net_tx_pkt.c 17.2 KB
Newer Older
1
/*
2
 * QEMU TX packets abstractions
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * Copyright (c) 2012 Ravello Systems LTD (http://ravellosystems.com)
 *
 * Developed by Daynix Computing LTD (http://www.daynix.com)
 *
 * Authors:
 * Dmitry Fleytman <dmitry@daynix.com>
 * Tamir Shomer <tamirs@daynix.com>
 * Yan Vugenfirer <yan@daynix.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 *
 */

P
Paolo Bonzini 已提交
18
#include "qemu/osdep.h"
19
#include "net_tx_pkt.h"
20 21 22 23
#include "net/eth.h"
#include "net/checksum.h"
#include "net/tap.h"
#include "net/net.h"
24
#include "hw/pci/pci.h"
25 26

enum {
27 28 29 30
    NET_TX_PKT_VHDR_FRAG = 0,
    NET_TX_PKT_L2HDR_FRAG,
    NET_TX_PKT_L3HDR_FRAG,
    NET_TX_PKT_PL_START_FRAG
31 32 33
};

/* TX packet private context */
34
struct NetTxPkt {
35 36
    PCIDevice *pci_dev;

37 38 39 40 41 42 43 44 45 46
    struct virtio_net_hdr virt_hdr;
    bool has_virt_hdr;

    struct iovec *raw;
    uint32_t raw_frags;
    uint32_t max_raw_frags;

    struct iovec *vec;

    uint8_t l2_hdr[ETH_MAX_L2_HDR_LEN];
47
    uint8_t l3_hdr[ETH_MAX_IP_DGRAM_LEN];
48 49 50 51 52 53 54 55 56

    uint32_t payload_len;

    uint32_t payload_frags;
    uint32_t max_payload_frags;

    uint16_t hdr_len;
    eth_pkt_types_e packet_type;
    uint8_t l4proto;
57 58

    bool is_loopback;
59 60
};

61 62
void net_tx_pkt_init(struct NetTxPkt **pkt, PCIDevice *pci_dev,
    uint32_t max_frags, bool has_virt_hdr)
63
{
64
    struct NetTxPkt *p = g_malloc0(sizeof *p);
65

66 67
    p->pci_dev = pci_dev;

68
    p->vec = g_new(struct iovec, max_frags + NET_TX_PKT_PL_START_FRAG);
69

70
    p->raw = g_new(struct iovec, max_frags);
71 72 73 74

    p->max_payload_frags = max_frags;
    p->max_raw_frags = max_frags;
    p->has_virt_hdr = has_virt_hdr;
75 76
    p->vec[NET_TX_PKT_VHDR_FRAG].iov_base = &p->virt_hdr;
    p->vec[NET_TX_PKT_VHDR_FRAG].iov_len =
77
        p->has_virt_hdr ? sizeof p->virt_hdr : 0;
78
    p->vec[NET_TX_PKT_L2HDR_FRAG].iov_base = &p->l2_hdr;
79
    p->vec[NET_TX_PKT_L3HDR_FRAG].iov_base = &p->l3_hdr;
80 81 82 83

    *pkt = p;
}

84
void net_tx_pkt_uninit(struct NetTxPkt *pkt)
85 86 87 88 89 90 91 92
{
    if (pkt) {
        g_free(pkt->vec);
        g_free(pkt->raw);
        g_free(pkt);
    }
}

93
void net_tx_pkt_update_ip_hdr_checksum(struct NetTxPkt *pkt)
94 95 96 97
{
    uint16_t csum;
    assert(pkt);
    struct ip_header *ip_hdr;
98
    ip_hdr = pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_base;
99 100

    ip_hdr->ip_len = cpu_to_be16(pkt->payload_len +
101
        pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len);
102 103 104

    ip_hdr->ip_sum = 0;
    csum = net_raw_checksum((uint8_t *)ip_hdr,
105
        pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len);
106
    ip_hdr->ip_sum = cpu_to_be16(csum);
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
}

void net_tx_pkt_update_ip_checksums(struct NetTxPkt *pkt)
{
    uint16_t csum;
    uint32_t cntr, cso;
    assert(pkt);
    uint8_t gso_type = pkt->virt_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN;
    void *ip_hdr = pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_base;

    if (pkt->payload_len + pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len >
        ETH_MAX_IP_DGRAM_LEN) {
        return;
    }

    if (gso_type == VIRTIO_NET_HDR_GSO_TCPV4 ||
        gso_type == VIRTIO_NET_HDR_GSO_UDP) {
        /* Calculate IP header checksum */
        net_tx_pkt_update_ip_hdr_checksum(pkt);

