t offset) { assert(offset_in_ramblock(block, offset)); return (char *)block->host + offset; } /* The dirty memory bitmap is split into fixed-size blocks to allow growth * under RCU. The bitmap for a block can be accessed as follows: * * rcu_read_lock(); * * DirtyMemoryBlocks *blocks = * atomic_rcu_read(&ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION]); * * ram_addr_t idx = (addr >> TARGET_PAGE_BITS) / DIRTY_MEMORY_BLOCK_SIZE; * unsigned long *block = blocks.blocks[idx]; * ...access block bitmap... * * rcu_read_unlock(); * * Remember to check for the end of the block when accessing a range of * addresses. Move on to the next block if you reach the end. * * Organization into blocks allows dirty memory to grow (but not shrink) under * RCU. When adding new RAMBlocks requires the dirty memory to grow, a new * DirtyMemoryBlocks array is allocated with pointers to existing blocks kept * the same. Other threads can safely access existing blocks while dirty * memory is being grown. When no threads are using the old DirtyMemoryBlocks * anymore it is freed by RCU (but the underlying blocks stay because they are * pointed to from the new DirtyMemoryBlocks). */ #define DIRTY_MEMORY_BLOCK_SIZE ((ram_addr_t)256 * 1024 * 8) typedef struct { struct rcu_head rcu; unsigned long *blocks[]; } DirtyMemoryBlocks; typedef struct RAMList { QemuMutex mutex; RAMBlock *mru_block; /* RCU-enabled, writes protected by the ramlist lock. */ QLIST_HEAD(, RAMBlock) blocks; DirtyMemoryBlocks *dirty_memory[DIRTY_MEMORY_NUM]; uint32_t version; } RAMList; extern RAMList ram_list; ram_addr_t last_ram_offset(void); void qemu_mutex_lock_ramlist(void); void qemu_mutex_unlock_ramlist(void); RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, bool share, const char *mem_path, Error **errp); RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, MemoryRegion *mr, Error **errp); RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp); RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t max_size, void (*resized)(const char*, uint64_t length, void *host), MemoryRegion *mr, Error **errp); int qemu_get_ram_fd(ram_addr_t addr); void qemu_set_ram_fd(ram_addr_t addr, int fd); void *qemu_get_ram_block_host_ptr(ram_addr_t addr); void qemu_ram_free(ram_addr_t addr); int qemu_ram_resize(ram_addr_t base, ram_addr_t newsize, Error **errp); #define DIRTY_CLIENTS_ALL ((1 << DIRTY_MEMORY_NUM) - 1) #define DIRTY_CLIENTS_NOCODE (DIRTY_CLIENTS_ALL & ~(1 << DIRTY_MEMORY_CODE)) static inline bool cpu_physical_memory_get_dirty(ram_addr_t start, ram_addr_t length, unsigned client) { DirtyMemoryBlocks *blocks; unsigned long end, page; unsigned long idx, offset, base; bool dirty = false; assert(client < DIRTY_MEMORY_NUM); end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; page = start >> TARGET_PAGE_BITS; rcu_read_lock(); blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); idx = page / DIRTY_MEMORY_BLOCK_SIZE; offset = page % DIRTY_MEMORY_BLOCK_SIZE; base = page - offset; while (page < end) { unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE); unsigned long num = next - base; unsigned long found = find_next_bit(blocks->blocks[idx], num, offset); if (found < num) { dirty = true; break; } page = next; idx++; offset = 0; base += DIRTY_MEMORY_BLOCK_SIZE; } rcu_read_unlock(); return dirty; } static inline bool cpu_physical_memory_all_dirty(ram_addr_t start, ram_addr_t length, unsigned client) { DirtyMemoryBlocks *blocks; unsigned long end, page; unsigned long idx, offset, base; bool dirty = true; assert(client < DIRTY_MEMORY_NUM); end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; page = start >> TARGET_PAGE_BITS; rcu_read_lock(); blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); idx = page / DIRTY_MEMORY_BLOCK_SIZE; offset = page % DIRTY_MEMORY_BLOCK_SIZE; base = page - offset; while (page < end) { unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE); unsigned long num = next - base; unsigned long found = find_next_zero_bit(blocks->blocks[idx], num, offset); if (found < num) { dirty = false; break; } page = next; idx++; offset = 0; base += DIRTY_MEMORY_BLOCK_SIZE; } rcu_read_unlock(); return dirty; } static inline bool cpu_physical_memory_get_dirty_flag(ram_addr_t addr, unsigned client) { return cpu_physical_memory_get_dirty(addr, 1, client); } static inline bool cpu_physical_memory_is_clean(ram_addr_t addr) { bool vga = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_VGA); bool code = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_CODE); bool migration = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_MIGRATION); return !(vga && code && migration); } static inline uint8_t cpu_physical_memory_range_includes_clean(ram_addr_t start, ram_addr_t length, uint8_t mask) { uint8_t ret = 0; if (mask & (1 << DIRTY_MEMORY_VGA) && !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_VGA)) { ret |= (1 << DIRTY_MEMORY_VGA); } if (mask & (1 << DIRTY_MEMORY_CODE) && !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_CODE)) { ret |= (1 << DIRTY_MEMORY_CODE); } if (mask & (1 << DIRTY_MEMORY_MIGRATION) && !