        /* Calculate IP pseudo header checksum */
        cntr = eth_calc_ip4_pseudo_hdr_csum(ip_hdr, pkt->payload_len, &cso);
        csum = cpu_to_be16(~net_checksum_finish(cntr));
    } else if (gso_type == VIRTIO_NET_HDR_GSO_TCPV6) {
        /* Calculate IP pseudo header checksum */
        cntr = eth_calc_ip6_pseudo_hdr_csum(ip_hdr, pkt->payload_len,
                                            IP_PROTO_TCP, &cso);
        csum = cpu_to_be16(~net_checksum_finish(cntr));
    } else {
        return;
    }
138

139
    iov_from_buf(&pkt->vec[NET_TX_PKT_PL_START_FRAG], pkt->payload_frags,
140 141 142
                 pkt->virt_hdr.csum_offset, &csum, sizeof(csum));
}

143
static void net_tx_pkt_calculate_hdr_len(struct NetTxPkt *pkt)
144
{
145 146
    pkt->hdr_len = pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_len +
        pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len;
147 148
}

149
static bool net_tx_pkt_parse_headers(struct NetTxPkt *pkt)
150 151 152 153 154 155 156 157
{
    struct iovec *l2_hdr, *l3_hdr;
    size_t bytes_read;
    size_t full_ip6hdr_len;
    uint16_t l3_proto;

    assert(pkt);

158 159
    l2_hdr = &pkt->vec[NET_TX_PKT_L2HDR_FRAG];
    l3_hdr = &pkt->vec[NET_TX_PKT_L3HDR_FRAG];
160 161 162

    bytes_read = iov_to_buf(pkt->raw, pkt->raw_frags, 0, l2_hdr->iov_base,
                            ETH_MAX_L2_HDR_LEN);
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
    if (bytes_read < sizeof(struct eth_header)) {
        l2_hdr->iov_len = 0;
        return false;
    }

    l2_hdr->iov_len = sizeof(struct eth_header);
    switch (be16_to_cpu(PKT_GET_ETH_HDR(l2_hdr->iov_base)->h_proto)) {
    case ETH_P_VLAN:
        l2_hdr->iov_len += sizeof(struct vlan_header);
        break;
    case ETH_P_DVLAN:
        l2_hdr->iov_len += 2 * sizeof(struct vlan_header);
        break;
    }

    if (bytes_read < l2_hdr->iov_len) {
179
        l2_hdr->iov_len = 0;
180 181
        l3_hdr->iov_len = 0;
        pkt->packet_type = ETH_PKT_UCAST;
182
        return false;
183 184 185 186
    } else {
        l2_hdr->iov_len = ETH_MAX_L2_HDR_LEN;
        l2_hdr->iov_len = eth_get_l2_hdr_length(l2_hdr->iov_base);
        pkt->packet_type = get_eth_packet_type(l2_hdr->iov_base);
187 188
    }

189
    l3_proto = eth_get_l3_proto(l2_hdr, 1, l2_hdr->iov_len);
190 191 192 193 194 195 196 197 198 199 200 201 202

    switch (l3_proto) {
    case ETH_P_IP:
        bytes_read = iov_to_buf(pkt->raw, pkt->raw_frags, l2_hdr->iov_len,
                                l3_hdr->iov_base, sizeof(struct ip_header));

        if (bytes_read < sizeof(struct ip_header)) {
            l3_hdr->iov_len = 0;
            return false;
        }

        l3_hdr->iov_len = IP_HDR_GET_LEN(l3_hdr->iov_base);

203
        if (l3_hdr->iov_len < sizeof(struct ip_header)) {
204 205 206
            l3_hdr->iov_len = 0;
            return false;
        }
207

208
        pkt->l4proto = IP_HDR_GET_P(l3_hdr->iov_base);
209 210 211 212 213 214 215 216 217 218 219 220 221

        if (IP_HDR_GET_LEN(l3_hdr->iov_base) != sizeof(struct ip_header)) {
            /* copy optional IPv4 header data if any*/
            bytes_read = iov_to_buf(pkt->raw, pkt->raw_frags,
                                    l2_hdr->iov_len + sizeof(struct ip_header),
                                    l3_hdr->iov_base + sizeof(struct ip_header),
                                    l3_hdr->iov_len - sizeof(struct ip_header));
            if (bytes_read < l3_hdr->iov_len - sizeof(struct ip_header)) {
                l3_hdr->iov_len = 0;
                return false;
            }
        }

222 223 224
        break;

    case ETH_P_IPV6:
225 226 227
    {
        eth_ip6_hdr_info hdrinfo;

228
        if (!eth_parse_ipv6_hdr(pkt->raw, pkt->raw_frags, l2_hdr->iov_len,
229
                                &hdrinfo)) {
230 231 232 233
            l3_hdr->iov_len = 0;
            return false;
        }

234 235 236 237 238 239 240
        pkt->l4proto = hdrinfo.l4proto;
        full_ip6hdr_len = hdrinfo.full_hdr_len;

        if (full_ip6hdr_len > ETH_MAX_IP_DGRAM_LEN) {
            l3_hdr->iov_len = 0;
            return false;
        }
241 242 243 244 245 246 247 248 249 250 251

        bytes_read = iov_to_buf(pkt->raw, pkt->raw_frags, l2_hdr->iov_len,
                                l3_hdr->iov_base, full_ip6hdr_len);

        if (bytes_read < full_ip6hdr_len) {
            l3_hdr->iov_len = 0;
            return false;
        } else {
            l3_hdr->iov_len = full_ip6hdr_len;
        }
        break;
252
    }
253 254 255 256 257
    default:
        l3_hdr->iov_len = 0;
        break;
    }

258
    net_tx_pkt_calculate_hdr_len(pkt);
259 260 261
    return true;
}

262
static void net_tx_pkt_rebuild_payload(struct NetTxPkt *pkt)
263
{
264
    pkt->payload_len = iov_size(pkt->raw, pkt->raw_frags) - pkt->hdr_len;
265
    pkt->payload_frags = iov_copy(&pkt->vec[NET_TX_PKT_PL_START_FRAG],
266 267
                                pkt->max_payload_frags,
                                pkt->raw, pkt->raw_frags,
268 269
                                pkt->hdr_len, pkt->payload_len);
}
270

271 272 273 274
bool net_tx_pkt_parse(struct NetTxPkt *pkt)
{
    if (net_tx_pkt_parse_headers(pkt)) {
        net_tx_pkt_rebuild_payload(pkt);
275 276 277 278 279 280
        return true;
    } else {
        return false;
    }
}

281
struct virtio_net_hdr *net_tx_pkt_get_vhdr(struct NetTxPkt *pkt)
282 283 284 285 286
{
    assert(pkt);
    return &pkt->virt_hdr;
}

287
static uint8_t net_tx_pkt_get_gso_type(struct NetTxPkt *pkt,
288 289 290 291 292
                                          bool tso_enable)
{
    uint8_t rc = VIRTIO_NET_HDR_GSO_NONE;
    uint16_t l3_proto;

293
    l3_proto = eth_get_l3_proto(&pkt->vec[NET_TX_PKT_L2HDR_FRAG], 1,
294
        pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_len);
295 296 297 298 299

    if (!tso_enable) {
        goto func_exit;
    }

300
    rc = eth_get_gso_type(l3_proto, pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_base,
301 302 303 304 305 306
                          pkt->l4proto);

func_exit:
    return rc;
}

307
void net_tx_pkt_build_vheader(struct NetTxPkt *pkt, bool tso_enable,
308 309 310 311 312 313 314 315
    bool csum_enable, uint32_t gso_size)
{
    struct tcp_hdr l4hdr;
    assert(pkt);

    /* csum has to be enabled if tso is. */
    assert(csum_enable || !tso_enable);