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_MIGRATION)) { ret |= (1 << DIRTY_MEMORY_MIGRATION); } return ret; } static inline void cpu_physical_memory_set_dirty_flag(ram_addr_t addr, unsigned client) { unsigned long page, idx, offset; DirtyMemoryBlocks *blocks; assert(client < DIRTY_MEMORY_NUM); page = addr >> TARGET_PAGE_BITS; idx = page / DIRTY_MEMORY_BLOCK_SIZE; offset = page % DIRTY_MEMORY_BLOCK_SIZE; rcu_read_lock(); blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); set_bit_atomic(offset, blocks->blocks[idx]); rcu_read_unlock(); } static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start, ram_addr_t length, uint8_t mask) { DirtyMemoryBlocks *blocks[DIRTY_MEMORY_NUM]; unsigned long end, page; unsigned long idx, offset, base; int i; if (!mask && !xen_enabled()) { return; } end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; page = start >> TARGET_PAGE_BITS; rcu_read_lock(); for (i = 0; i < DIRTY_MEMORY_NUM; i++) { blocks[i] = atomic_rcu_read(&ram_list.dirty_memory[i]); } idx = page / DIRTY_MEMORY_BLOCK_SIZE; offset = page % DIRTY_MEMORY_BLOCK_SIZE; base = page - offset; while (page < end) { unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE); if (likely(mask & (1 << DIRTY_MEMORY_MIGRATION))) { bitmap_set_atomic(blocks[DIRTY_MEMORY_MIGRATION]->blocks[idx], offset, next - page); } if (unlikely(mask & (1 << DIRTY_MEMORY_VGA))) { bitmap_set_atomic(blocks[DIRTY_MEMORY_VGA]->blocks[idx], offset, next - page); } if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) { bitmap_set_atomic(blocks[DIRTY_MEMORY_CODE]->blocks[idx], offset, next - page); } page = next; idx++; offset = 0; base += DIRTY_MEMORY_BLOCK_SIZE; } rcu_read_unlock(); xen_modified_memory(start, length); } #if !defined(_WIN32) static inline void cpu_physical_memory_set_dirty_lebitmap(unsigned long *bitmap, ram_addr_t start, ram_addr_t pages) { unsigned long i, j; unsigned long page_number, c; hwaddr addr; ram_addr_t ram_addr; unsigned long len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS; unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE; unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS); /* start address is aligned at the start of a word? */ if ((((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) && (hpratio == 1)) { unsigned long **blocks[DIRTY_MEMORY_NUM]; unsigned long idx; unsigned long offset; long k; long nr = BITS_TO_LONGS(pages); idx = (start >> TARGET_PAGE_BITS) / DIRTY_MEMORY_BLOCK_SIZE; offset = BIT_WORD((start >> TARGET_PAGE_BITS) % DIRTY_MEMORY_BLOCK_SIZE); rcu_read_lock(); for (i = 0; i < DIRTY_MEMORY_NUM; i++) { blocks[i] = atomic_rcu_read(&ram_list.dirty_memory[i])->blocks; } for (k = 0; k < nr; k++) { if (bitmap[k]) { unsigned long temp = leul_to_cpu(bitmap[k]); atomic_or(&blocks[DIRTY_MEMORY_MIGRATION][idx][offset], temp); atomic_or(&blocks[DIRTY_MEMORY_VGA][idx][offset], temp); if (tcg_enabled()) { atomic_or(&blocks[DIRTY_MEMORY_CODE][idx][offset], temp); } } if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) { offset = 0; idx++; } } rcu_read_unlock(); xen_modified_memory(start, pages << TARGET_PAGE_BITS); } else { uint8_t clients = tcg_enabled() ? DIRTY_CLIENTS_ALL : DIRTY_CLIENTS_NOCODE; /* * bitmap-traveling is faster than memory-traveling (for addr...) * especially when most of the memory is not dirty. */ for (i = 0; i < len; i++) { if (bitmap[i] != 0) { c = leul_to_cpu(bitmap[i]); do { j = ctzl(c); c &= ~(1ul << j); page_number = (i * HOST_LONG_BITS + j) * hpratio; addr = page_number * TARGET_PAGE_SIZE; ram_addr = start + addr; cpu_physical_memory_set_dirty_range(ram_addr, TARGET_PAGE_SIZE * hpratio, clients); } while (c != 0); } } } } #endif /* not _WIN32 */ bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, ram_addr_t length, unsigned client); static inline void cpu_physical_memory_clear_dirty_range(ram_addr_t start, ram_addr_t length) { cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_MIGRATION); cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_VGA); cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_CODE); } static inline uint64_t cpu_physical_memory_sync_dirty_bitmap(unsigned long *dest, ram_addr_t start, ram_addr_t length) { ram_addr_t addr; unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS); uint64_t num_dirty = 0; /* start address is aligned at the start of a word? */ if (((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) { int k; int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS); unsigned long * const *src; unsigned long idx = (page * BITS_PER_LONG) / DIRTY_MEMORY_BLOCK_SIZE; unsigned long offset = BIT_WORD((page * BITS_PER_LONG) % DIRTY_MEMORY_BLOCK_SIZE); rcu_read_lock(); src = atomic_rcu_read( &ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION])->blocks; for (k = page; k < page + nr; k++) { if (src[idx][offset]) { unsigned long bits = atomic_xchg(&src[idx][offset], 0); unsigned long new_dirty; new_dirty = ~dest[k]; dest[k] |= bits; new_dirty &= bits; num_dirty += ctpopl(new_dirty); } if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) { offset = 0; idx++; } } rcu_read_unlock(); } else { for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) { if (cpu_physical_memory_test_and_clear_dirty( start + addr, TARGET_PAGE_SIZE, DIRTY_MEMORY_MIGRATION)) { long k = (start + addr) >> TARGET_PAGE_BITS; if (!test_and_set_bit(k, dest)) { num_dirty++; } } } } return num_dirty; } void migration_bitmap_extend(ram_addr_t old, ram_addr_t new); #endif #endif