316
    pkt->virt_hdr.gso_type = net_tx_pkt_get_gso_type(pkt, tso_enable);
317 318 319 320 321 322 323 324

    switch (pkt->virt_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
    case VIRTIO_NET_HDR_GSO_NONE:
        pkt->virt_hdr.hdr_len = 0;
        pkt->virt_hdr.gso_size = 0;
        break;

    case VIRTIO_NET_HDR_GSO_UDP:
325
        pkt->virt_hdr.gso_size = gso_size;
326 327 328 329 330
        pkt->virt_hdr.hdr_len = pkt->hdr_len + sizeof(struct udp_header);
        break;

    case VIRTIO_NET_HDR_GSO_TCPV4:
    case VIRTIO_NET_HDR_GSO_TCPV6:
331
        iov_to_buf(&pkt->vec[NET_TX_PKT_PL_START_FRAG], pkt->payload_frags,
332 333
                   0, &l4hdr, sizeof(l4hdr));
        pkt->virt_hdr.hdr_len = pkt->hdr_len + l4hdr.th_off * sizeof(uint32_t);
334
        pkt->virt_hdr.gso_size = gso_size;
335 336 337
        break;

    default:
338
        g_assert_not_reached();
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
    }

    if (csum_enable) {
        switch (pkt->l4proto) {
        case IP_PROTO_TCP:
            pkt->virt_hdr.flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
            pkt->virt_hdr.csum_start = pkt->hdr_len;
            pkt->virt_hdr.csum_offset = offsetof(struct tcp_hdr, th_sum);
            break;
        case IP_PROTO_UDP:
            pkt->virt_hdr.flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
            pkt->virt_hdr.csum_start = pkt->hdr_len;
            pkt->virt_hdr.csum_offset = offsetof(struct udp_hdr, uh_sum);
            break;
        default:
            break;
        }
    }
}

359 360
void net_tx_pkt_setup_vlan_header_ex(struct NetTxPkt *pkt,
    uint16_t vlan, uint16_t vlan_ethtype)
361 362 363 364
{
    bool is_new;
    assert(pkt);

365 366
    eth_setup_vlan_headers_ex(pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_base,
        vlan, vlan_ethtype, &is_new);
367 368 369 370

    /* update l2hdrlen */
    if (is_new) {
        pkt->hdr_len += sizeof(struct vlan_header);
371
        pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_len +=
372 373 374 375
            sizeof(struct vlan_header);
    }
}

376
bool net_tx_pkt_add_raw_fragment(struct NetTxPkt *pkt, hwaddr pa,
377 378 379 380 381 382 383 384 385 386 387 388 389 390
    size_t len)
{
    hwaddr mapped_len = 0;
    struct iovec *ventry;
    assert(pkt);
    assert(pkt->max_raw_frags > pkt->raw_frags);

    if (!len) {
        return true;
     }

    ventry = &pkt->raw[pkt->raw_frags];
    mapped_len = len;

391 392
    ventry->iov_base = pci_dma_map(pkt->pci_dev, pa,
                                   &mapped_len, DMA_DIRECTION_TO_DEVICE);
393

394 395 396 397 398
    if ((ventry->iov_base != NULL) && (len == mapped_len)) {
        ventry->iov_len = mapped_len;
        pkt->raw_frags++;
        return true;
    } else {
399 400
        return false;
    }
401
}
402

403 404 405
bool net_tx_pkt_has_fragments(struct NetTxPkt *pkt)
{
    return pkt->raw_frags > 0;
406 407
}

408
eth_pkt_types_e net_tx_pkt_get_packet_type(struct NetTxPkt *pkt)
409 410 411 412 413 414
{
    assert(pkt);

    return pkt->packet_type;
}

415
size_t net_tx_pkt_get_total_len(struct NetTxPkt *pkt)
416 417 418 419 420 421
{
    assert(pkt);

    return pkt->hdr_len + pkt->payload_len;
}

422
void net_tx_pkt_dump(struct NetTxPkt *pkt)
423
{
424
#ifdef NET_TX_PKT_DEBUG
425 426 427 428
    assert(pkt);

    printf("TX PKT: hdr_len: %d, pkt_type: 0x%X, l2hdr_len: %lu, "
        "l3hdr_len: %lu, payload_len: %u\n", pkt->hdr_len, pkt->packet_type,
429 430
        pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_len,
        pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len, pkt->payload_len);
431 432 433
#endif
}

434
void net_tx_pkt_reset(struct NetTxPkt *pkt)
435 436 437 438 439 440 441 442 443 444 445
{
    int i;

    /* no assert, as reset can be called before tx_pkt_init */
    if (!pkt) {
        return;
    }

    memset(&pkt->virt_hdr, 0, sizeof(pkt->virt_hdr));

    assert(pkt->vec);
446

447 448 449 450 451 452
    pkt->payload_len = 0;
    pkt->payload_frags = 0;

    assert(pkt->raw);
    for (i = 0; i < pkt->raw_frags; i++) {
        assert(pkt->raw[i].iov_base);
453 454
        pci_dma_unmap(pkt->pci_dev, pkt->raw[i].iov_base, pkt->raw[i].iov_len,
                      DMA_DIRECTION_TO_DEVICE, 0);
455 456 457 458 459 460 461
    }
    pkt->raw_frags = 0;

    pkt->hdr_len = 0;
    pkt->l4proto = 0;
}

462
static void net_tx_pkt_do_sw_csum(struct NetTxPkt *pkt)
463
{
464
    struct iovec *iov = &pkt->vec[NET_TX_PKT_L2HDR_FRAG];
465 466
    uint32_t csum_cntr;
    uint16_t csum = 0;
467
    uint32_t cso;
468
    /* num of iovec without vhdr */
469
    uint32_t iov_len = pkt->payload_frags + NET_TX_PKT_PL_START_FRAG - 1;
470 471 472 473 474 475 476 477 478 479 480
    uint16_t csl;
    struct ip_header *iphdr;
    size_t csum_offset = pkt->virt_hdr.csum_start + pkt->virt_hdr.csum_offset;

    /* Put zero to checksum field */
    iov_from_buf(iov, iov_len, csum_offset, &csum, sizeof csum);

    /* Calculate L4 TCP/UDP checksum */
    csl = pkt->payload_len;

    /* add pseudo header to csum */
481
    iphdr = pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_base;
482 483 484 485 486
    csum_cntr = eth_calc_ip4_pseudo_hdr_csum(iphdr, csl, &cso);

    /* data checksum */
    csum_cntr +=
        net_checksum_add_iov(iov, iov_len, pkt->virt_hdr.csum_start, csl, cso);
487 488

    /* Put the checksum obtained into the packet */
489
    csum = cpu_to_be16(net_checksum_finish_nozero(csum_cntr));
490 491 492 493
    iov_from_buf(iov, iov_len, csum_offset, &csum, sizeof csum);
}

enum {
494 495 496
    NET_TX_PKT_FRAGMENT_L2_HDR_POS = 0,
    NET_TX_PKT_FRAGMENT_L3_HDR_POS,
    NET_TX_PKT_FRAGMENT_HEADER_NUM
497 498
};

499
#define NET_MAX_FRAG_SG_LIST (64)
500

501
static size_t net_tx_pkt_fetch_fragment(struct NetTxPkt *pkt,
502 503 504 505 506
    int *src_idx, size_t *src_offset, struct iovec *dst, int *dst_idx)
{
    size_t fetched = 0;
    struct iovec *src = pkt->vec;

507
    *dst_idx = NET_TX_PKT_FRAGMENT_HEADER_NUM;
508

509
    while (fetched < IP_FRAG_ALIGN_SIZE(pkt->virt_hdr.gso_size)) {
510 511

        /* no more place in fragment iov */
512
        if (*dst_idx == NET_MAX_FRAG_SG_LIST) {
513 514 515 516
            break;
        }

        /* no more data in iovec */
517
        if (*src_idx == (pkt->payload_frags + NET_TX_PKT_PL_START_FRAG)) {
518 519 520 521 522 523
            break;
        }


        dst[*dst_idx].iov_base = src[*src_idx].iov_base + *src_offset;
        dst[*dst_idx].iov_len = MIN(src[*src_idx].iov_len - *src_offset,
524
            IP_FRAG_ALIGN_SIZE(pkt->virt_hdr.gso_size) - fetched);
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539

        *src_offset += dst[*dst_idx].iov_len;
        fetched += dst[*dst_idx].iov_len;

        if (*src_offset == src[*src_idx].iov_len) {
            *src_offset = 0;
            (*src_idx)++;
        }

        (*dst_idx)++;
    }

    return fetched;
}

540 541 542 543 544 545 546 547 548 549
static inline void net_tx_pkt_sendv(struct NetTxPkt *pkt,
    NetClientState *nc, const struct iovec *iov, int iov_cnt)
{
    if (pkt->is_loopback) {
        nc->info->receive_iov(nc, iov, iov_cnt);
    } else {
        qemu_sendv_packet(nc, iov, iov_cnt);
    }
}

550
static bool net_tx_pkt_do_sw_fragmentation(struct NetTxPkt *pkt,
551 552
    NetClientState *nc)
{
553
    struct iovec fragment[NET_MAX_FRAG_SG_LIST];
554 555 556 557 558 559
    size_t fragment_len = 0;
    bool more_frags = false;

    /* some pointers for shorter code */
    void *l2_iov_base, *l3_iov_base;
    size_t l2_iov_len, l3_iov_len;
560
    int src_idx =  NET_TX_PKT_PL_START_FRAG, dst_idx;
561 562 563
    size_t src_offset = 0;
    size_t fragment_offset = 0;

564 565 566 567
    l2_iov_base = pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_base;
    l2_iov_len = pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_len;
    l3_iov_base = pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_base;
    l3_iov_len = pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len;
568 569

    /* Copy headers */
570 571 572 573
    fragment[NET_TX_PKT_FRAGMENT_L2_HDR_POS].iov_base = l2_iov_base;
    fragment[NET_TX_PKT_FRAGMENT_L2_HDR_POS].iov_len = l2_iov_len;
    fragment[NET_TX_PKT_FRAGMENT_L3_HDR_POS].iov_base = l3_iov_base;
    fragment[NET_TX_PKT_FRAGMENT_L3_HDR_POS].iov_len = l3_iov_len;
574 575 576 577


    /* Put as much data as possible and send */
    do {
578
        fragment_len = net_tx_pkt_fetch_fragment(pkt, &src_idx, &src_offset,
579 580 581 582 583 584 585 586 587
            fragment, &dst_idx);

        more_frags = (fragment_offset + fragment_len < pkt->payload_len);

        eth_setup_ip4_fragmentation(l2_iov_base, l2_iov_len, l3_iov_base,
            l3_iov_len, fragment_len, fragment_offset, more_frags);

        eth_fix_ip4_checksum(l3_iov_base, l3_iov_len);

588
        net_tx_pkt_sendv(pkt, nc, fragment, dst_idx);
589 590 591

        fragment_offset += fragment_len;

592
    } while (fragment_len && more_frags);
593 594 595 596

    return true;
}

597
bool net_tx_pkt_send(struct NetTxPkt *pkt, NetClientState *nc)
598 599 600 601 602
{
    assert(pkt);

    if (!pkt->has_virt_hdr &&
        pkt->virt_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
603
        net_tx_pkt_do_sw_csum(pkt);
604 605 606 607 608 609 610 611 612
    }

    /*
     * Since underlying infrastructure does not support IP datagrams longer
     * than 64K we should drop such packets and don't even try to send
     */
    if (VIRTIO_NET_HDR_GSO_NONE != pkt->virt_hdr.gso_type) {
        if (pkt->payload_len >
            ETH_MAX_IP_DGRAM_LEN -
613
            pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len) {
614 615 616 617 618 619
            return false;
        }
    }

    if (pkt->has_virt_hdr ||
        pkt->virt_hdr.gso_type == VIRTIO_NET_HDR_GSO_NONE) {
620
        net_tx_pkt_sendv(pkt, nc, pkt->vec,
621
            pkt->payload_frags + NET_TX_PKT_PL_START_FRAG);
622 623 624
        return true;
    }

625
    return net_tx_pkt_do_sw_fragmentation(pkt, nc);
626
}
627 628 629 630 631 632 633 634 635 636 637

bool net_tx_pkt_send_loopback(struct NetTxPkt *pkt, NetClientState *nc)
{
    bool res;

    pkt->is_loopback = true;
    res = net_tx_pkt_send(pkt, nc);
    pkt->is_loopback = false;

    return res;
}